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Abstract

In this paper we study the individual communication
complexity of the following problem. Alice receives an in-
put string x and Bob an input string y, and Alice has to
output y. For deterministic protocols it has been shown [3]
that C(y) many bits need to be exchanged even if the actual
amount of information C(y|x) is much smaller than C(y).
It turns out that for randomised protocols the situation is
very different. We establish randomised protocols whose
communication complexity is close to the information the-
oretical lower bound. We furthermore initiate and obtain
results about the randomised round complexity of this prob-
lem and show trade-offs between the amount of communi-
cation and the number of rounds. In order to do this we
establish a general framework for studying these types of
questions.

1 Introduction

In this paper we continue the study of individual com-
munication complexity introduced in [3]. We focus our at-
tention on the following communication problem denoted
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by I . Alice has a binary string x and Bob a binary string y,
both of the length n. Alice has to output y. We are inter-
ested in the communication complexity of problem I: how
many bits have to be transmitted between Alice and Bob in
order to let Alice learn Bob’s string?

It is easy to see that the worst case complexity, i.e. the
maximum complexity over all inputs of the same size, of
this problem for deterministic protocols is n. The same ap-
plies for randomised protocols in both public and private
coin models.

Assume therefore that x and y are somehow correlated.
The problem has been studied in the following frameworks
of this kind:

• We assume that a probability distribution over input
pairs is given and we allow the protocol to be incor-
rect on a small fraction of input pairs (according to the
given distribution); we consider worst case communi-
cation length. In such setting the problem was studied
in [13, 10].

• We assume that a probability distribution over input
pairs is given (known both to Alice and Bob) and we
measure the average length of communication on a
random input pair picked according to that distribu-
tion. In such setting the problem was studied in [12].

• We assume that the input pair belongs to a predeter-
mined set R of pairs (known both to Alice and Bob)
and consider worst case communication length over all
input pairs from R. In such setting the problem was
studied in [10, 11, 8, 1] (see also Chapter 4.7 of the
textbook [4]).



In this paper we study this problem in none of these three
settings. We allow all input pairs (thus Alice and Bob have
no a priori knowledge about the input pair) and we do not
consider any probability distribution on pairs. We are in-
terested in how the communication length depends on the
input pair. The only paper studying the problem in such
setting is [7]. There, a deterministic 1 round protocol with
communication length C(y|x)+O(log n) (conditional Kol-
mogorov complexity of y given x) is designed that solves
the problem correctly on all input pairs provided Bob gets
O(log n) bits of extra information from a third party who
knows both x, y. The first result of our paper can be consid-
ered as getting rid, in this protocol, of extra O(log n) bits of
help information at the expense of increasing the number of
rounds and allowing randomised protocols.

To introduce our results we start with a toy example.
Consider the following protocol. Bob with input y sends
the bit 0 if y is the string that contains only 0’s, otherwise
he sends a 1 followed by y. Clearly, for y = 00 . . . 0 this
protocol communicates only one bit, and for all other y’s it
communicates n + 1 bits.

This protocol can be easily improved by letting Bob send
a program that outputs y instead of sending y itself. This
corresponds then to sending C(y) bits from Bob to Alice,
where C(y) is the Kolmogorov complexity of y. No deter-
ministic protocol can do better [3], i.e., the individual com-
munication complexity of this problem is essentially C(y).
In particular, the string x which Alice holds is of no use for
any protocol.

When one considers randomised protocols one can make
use of Alice’s string x as the following protocol demon-
strates. Alice and Bob first perform a randomised equality
test of x and y which is well known to require only O(1)
bits of communication. If they conclude that x = y then
Alice outputs x otherwise Bob sends a description of y to
Alice and she outputs y. Thus, the protocol requires only
O(1) bits of communication on inputs where x = y and at
most C(y) + O(1) otherwise. The individual communica-
tion complexity of the string y has gone down significantly
when Alice’s input x equals y. The question we are inves-
tigating here is how Alice’s input x influences the cost of
communicating Bob’s y.

We say that RA
ε (I, x, y) ≤ g(x, y) if there is a public

coin randomised protocol in which Alice outputs Bob’s y
with probability at least 1− ε after communicating at most
g(x, y) bits. Since Newman (see [4, Th. 3.14]) shows that a
public coin protocol can be turned into a private one using
an additional O(log n) bits of communication our results
can be easily adapted to such a setting as well.

We first observe that the above mentioned protocol based
on equality tests can be generalised as follows. Nisan [9]
has proved that the worst case randomised complexity of
the predicate GT (x is lexicographically greater than y) on

strings of length n is O(log n) (for any fixed positive proba-
bility of error). By the same argument one can prove that the
worst case randomised complexity of computing the length
of the largest common prefix lcp(x, y) of x and y is also
O(log n) (for completeness’ sake we present the proof in
Section 3.1). This implies that the individual complexity of
our problem I is at most

RA
ε (I, x, y) ≤ n− lcp(x, y) + O(log n)

for any constant positive ε. (Bob first learns lcp(x, y) and
then communicates to Alice the missing n − lcp(x, y) bits
of y.)

There are many other ways than having a common pre-
fix in which x and y can share a common information. For
example x and y can differ in the first bit and have the
same suffix of length n − 1. Clearly, for such x, y the ran-
domised individual communication complexity of problem
I is also small. To catch all possible ways to have common
information consider the conditional Kolmogorov complex-
ity C(y|x) of y given x.

In this paper we compare the randomised individ-
ual communication complexity of problem I to C(y|x).
Namely, we show that RA

ε (I, x, y) ≤ C(y|x) +
O(

√
C(y|x)).

Is it possible to do substantially better? That is, is it
possible to solve I with communication length less than
C(y|x)? The answer is no. We prove that if a randomised
protocol solves I with probability of error ε < 1 for all x, y,
then for all x and i there is y such that C(y|x) < i and the
protocol communicates on x, y at least i+log(1−ε)−O(1)
bits.

Our protocol achieving communication C(y|x) +
O(

√
C(y|x)) runs in O(

√
C(y|x)) rounds. We can also

obtain a protocol that solves the problem in O(log C(y|x))
rounds by exchanging only (1 + δ)C(y|x) bits for an arbi-
trary constant δ > 0. Is it possible to reduce the number of
rounds in these protocols to a constant keeping the commu-
nication length close to C(y|x)? We don’t know the answer
to this question.

