
Catalytic space: non-determinism and hierarchy
Harry Buhrman1, Michal Koucký2, Bruno Loff2, and Florian
Speelman3

1 CWI and University of Amsterdam — h.buhrman@cwi.nl
2 Charles University, Prague — koucky@iuuk.mff.cuni.cz, bruno.loff@gmail.com
3 CWI, Amsterdam — f.speelman@cwi.nl

Abstract
Catalytic computation, defined by Buhrman, Cleve, Koucký, Loff and Speelman (STOC 2014),
is a space-bounded computation where in addition to our working memory we have an exponen-
tially larger auxiliary memory which is full; the auxiliary memory may be used throughout the
computation, but it must be restored to its initial content by the end of the computation.

Motivated by the surprising power of this model, we set out to study the non-deterministic
version of catalytic computation. We establish that non-deterministic catalytic log-space is con-
tained in ZPP, which is the same bound known for its deterministic counterpart, and we prove
that non-deterministic catalytic space is closed under complement (under a standard derandom-
ization assumption). Furthermore, we establish hierarchy theorems for non-deterministic and
deterministic catalytic computation.

1 Introduction

Buhrman et al. [3] define the notion of catalytic computation, a space-bounded model of
computation in which the usual Turing machine has, in addition to its work tape, access
to a large auxiliary memory which is full. The auxiliary memory can be used during the
computation, but its starting contents must be restored by the end of the computation. The
space usage that is counted is the amount of work space s used; the auxiliary memory is for
free. In a reasonable setting, the auxiliary memory is of size at most 2s. One can think of
the auxiliary memory as a hard disk full of data. The catch with the auxiliary memory is
that it may contain arbitrary content, possibly incompressible, which has to be preserved in
some way during the computation. It is not obvious whether such auxiliary memory can be
useful at all. Buhrman et al. show that, surprisingly, there is a non-trivial way of using the
full memory; that it is possible to compute in work space O(logn) (catalytic log-space, CL)
functions not known to be computable in the usual logarithmic space (log-space, L) without
the auxiliary memory. Indeed, all of TC1, which includes NL and LOGCFL, is contained in
CL.

This motivated us to explore further: What other problems can be solved in catalytic
log-space? Buhrman et al. show CL ⊆ ZPP, so CL is unlikely to contain the whole of
PSPACE (even though this is the case relative to some oracle). The fact that NL ⊆ CL
suggests an obvious question: what about non-deterministic catalytic log-space? Could it
be that non-deterministic computation equipped with auxiliary tape has the same power as
deterministic catalytic computation? Non-deterministic catalytic computation could possibly
allow us to identify further problems that can benefit from having full memory. The previous
work also raises a host of further question about the catalytic model such as: Is there a
space hierarchy? Does some kind of Savitch’s theorem hold for catalytic log-space? Is
non-deterministic catalytic space closed under complement? etc. This paper aims to shed
light on some of these questions.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Catalytic space: non-determinism and hierarchy

In this paper we show that non-deterministic catalytic space is closed under complement
under a widely accepted derandomization assumption. We also establish hierarchy theorems
for catalytic computation in the deterministic and non-deterministic settings. For our non-
deterministic catalytic log-space we can also establish the same ZPP upper bound that was
known for CL. Hence there seems to be a closeness between determinism and non-determinism
for catalytic computation. Despite that we are unable to establish an equivalent of Savitch’s
theorem. This remains an intriguing open problem.

We prove the closure under complement using the inductive counting technique of
Immerman and Szelepcsényi [4, 9]. However, we had to overcome several difficulties. One
challenge is that we might be faced with an exponential-size graph of reachable configurations.
We show how to use a pseudorandom generator to avoid such a situation. Another issue
is that for inductive counting we need to be able to remember and reason about different
configurations. However, the full description of a configuration is exponentially bigger than
our work space, so we cannot possibly store it in full. This is one of the hurdles that prevents
us from carrying out Savitch’s algorithm for catalytic computation. For the inductive counting
we resolve this issue by using fingerprints for various configurations.