The paper [7] shows that there is a deterministic 1 round
protocol with communication length C(y|x) + O(log n)
provided Bob gets O(log n) bits of extra information from
a third party who knows both x, y.

It seems that the core of the problem lies in estimating
C(y|x) efficiently. In particular we show that if Alice and
Bob know C(y|x) and C(x|y) then they can solve the prob-
lem I deterministically in a single round by communicating
2C(y|x) + 2C(x|y) bits. In randomised setting a single
round and only C(y|x) + C(x|y) bits suffice.

Thus we identify the problem of efficiently approximat-
ing C(y|x) as a crucial problem. We say that a protocol
∆-approximates a function f(x, y) if on input x to Alice
and y to Bob the protocol outputs a value between f(x, y)
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and f(x, y) + ∆. In the case of a randomised protocol with
error probability ε this should happen with probability at
least 1 − ε for each x and y. We show that a k-round ran-
domised protocol that ∆-approximates C(y|x) with prob-
ability of error ε < 1/2 must communicate Ω((n/∆)1/k)
bits. This can be translated into a lower bound Ω(n1/k) on
RA,k-rounds

ε (I, x, y) as once Alice knows x and y she can de-
termine C(y|x).

So far we have compared the cost of the protocol with
the conditional Kolmogorov complexity of x and y. Since
Alice and Bob are all powerful there really seems to be
no good reason why Kolmogorov complexity should be the
right measure to consider. For example Alice and Bob could
a priori agree on some non-computable oracle and use Kol-
mogorov complexity relative to that oracle. It turns our
that most of the results stated so far hold not only for Kol-
mogorov complexity but rather for any measure that we call
a normalised function. A function d : {0, 1}∗ × {0, 1}∗ →
N ∪ {+∞} is normalised if for all x, i the number of y
with d(x, y) < i is less than 2i. The normalisation con-
dition requires that the number of y that are close to x is
small. Clearly C(y|x) is normalised and it is essentially op-
timal among all lower semi-computable normalised func-
tions. Another useful normalised function is the function
s(x, y) = n− lcp(x, y)− 1 where n is the length of x and
y; if the lengths of x and y are different, the function s(x, y)
takes the value +∞.

Our upper bound RA
ε (I, x, y) ≤ d(x, y) + O(

√
d(x, y))

as well as RA
ε (I, x, y) ≤ (1 + δ)d(x, y) hold for any nor-

malised function d(x, y). Also, if Alice and Bob know
d(x, y) and d(y, x) for their inputs x and y, then they can
in a single deterministic round solve the problem I using
2d(x, y) + 2d(y, x) bits of communication. If the function
d(x, y) satisfies the additional property that for some con-
stant c and all x the number of y such that d(x, y) < i is
at least 2i−c, then for any randomised protocol that solves
I with probability of error ε < 1 for all x, y, for every x
and i we can find y such that d(x, y) < i and the protocol
communicates on x, y at least i− c + log(1− ε) bits.

In order to show stronger and more interesting lower
bounds one has to however focus on particular functions
d(x, y). For example in the case of d(x, y) = |y|, one can
solve I in one round with communication d(x, y).

The normalised function s(x, y) plays a key role in our
lower bound proof for ∆-approximating C(y|x). In fact
the Ω((n/∆)1/k) lower bound holds for ∆-approximating
s(x, y) in k rounds as well. However as opposed to C(y|x)
we know how to efficiently approximate s(x, y): we can ∆-
approximate s(x, y) in k rounds using O((n/∆)1/k) com-
munication. This allows us to solve problem I in k rounds
using at most s(x, y) + O(n1/k) communication, which for
k = 1, 2 is tight.

We conclude by three interesting open questions:

1. Is there a randomised protocol to solve problem I in con-
stant rounds by exchanging at most C(y|x) + o(n) bits?
2. What is the worst case randomised complexity of ap-
proximating C(y|x)?
3. What is the worst case randomised complexity of ap-
proximating C(y|x) in k rounds (k is a constant)? We give
only a lower bound and only for error probability less than
1/2.

2. Notation and definitions

We establish our notation here. We consider the usual
model of two-party communication complexity. In this
model Alice and Bob get inputs x ∈ X and y ∈ Y , re-
spectively, and either one or both of them want to learn the
value of some function f(x, y). More generally, for some
relation T ⊆ X × Y × Z, they may want to learn some
value z such that (x, y, z) ∈ T . (We will identify a function
f : X × Y → Z with its graph {(x, y, f(x, y)) | (x, y) ∈
X × Y }.) They accomplish this goal by exchanging mes-
sages according to some fixed protocol. For each pair of
inputs x and y we measure how many messages and how
many bits of information were exchanged during the com-
munication. We call the first quantity the number of rounds
and the second quantity the length of communication.

To avoid any ambiguity we can define our terms formally
as follows. A protocol P over domain X × Y with range Z
is a finite rooted binary tree, whose nodes are divided into
two parts, A and B, called Alice’s nodes and Bob’s nodes.
(They indicate the turn of move.) Each internal Alice’s node
v is labelled by a function av : X → {0, 1} and each inter-
nal Bob’s node v is labelled by a function bv : Y → {0, 1}.
Each Alice’s leaf v is labelled by av : X → Z and each
Bob’s leaf v is labelled by bv : Y → Z. A node reached
by a protocol P on inputs x, y is the leaf reached by start-
ing at the root of P and walking towards leaves where in
each encountered internal node we go left if av(x) = 0 or
bv(y) = 0, depending on whose node v is, and we go right
otherwise. We say that using P on input x and y, Alice
learns a relation T if the leaf v reached on x and y belongs
to Alice and satisfies (x, y, av(x)) ∈ T . Similarly, Bob
learns T if the leaf v belongs to him and (x, y, bv(y)) ∈ T .

The length of communication of the protocol P on in-
puts x, y is the length of the path from the root of P to
the leaf reached on x, y. A protocol P runs in k rounds
on inputs x, y if there are k − 1 alternations between Al-
ice’s and Bob’s nodes along the path from the root of the
protocol to the leaf reached on x, y. The message sent by
Alice in the l-th round of the protocol P on x, y is the
concatenation of bits avi(x), avi+1(x), . . . , avj (x) where
vi−1, vi, vi+1, . . . , vj+1 are the nodes along the path from
the root the the leaf reached on x, y, and the (l−1)-th alter-
nation between nodes labelled by bu and au occurs between
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nodes vi−1 and vi, and the l-th alternation occurs between
vj and vj+1.

A randomised protocol is a probability distribution µ on
protocols. For a relation T , we say that RA

ε (T, x, y) ≤
g(x, y) + O(g′(n)), if there exist a randomised protocol µ
and a constant c > 0 such that for every (x, y) ∈ X × Y ,
with µ-probability at least 1 − ε for a random protocol P
the length of communication on x, y is at most g(x, y) +
cg′(n)+ c and Alice learns T on x, y (where n is the length
of x, y). Similarly, RB

ε (T, x, y) ≤ g(x, y) + O(g′(n)) for
the case where Bob learns T . We say that RA

ε (T, x, y) ≥
g(x, y) + Ω(g′(n)) if for every randomised protocol µ and
every function h(n) with RA

ε (T, x, y) ≤ g(x, y) + h(n) we
have h(n) = Ω(g′(n)).

If f : {0, 1}∗ × {0, 1}∗ → N and α : N → N are
functions, Alice or Bob may want to learn the value of
f(x, y) only α-approximately. This means that they want
to learn the relation T = {〈x, y, i〉 | f(x, y) ≤ i ≤
f(x, y) + α}. We write RB

ε (f, α, n) ≤ g(n) + O(g′(n)), if
RB

ε (T, x, y) ≤ g(|x|) + O(g′(|x|)). In the similar way we
define RB

ε (f, α, n) ≥ g(n) + Ω(g′(n)).
When we restrict ourselves to protocol with k rounds we

will use notation R·,k-rounds
··· (· · · ) to denote the appropriate

quantity.
A function d : {0, 1}∗ × {0, 1}∗ → N ∪ {+∞} is nor-

malised if for all x, i the number of y with d(x, y) < i is
less than 2i. Normalisation condition requires that the num-
ber of y that are close to x is small. The conditional Kol-
mogorov complexity C(y|x) is minimal (up to an additive
constant) among all normalised functions for which the set
{〈x, y, i〉 | d(x, y) < i} is computably enumerable. This
means that for every such normalised function d there is a
constant c such that C(y|x) ≤ d(x, y) + c for all x, y. This
property of C(x|y) can be considered as its definition since
it defines it uniquely up to an additive constant.

We will use the following probability distribution on
{0, 1}n ×{0, 1}n. To generate a random pair (x, y) choose
first a random number i ∈ {0, 1, 2, . . . , n − 1}, and then
choose uniformly at random a pair (x, y) with lcp(x, y) =
i. That is, the probability of a pair (x, y) is equal to
2lcp(x,y)−2n+1/n. We call this distribution quasi-uniform.

3. Non-constant number of rounds

In this section we consider protocols using non-constant
number of rounds. We start with the following theorem.

THEOREM 1. For all normalised functions d,
RA

ε (I, x, y) ≤ d(x, y) + O(
√

d(x, y)).

Before proving the theorem we start with some remarks
explaining why the problem to communicate y to Alice by
exchanging about d(x, y) bits is hard.

If Bob knew x then he could just send to Alice the index
of y in the set {y′ | d(x, y′) = d(x, y)}. By normalisa-
tion requirement the binary length of the index is at most
d(x, y) + 1.

Assume now that Bob knows d(x, y) but does not know
x. One can prove that, for d(x, y) = C(y|x), it is im-
possible to transmit y to Alice in about d(x, y) bits deter-
ministically (see [3]). Using randomness, we employ the
technique of fingerprints and proceed as follows: Bob ap-
plies a random linear function L : {0, 1}n → {0, 1}m over
GF (2) to his input y (called the fingerprint of y in the se-
quel) and sends it to Alice. The coefficients of L are read
from the shared random source. Since we assume that Bob
knows d(x, y) he can choose m = log(1/ε) + d(x, y). Al-
ice compares L(y) with fingerprints L(y′) for all y′ with
d(x, y′) = d(x, y). She outputs the first such y′ with
L(y′) = L(y). By union bound the probability of error
(y′ 6= y but L(y′) = L(y)) in this protocol is at most
2d(x,y)2−m = ε. We now turn to the actual proof.

Proof of Theorem 1. Since Bob knows only y, Bob will try
to guess an upper bound for d(x, y) probing the numbers
1, 3, 6, . . . , j(j + 1)/2, . . . successively. At the beginning
of the protocol he prepares fingerprints L1(y), L2(y), . . . ,
where each Lj : {0, 1}n → {0, 1}mj is a linear function
chosen independently at random using the shared random
source, and mj will be specified later. Then our protocol
runs in rounds numbered 1, 2, . . . . In round 2j − 1 Bob
sends to Alice the fingerprint Lj(y). Then Alice in round
2j looks for a string y′ with

d(x, y′) ≤ j(j + 1)/2

such that Li(y′) = Li(y) for all i = 1, 2, . . . , j. If she
succeeds to find such y′, she outputs it, informs Bob that
she has succeeded and stops the protocol. Otherwise she
informs Bob that she has not succeeded and the protocol
continues.

Clearly, the protocol stops after at most 2j rounds where
j is minimal such that d(x, y) ≤ j(j + 1)/2. As j =
O(

√
d(x, y)) the protocol works in these many rounds and

exchanges at most j + m1 + · · ·+ mj bits.
Now we will adjust mj so that the probability of error is

less than ε. An error may occur only if there are y′ 6= y and
k ≤ j such that d(x, y′) ≤ k(k + 1)/2 and Li(y′) = Li(y)
for all i = 1, 2, . . . , k. For fixed k and y′ the probability
that the k fingerprints of y and y′ coincide is 2−m1−···−mk .
Since d(x, y′) is normalised, by union bound over y′ the
probability of error is less than 2k(k+1)/2−m1−···−mk . Thus
if we let m1 = 2 + log 1/ε and mj = j + 1 for j = 2, . . . ,
then for fixed k the probability of error is at most ε2−k. By
union bound over k the total probability of error is less than
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ε. The number of communicated bits is

j + m1 + · · ·+ mj

= 2j + j(j + 1)/2 + log(1/ε)

= d(x, y) + O(
√

d(x, y)) + log(1/ε).

In the previous proof we have chosen m1,m2, . . . so as
to balance the number of rounds of the protocol and the
quality of the estimate on d(x, y). If for some δ > 0 we
chose m1 = 3 + log 1/ε and mj = (1 + δ)j for j = 2, . . .
in the previous proof and probed as upper bounds for d(x, y)
the values of the form (1 + δ)j , we would obtain a proto-
col that runs in O(log d(x, y)/ log(1 + δ)) rounds and ex-
changes (1 + δ)d(x, y) + log1−δ d(x, y) + log 1/ε bits of
information.

The following lemma provides a lower bound on the
amount of communication needed for solving I and it is
applicable to all d(x, y) that satisfy certain natural property.
That property holds for both C(y|x) and s(x, y).

LEMMA 1. Assume that for some constant c and all x the
number of y such that d(x, y) < i is at least 2i−c. If
a randomised protocol solves I with probability of error
ε < 1 for all x, y, then for all x and i there is y such that
d(x, y) < i but the protocol communicates on x, y at least
i− c + log(1− ε) bits.

Proof. The proof is based on the relation between ran-
domised complexity and average case complexity. Fix x
and i and assume that there is a protocol such that for all y
with d(x, y) < i with probability at least 1−ε Alice outputs
y after receiving at most l bits from Bob. Consider the uni-
form probability distribution on y’s such that d(x, y) < i.
By standard arguments one can show that there is a deter-
ministic protocol allowing Alice for a fraction at least 1− ε
of y’s to learn y after receiving at most l bits from Bob.

On the other hand, Alice’s output depends only on the
concatenation b of Bob’s messages. Thus the cardinality of
the set A of strings which Alice can output after receiving
at most l bits from Bob is 2l or less. As the number of y’s
with d(x, y) < i is at least 2i−c, 2l ≥ 2i−c(1− ε).

For the sake of completeness we finish this section by
presenting a protocol computing lcp(x, y) with O(log n)
communication and thus enabling Bob to transmit his in-
put to Alice with communication length s(x, y)+O(log n).
The proof is the same as that of Nisan [9].

3.1. Computing the largest common prefix
by exchanging O(log n) bits.

To find lcp(x, y) with error probability at most ε Alice
and Bob use binary search of the leftmost different bit in x
and y. That is, they first apply the randomised equality test

(RET) to x, y. If they find out that x 6= y, they apply RET
to the first halves of x and y, and so on, log n times. At each
time they have a pair of numbers l, r such that the length-r
prefixes xr, yr of x, y are different and the length-l prefixes
of x, y are supposedly equal. They recurse by applying RET
to length-(l + r)/2 prefixes of x, y and replace either l, or
r by (l + r)/2 depending of whether the outcome of the
test is positive or negative. They use fingerprints of length
log(log n/ε). That implies that the probability of failure in
each test is at most ε/ log n. By union bound the overall
probability of error is at most ε.

This protocol communicates O(log n log log n) bits. To
get rid of the factor log log n we use the following trick. In-
stead of using long fingerprints we will use constant length,
say length-3, fingerprints. To compensate the increase in
error probability we will sometimes double check the equa-
tion xl = yl. More specifically, at each step we will have
a pair of numbers l, r corresponding to a node in the search
tree (l = 0, r = n correspond to the root of the tree, and
l, (l + r)/2 and (l + r)/2, r to children of the node l, r). At
the start we are in the root. We then repeat 5 log n times the
following loop.

(1) Check whether xl = yl, using RET. If the
outcome is negative, backtrack, that is, return to
the parent of the current node and skip (2).
(2) Otherwise move to one of the children of the
node l, r, as in the normal binary search (unless
you are in the leaf, in which case skip this step).

The average number of failed tests is at most 5 log n/8.
By Chernoff bound with probability at least 1−O(1/n) the
number of failed tests is less than log n. Let us prove that
in this case we reach at some moment the target node in the
search tree (it is easy to see, that if we get into the target
node, we stay there forever).

By way of contradiction assume that this is not the case.
It is easy to verify that then the following value

(the number of performed tests)
+ 2(the distance in the tree from the current node to
the target node)
− 4(the number of failed performed tests)

does not increase after each repetition of the loop. Indeed,
if at least one test errs, then the last term decreases by at
least four, which compensates the increase of the first two
terms, as we make at most one move in the wrong direction
and make at most 2 tests. If no tests err then we make a
move in the right direction, thus the second term decreases
by 2 while the first term increases by at most 2 (the last term
does not change).

At the the start the distance to the destination is log n
thus the value in question is always at most log n. However
at the end it is at least 5 log n + 2− 4 log n > log n.
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4. Constant number of rounds

In this section we consider the feasibility of reducing
the number of rounds in the protocol of Theorem 1 to a
constant while keeping the communication length close to
d(x, y). Whether that is possible of course might depend on
the function d in question. For example, if d(x, y) = |y|
then the problem can be solved in 1 round and communi-
cation length d(x, y). However we are interested primarily
in the more natural functions like C(y|x) and s(x, y) =
n− lcp(x, y)− 1.

We do not know the answer in the case of C(y|x). For
s(x, y) the answer is positive: we can solve the problem I
in two rounds and communication length s(x, y)+O(

√
n),

which is only slightly worse than the bound of Theorem 1.
Moreover, in k rounds we can solve I with communication
length s(x, y) + O(n1/k):

THEOREM 2. For all k and ε > 0 we have
RA,k-rounds

ε (I, x, y) ≤ s(x, y) + O(n1/k). The constant in
O-notation depends on k and ε.

To prove this bound we first show that the randomised
worst case complexity of approximating lcp(x, y) by a k-
round protocol is O(n1/k).1 Once Bob has learned the
largest common prefix of x and y, he sends to Alice the
last s(x, y) bits of y. The described protocol works in k +1
rounds instead of the claimed k rounds. To obtain a k-round
protocol, we modify the protocol so that Bob first approxi-
mates lcp(x, y) in k − 1 rounds with precision n1/k. That
is, he finds a number p such that p ≤ lcp(x, y) < p + n1/k.
Then he sends Alice the last n−p bits of y and Alice learns
y.

Proof of Theorem 2. Let us show that

RA,k-rounds
ε (lcp, α, n) = O((n/α)1/k).

Instead of binary search Alice and Bob perform m-ary
search, where m = (n/α)1/k. Divide the interval
{1, 2, . . . , n} into m segments of equal length. For ev-
ery sub-segment Alice finds a fingerprint of length l =
log(k/ε) of the corresponding sub-string of x. Then Al-
ice sends all fingerprints to Bob and Bob compares them
with the corresponding fingerprints of his sub-strings. He
finds the leftmost segment where the fingerprints differ. In
the second round Bob sends to Alice the number of that seg-
ment (if k = 1 then he just outputs that number times α).
Then Bob divides it again in m sub-segments and for each
sub-segment sends to Alice the fingerprint of length l of the
corresponding sub-string of y. And so on for k rounds.

1The same upper bound holds for GT, which is a slight improvement
of the known bound Rk-rounds

ε (GT, n) = O(n1/k log n) (stated in [6]
without a proof).

Let us estimate first the probability of an error. The
length of the last segment is at most n/mk ≤ α. Thus
an error can occur only if lcp(x, y) does not belong to that
segment. If this happens then there is a round in which the
fingerprints of the leftmost different sub-strings of x and y
coincide. By union bound the probability of this is at most
k2−l = k2− log(k/ε) = ε.

In each round except the last one they send ml + log m
bits and in the last one ml bits. Thus the total length of the
communication is kml + (k − 1) log m = O(n1/k).

To finish the proof of the theorem, first apply k−1 round
protocol allowing Bob to n1/k-approximate lcp(x, y) with
communication length O((n1−1/k)1/(k−1)) = O(n1/k).
Bob then learns a number p such that p ≤ lcp(x, y) <
p + n1/k. Then he sends to Alice the last n − p <
n− lcp(x, y) + n1/k bits of y and Alice learns y.

4.1. Tightness results for Theorem 2

In the case of one and two rounds we are able to show
that the bound in Theorem 2 is tight.

THEOREM 3. For k = 1, 2 and all ε < 1 we have
RA,k-rounds

ε (I, x, y) ≥ s(x, y) + Ω(n1/k). This means that
there is a positive δ depending on ε such that for all large
enough n and all k-round protocols there are x, y of length
n such that the communication length of the protocol on x, y
is at least s(x, y) + δn1/k. As C(y|x) ≤ s(x, y) + O(1),
the same lower bound holds for C(y|x) in place of s(x, y).

Fist we prove the theorem for k = 1.

Proof. We use again relation between randomised and av-
erage case complexity.

Fix ε < 1 and n and assume that there is a randomised
1-round protocol such that for all x, y with probability 1−ε
the communication length is at most s(x, y) + l and Alice
learns y. Then there is a deterministic 1-round protocol such
that for at least 1− ε fraction of the input pairs (x, y) (with
respect to the quasi-uniform distribution) the communica-
tion length is at most s(x, y) + l and Alice learns y.

Depending on his input y Bob chooses a message b and
sends it to Alice. Based on b and her input x Alice outputs
a string y′. We need to upper bound the fraction of pairs
x, y such that y′ = y and |b| ≤ s(x, y) + l (call such pairs
successful). To this end fix a message b and let Yb denote
the set of all Bob’s inputs y for which he sends b. Note that
for every x there is at most one successful pair x, y with
y ∈ Yb.

Let pb denote the total probability of all successful pairs
(x, y) such that y ∈ Yb.

LEMMA 2. pb ≤ λ(Yb) · l+2−log λ(Yb)−|b|
n where λ stands

for the uniform probability distribution on {0, 1}n.
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Proof. By definition pb is the sum of probabilities of suc-
cessful pairs x, y with y ∈ Yb. Fix i and upper bound the
contribution to this sum of all pairs (x, y) with s(x, y) = i.
By the definition of the quasi-uniform probability, the con-
tribution of each such pair is 2−i−n/n.

We distinguish three cases: (a) i < |b| − l, (b) |b| − l ≤
i < n− k where k is the smallest integer number such that
λ(Yb) ≤ 2k−n, and (c) i ≥ n− k.

Case (a). The contribution of all such pairs is zero, as for
every successful pair s(x, y) ≥ |b| − l.

Case (b). We upper-bound the quasi-uniform measure of
all pairs (successful or not) such that |b| − l ≤ s(x, y) <
n− k.

For every fixed y there are 2i pairs with s(x, y) = i and
the contribution of each such pair is 2−i−n/n. Thus the
contribution of all pairs (x, y) with s(x, y) = i is at most
|Yb|2−n/n = λ(Yb)/n.

Case (c). The contribution of every pair with s(x, y) ≥
n− k is at most 2k−2n/n. For every x there is at most one
successful pair x, y with y ∈ Yb, hence the contribution of
all such successful pairs is at most 2k−n/n.

Thus we obtain

pb ≤
λ(Yb)[(n− k)− (|b| − l)] + 2k−n

n

≤ λ(Yb)(− log λ(Yb)− |b|+ l)) + 2λ(Yb)
n

.

The lemma implies that the total probability of all suc-
cessful pairs (for all b) is at most∑

b λ(Yb)(l + 2− log λ(Yb)− |b|)
n

=
l + 2 +

∑
b λ(Yb)(− log λ(Yb))−

∑
b λ(Yb)|b|

n
.

Consider the mapping Yb 7→ b as a prefix code of the source
consisting of all different Yb’s, where probability of the
source letter Yb is λ(Yb). By Shannon’s Noiseless Coding
Theorem we have

∑
b λ(Yb)|b| ≥

∑
b λ(Yb)(− log λ(Yb))

and thus the total probability of all successful pairs is at
most (l + 2)/n. Hence l ≥ (1− ε)n− 2.

4.1.1 Proof of Theorem 3 for k = 2

Fix ε < 1 and n and assume that there is a randomised 2-
round protocol such that for all x, y with probability 1 − ε
Alice learns y after exchanging at most s(x, y)+ l bits with
Bob (Alice sends the first message and Bob the second one).
Then there is a deterministic 1-round protocol such that at
least 1− ε fraction of the input pairs (x, y) (with respect to
the quasi-uniform distribution) is successful, that is, Alice
learns y after exchanging at most s(x, y) + l bits with Bob.

Fix such deterministic protocol and fix any positive δ <
1−ε. We first show that this protocol allows Bob in 1 round

to l − log δ-approximate lcp(x, y) on a fraction 1 − ε − δ
of all input pairs. Then we show that this is possible only
when l = Ω(

√
n).

LEMMA 3. For at least 1− ε− δ of input pairs picked ac-
cording to the quasi-uniform distribution the length of Bob’s
message is between s(x, y) + log δ and s(x, y) + l and the
length of Alice message is at most l − log δ.

Proof. Estimate the fraction of successful inputs pairs x, y
such that Bob communicates to Alice i + log δ bits and Al-
ice’s output is correct. Fix x and i. The string output by
Alice depends only on x and Bob’s message. Thus the num-
ber of different y’s printed after receiving less than i+log δ
bits from Bob is less than 2i+log δ = δ2i. On the other hand,
there are 2i different y’s for which s(x, y) = i. Hence for
every fixed x, i the fraction of y’s such that (x, y) is a suc-
cessful pair and Bob sends less than i + log δ bits among
all y’s with s(x, y) = i is less than δ. Averaging over x, i
shows that the fraction of all successful input pairs on which
Bob sends to Alice at most s(x, y) + log δ bits is at most δ.

Thus for at least 1− ε− δ input pairs Bob’s message has
at least s(x, y) + log δ bits and Alice’s message has at most
l − log δ bits.

We have shown that for at least 1 − ε − δ input pairs
the length of Bob’s message l− log δ-approximates s(x, y).
Thus there is a 1 round protocol with communication length
l−log δ to l−log δ-approximate lcp(x, y) on 1−ε−δ input
pairs.

LEMMA 4. If a deterministic 1-round protocol on at least
1 − ε pairs x, y (with respect to the quasi-uniform proba-
bility distribution) α-approximates s(x, y) transmitting at
most l bits then l = Ω(n/α).

Proof. The assumption implies that there is a deterministic
1-round protocol such that on a fraction of at least (1−ε)/α
pairs Bob computes lcp(x, y) exactly.

Fix a message a sent by Alice and let X = X(a) be the
set of all x such that Alice sends the message a on input
x. After receiving a Bob knows that Alice’s string is in X .
Depending on his string y, Bob chooses a number b(y). The
goal of Bob is to maximise the quasi-uniform probability of
the set Z = {(x, y) ∈ X×{0, 1}n | b(y) = lcp(x, y)}. We
need to prove that whatever function b(y) Bob chooses, the
quasi-uniform probability of the set Z is small.

For X ⊆ {0, 1}n, let λ(X) = |X|/2n denote the density
of X .

LEMMA 5. For every function b mapping strings of length
n to integers {0, 1, . . . , n − 1} and every set X of strings
of length n the quasi-uniform probability of the set Z is at
most 2λ(X)(1 + lnλ(X)−1)/n.
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Proof. Fix X . Then the set Z depends only on the func-
tion y 7→ b(y). We use a game interpretation of the quasi-
uniform probability of Z. Consider the following game
played by one player against a “random” adversary. The
adversary chooses at random a string y of length n. We
choose its non-empty prefix z and flip the last bit of z. Then
the adversary chooses a random continuation x of length n
of the resulting string z′. We gain 1 if x gets into X and 0
otherwise.

Our strategy is essentially to choose z of length b(y)+1.
Clearly, our gain in the game is n-times the quasi-uniform
measure of Z.

Let us modify slightly this game: in the modified game
we do not flip the last bit of z and we are allowed to choose
the empty prefix. The maximal gain in the modified game is
at least half of the maximal gain in the original game. Thus
it suffices to prove that the maximal gain in the second game
is at most λ(X)(1 + lnλ(X)−1).

We will prove this claim by induction on n. To prove the
induction step, we have to generalise the (second) game as
follows.

Let r by a real number in [0, 1]. Consider the third game:
the adversary chooses at random a string y of length n. Then
we either stop the game, in which case we gain r. Or we
continue as in the second game.

Let wr(X) denote the maximal possible gain in the last
game. Note that the second game is a special case of the last
game (r = 0). Thus it suffices to prove the following

CLAIM 1. For all r, X we have

wr(X) ≤ fr(λ(X))

where

fr(u) =
{

r + u ln(1/r), if u ≤ r,
u + u ln(1/u), if u ≥ r.

Note that f0(u) = u + u ln(1/u). We prove the state-
ment by induction on n. The tricky definition of fr(u)
is explained as follows. To make the induction step we
need fr(u) to be concave in u and satisfy the inequality
fu(u) ≤ fr(u) for r ≤ u. The function fr(u) is indeed
concave: both functions r + u ln(1/r), u + u ln(1/u) are
concave and in the point u = r they coincide and have the
same derivative. For the base of induction we need the in-
equalities: r ≤ fr(0) and 1 ≤ fr(1). One can verify that
fr(u) is the minimal function satisfying these requirements.

Base of induction: n = 0. In this case we need to verify
the inequality for λX = 0, 1 as these are the only densities:
r ≤ fr(0) and 1 ≤ fr(1). Both inequalities are obvious.

Induction step. Let X0 denote the set of all x of length
n−1 such that 0x ∈ X . Let X1 be defined in a similar way.
We claim that

wr(X) ≤ wmax{r,λ(X)}(X0) + wmax{r,λ(X)}(X1)
2

.

The first term in the numerator corresponds to y starting
with 0 and the second one to the remaining y. If the ad-
versary chooses y starting with 0 we have three options:
either gain r, or gain λ(X) (by letting let b(y) = 0), or
let b(y) > 0. The last option means that we play the sec-
ond game for X0 in place of X . Thus, our average gain for
y starting with 0 is at most wmax{r,λ(X)}(X0). A similar
bound holds for y starting with 1.

By induction hypothesis we have

wmax{r,λ(X)}(X0) ≤ fmax{r,λX}(λX0),

wmax{r,λ(X)}(X1) ≤ fmax{r,λX}(λX1).

Thus wr(X) does not exceed

fmax{r,λX}(λX0) + fmax{r,λX}(λX1)
2

.

By concavity this does not exceed

fmax{r,λX}((λX0 + λX1)/2)

= fmax{r,λX}(λX) = fr(λX).

Let us finish the proof of Lemma 4. By Lemma 5 we
have

∑
a λ(X(a))(1+lnλ(X(a))−1) ≥ (1−ε)n/2α. The

left hand side is at most 1 plus the Shannon entropy of the
message sent by Alice. The Shannon entropy of every ran-
dom value having at most 2l outcomes does not exceed l ln 2
and we obtain the inequality 1 + l ln 2 ≥ (1− ε)n/2α.

By Lemmas 3 and 4 if R2−rounds
ε (I, x, y) ≤ s(x, y)+l(n)

then l(n)− log δ = Ω(n/(l(n)− log δ)) for some positive
constant δ. This implies that l(n) = Ω(

√
n). Theorem 3 is

proved.
Remark. We could handle the case k = 1 similar to

the case k = 2: with probability 1 − ε − δ the length of
Bob’s message l − log δ-approximates lcp(x, y). Without
any information of x the maximal probability of success in
such approximation is (l− log δ)/n, thus l ≥ (1−ε−δ)n+
log δ. The choice of δ that maximises this lower bound is
δ = log e/n. In this way we obtain the bound l ≥ (1 −
ε)n− log n−O(1), which is slightly worse than the bound
l ≥ (1− ε)n−O(1) from the first proof.

4.2. Approximating C(y|x)

We have already noticed that the problem of transmit-
ting Bob’s input to Alice in k-rounds by exchanging about
C(y|x) bits reduces to approximating C(y|x) in k − 1
rounds by exchanging few bits. For the latter problem we
are able to prove the following lower bound.

THEOREM 4. For all k ≥ 0 and all ε < 1/2 we have
Rk-rounds

ε (C(y|x), α, n) = Ω((n/α)1/k). The constant in
Ω-notation depends on k and ε.
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Note that the bound of Theorem 4 does not imply similar
bound for all ε < 1. We do not know if this is the case.

To prove Theorem 4 we use the round elimination tech-
niques from [6]. Previously this techniques was used to
obtain the bound Rk-rounds

ε (GT, n) = Ω(n1/k) for the ran-
domised worst case complexity of GT predicate on n-
length strings (x is lexicographically greater than y). It is
based on the Round elimination lemma that implies the fol-
lowing: for every positive ε there is a positive δ such that
if Rk rounds

δ (GT, n) ≤ l then Rk−1 rounds
ε (GT, n/l) ≤ l. We

need an average case version of this lemma for the problem
of approximating lcp(x, y) in place of GT . An analysis of
lcp(x, y) on quasi-uniform distribution will provide a bound
for the complexity of approximation of C(y|x).

Recall the quasi-uniform distribution: To generate a ran-
dom pair (x, y) ∈ {0, 1}n × {0, 1}n choose first a random
number i ∈ {1, 2, . . . , n}, and then choose uniformly at
random a pair (x, y) with lcp(x, y) = i. We need the fol-
lowing lemma: for every positive ε there is a positive δ
such that every deterministic protocol that computes in k-
rounds lcp(x, y) on strings of length n with error probabil-
ity δ (with respect to the quasi-uniform distribution on input
pairs) exchanging at most l bits can be transformed into a
deterministic protocol with the same communication length
that computes lcp in k − 1-rounds on strings of length n/l
with error probability ε. Fortunately, [6] proves first the av-
erage case version of Round elimination lemma in a form
very close to what we need, and only then derives its ver-
sion for randomised protocol.

Applying this lemma k times we can prove that α-
approximating lcp(x, y) in k rounds on many input pairs
requires communication length Ω((n/α)1/k). How this
bound is related to approximating C(y|x)? It is because,
relative to the quasi-uniform distribution, with high proba-
bility C(y|x) is close to lcp(x, y).

We first prove a lemma on average case k-round com-
munication complexity of lcp(x, y). To this end we need a
version of Round elimination lemma from [6].

Assume that there we are given a communication prob-
lem, where Alice has a x ∈ X , Bob has a y ∈ Y and Bob
wants to find a z ∈ Z such that the triple 〈x, y, z〉 is in a
given relation T on X × Y × Z. Furthermore, assume that
we are given a probability distribution ν over X × Y and
they want to find a right z with high ν-probability.

For any natural m associate with T a new commu-
nication problem denoted by Tm: Alice has a tuple
〈x1, . . . , xm〉 ∈ Xm, and Bob has a y ∈ Y and the tu-
ple 〈x1, . . . , xi−1〉 for some i ≤ m (thus Bob knows a part
of Alice’s input). They want to find a z ∈ Z such that the
triple 〈xi, y, z〉 is in T .

Consider the following probability distribution νm on in-
puts to Tm. We choose i ≤ m at random, then choose in-
dependently m pairs 〈x1, y1〉, . . . , 〈xm, ym〉 with respect to

distribution ν. Then we set y = yi (and throw away all other
yj’s). Assume that the first message in communication pro-
tocol for Tm is sent by Alice. Intuitively, that message is not
very helpful, as she does not know i, and thus there should
be a deterministic protocol with less rounds and with the
same communication length that computes relation T with
small probability of error. The Round elimination lemma
clarifies this intuition.

LEMMA 6. Assume that there is a k-round deterministic
protocol with communication length l that solves Tm with
νm-probability of error at most ε′. Assume that the first
message in that protocol is sent by Alice. If ε′ ≤ ε2

100 ln(8/ε)

and m ≥ 20(l ln 2 + ln 5)/ε then there is a k − 1-round
deterministic protocol with communication length l solving
T with ν-probability of error at most ε.

Actually this lemma is stated in [6] for functional rela-
tions only (for every x, y there is a unique z with 〈x, y, z〉 ∈
T ) and for worst case complexity of randomised protocols
instead of average case complexity of deterministic proto-
cols. However its proof from [6] works as well in our case.

LEMMA 7. For every k there is a positive ε such that the
following holds. For every n, α if there is a deterministic
protocol α-approximating lcp(x, y) after communicating l
bits on at least 1− ε fraction of pairs x, y according to the
quasi-uniform distribution, then l = Ω((n/α)1/k). (The
constant in Ω-notation depends on k.)

Proof. We prove the lemma by induction. The base of in-
duction: for k = 1 let ε′ = ε2

100 ln(8/ε) where ε = 1/2. As-
sume that there is a 1-round communication protocol with
probability of error at most ε′ and communication length
l α-approximating lcp(x, y) for strings of length n. Let
m = 20(l ln 2 + ln 5)/ε.

Let T be the problem of α-approximating lcp(x, y) for
strings of length n/m. Clearly, the problem Tm reduces to
α-approximating lcp(x, y) for strings of length n and the
reduction preserves the quasi-uniform probability distribu-
tion. Thus there is a 1-round communication protocol with
communication length l to solve Tm. By Round elimina-
tion lemma there is a 0-round protocol to α-approximate
lcp(x, y) for x, y of length n/m with probability of er-
ror 1/2. That is, with probability 1/2 Bob can approxi-
mate lcp(x, y) without any knowledge of x. Obviously the
largest probability of success for Bob is α/(n/m). Thus
we have α/(n/m) ≥ 1/2, and 2mα ≥ n. Recalling that
m = 20(l ln 2 + ln 5)/ε we obtain that (al + b)α ≥ n for
some constants a, b.

Induction step: let ε′ = ε2

100 ln(8/ε) where ε is the positive
constant existing by induction hypothesis for k-round pro-
tocols. Assume that there is a k + 1-round communication
protocol with probability of error at most ε′ and commu-
nication length l to α-approximate lcp(x, y) on strings of
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length n. Let m = 20(l ln 2+ln 5)/ε. Then there is a k+1-
round communication protocol with communication length
l to solve Tm where T is the problem of α-approximating
lcp(x, y) for x, y of length n/m. By Round elimina-
tion lemma there is a k-round protocol to α-approximate
lcp(x, y) on strings of length n/m with probability of er-
ror ε. By induction hypothesis (al + b)kα ≥ n/m for some
constants a, b. Recalling that m = 20(l ln 2+ln 5)/ε we see
that (a′l + b′)k+1α ≥ n for some other constants a′, b′.

LEMMA 8. If RB,k-round
ε (C(y|x), α, n) ≤ l(n) then for any

0 < δ < 1 − ε one can deterministically α′-approximate
lcp(x, y) by a k round protocol using l(n) bits of communi-
cation on 1 − ε − δ fraction of pairs (x, y) with respect to
the quasi-uniform distribution, where α′ = α+log δ−1 +c.

Proof. Assume that RB,k-round
ε (C(y|x), α, n) ≤ l(n). Then

there is a deterministic k-round protocol such that with
probability of error at most ε over pairs (x, y) distributed
quasi-uniformly Bob α-approximates C(y|x) after at most
l(n) bits of communication.

Now we reduce approximating lcp(x, y) to approximat-
ing Kolmogorov complexity C(y|x). For some constant c
we have C(y|x) ≤ s(x, y) + c for all x, y. On the other
hand, if for fixed i and x the string y is chosen uniformly
at random among strings with s(x, y) = i then with prob-
ability at least 1 − 2−m we have C(y|x) ≥ s(x, y) − m.
Set 2−m = δ. Therefore if a deterministic protocol α-
approximates C(y|x) on 1 − ε fraction of pairs x, y it also
α′-approximates lcp(x, y) on 1−ε−δ fraction of pairs.

The previous two lemmas prove that Theorem 4 holds
for sufficiently small positive ε. To show that it holds for
any ε < 1/2 we can use amplification. There is a small
technical problem though: assume that we repeat the pro-
tocol 2m − 1 times in parallel, using in each trial fresh
random coins. We obtain 2m − 1 contiguous segments
D1, . . . , D2m−1 of length α such that with large probability
more than half of them contain lcp(x, y). How to approx-
imate lcp(x, y) given D1, . . . , D2m−1? Pick any m seg-
ments of D1, . . . , D2m−1 that have a common point. The
union of those segments is a length-2α segment containing
lcp(x, y). (Indeed, assume that lcp(x, y) does not belong
to that union. Then there is a set of m segments containing
lcp(x, y) and each of those segments is different from any
of the picked segments, since it contains lcp(x, y).)

Remark. We could use Lemma 7 in the proof of Theo-
rem 3 for k = 2 instead of Lemma 4 However in this way
we would prove the statement for ε < 1/2 only. Besides,
the overall proof would be more complicated and would
yield a smaller constant in Ω(

√
n).

4.3. Protocols using an a priori knowledge
of d(x, y)

It turns out that some non-trivial upper bounds hold even
for deterministic 1-round protocols to solve problem I . Let
d be a normalised function. It appears that the main obstacle
for our protocol to communicate exactly d(x, y) bits in few
rounds is our inability to efficiently and accurately estimate
d(x, y). If Alice and Bob would know in advance d(x, y)
and d(y, x) they would need only to communicate about
2(d(x, y)+d(x, y)) bits in a single round. This is exhibited
by the protocol in the following theorem.

THEOREM 5. For every normalised function d there is a de-
terministic protocol such that on inputs x, y, Alice learns y
after communicating at most 2(d(x, y)+d(y, x))+O(log n)
bits with Bob in a single round, provided that they are given
d(x, y) and d(y, x) for free. There is a deterministic proto-
col such that on inputs x, y, Alice learns y after communi-
cating of at most 4(n− I(x : y)) + O(log n) bits with Bob
in a single round, provided that they are given I(x : y) for
free. Here, I(x : y) = C(y)− C(y|x) is the information in
x about y.

For a pair of Kolmogorov random strings with lots of
information in common this theorem presents a substantial
improvement over previous deterministic protocols.

Proof. Assume that Alice and Bob know d(x, y) and
d(y, x). Consider the set

S = S(y)
= {y′ | ∃x′ : d(x′, y) = d(x, y), d(y′, x′) = d(y, x)}.

By normalisation property we have |S| ≤ 2d(x,y)+d(y,x).
The paper [2] shows that for every k, n there is a family
f1, . . . , f2k+O(log n) of functions mapping string of length n
to strings of length k + O(log n) with the following prop-
erty: For every 2k-element set S of n-length binary strings
and every element z in S there is j such that fj(z) 6= fj(z′)
for all z′ 6= z in S.

Alice and Bob choose such a family (before starting the
communication) for k = d(x, y)+d(y, x). Then Bob finds a
function fj distinguishing his string y from all other strings
in S and sends both j and fj(y) to Alice. Alice finds a string
y′ with d(y′, x) = d(y, x) and fj(y′) = fj(y) and outputs
it. As y′ belongs to S, Alice cannot err.

Assume that Alice and Bob know I(x : y). Alice finds
C(x) and sends it to Bob. Then Bob finds C(y) and sends it
to Alice. Thus they both know C(y|x) = C(y)− I(x : y).
By the Symmetry of information (see [5]), we have I(x :
y) = I(y : x) + O(log n). Therefore they both can find
C(x|y) with O(log n) accuracy and apply the previous pro-
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tocol. The communication length of this protocol is

2(C(y|x) + C(x|y)) + O(log n)
= 2(C(x) + C(y)− 2I(x : y)) + O(log n)

but it runs in 2 rounds. If, instead of the precise value of
C(x) they use upper bound n + O(1) for it, we obtain a
protocol sending at most

2(n + C(y)− 2I(x : y)) + O(log n)
≤4(n− I(x : y)) + O(log n)

bits in one round.
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