Our hierarchy theorems are proven in the setting of computation with advice. The catalytic
model is a semantic restriction. It is an easy exercise to show that it is algorithmically
undecidable whether a machine will restore the full memory on every input to its original
content. For semantic models of computation, like bounded-error randomized computation,
the only hierarchy theorems that we know of are in the setting with advice. The reason is
that essentially all known hierarchy theorems are proven by diagonalization, which requires
the ability to enumerate exactly all machines of a given type. We do not know any such
enumeration for catalytic machines so we have to settle for the weaker result. The advice is
used only to tell the diagonalizing machine whether it is safe to diagonalize against a particular
machine. The hierarchy theorems follow from the work of Kinne and van Melkebeek, and
van Melkebeek and Pervyshev [7, 10]. For some space bounds we provide more accurate
separations that were not explicitly calculated before.

The layout of the paper is as follows. Section 2 contains some preliminaries. In Section
3 we define non-deterministic catalytic computation, and prove that the corresponding
log-space class CNL is contained in ZPP. Section 4 is devoted to proving that CNL is closed
under complement, and in Section 5 we show hierarchy theorems for catalytic computation.

2 Preliminaries

We assume the reader is familiar with basic computational complexity; a good reference is [2].
The complexity class L denotes the problems solvable in log-space, while PSPACE is the class
of those problems that can be solved using a polynomial amount of space. The class NL
contains the problems that can be solved non-deterministically in log-space, and LOGCFL is
the class of problems that are log-space many-one reducible to context-free languages.

The problems in ZPP (zero-error probabilistic polynomial time) are the ones computable
by a probabilistic Turing machine that halts in expected polynomial time, while always
outputting the correct answer for any input.

We mention the circuit class TC1, which is the class of boolean functions computable
by circuits of depth O(logn) by AND gates, OR gates and MAJ gates, all with unbounded
fan-in — a MAJ gate outputs 1 if and only if most of its input bits are 1. We use SIZE(s) to
denote the class of problems that can be solved by circuits of size s.

The formal definition of catalytic computation [3] is the following:

Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speelman 3

I Definition 1. LetM be a deterministic Turing machine with four tapes: one input and
one output tape, one work-tape, and one auxiliary tape (or aux-tape).
M is said to be a catalytic Turing machine using workspace s(n) and auxiliary space

sa(n) if for all inputs x ∈ {0, 1}n and auxiliary tape contents w ∈ {0, 1}sa(n), the following
three properties hold.

1. Space bound. The machineM(x,w) uses space s(n) on its work tape and space sa(n)
on its auxiliary tape.

2. Catalytic condition. M(x,w) halts with w on its auxiliary tape.
3. Consistency. The outcome of the computationM(x,w) is consistent among all initial

aux-tape contents w.1

From this we obtain an analogue of the usual space-bounded complexity classes:

I Definition 2. CSPACE(s(n), sa(n)) is the class of decision problems solvable by a catalytic
Turing machine using workspace s(n) and auxiliary space sa(n). The notational shorthand
CSPACE(s(n)) is defined as CSPACE(s(n), 2s(n)). The class CL is CSPACE(O(logn)).

In the paper [3], it was shown that, surprisingly, CL can make a non-trivial use of the
auxiliary tape. Indeed, the paper shows that TC1 ⊆ CL, but it is generally believed that
TC1 6⊆ L.

In this paper we will first prove a space-hierarchy theorem for catalytic computations.
This hierarchy theorem holds for catalytic Turing machines with an advice string.

We define advice added to a catalytic computation in the same way as in the recent line of
research that proves hierarchies for certain classes of semantic models, see for example [10, 7].
In our case that means that a computation needs to satisfy the catalytic condition and
consistency properties on the correct advice, and is allowed to (for example) fail to restore the
contents of the aux-tape for other values of the advice. This notion of advice is a variation
on the one defined by Karp and Lipton [6], who required that the machine model was robust
under all possible values of the advice string. Proving the same hierarchy theorem using the
Karp–Lipton definition would be harder, and would indeed imply a hierarchy theorem that
also holds without any advice [7].

We will prove an analogue of the Immerman–Szelepcsényi theorem. The definition of the
non-deterministic version of CL, denoted CNL, will be left for Section 3. Then CNL = coCNL
will hold under the same assumption as the following standard derandomization result, whose
proof is now standard.2

I Lemma 3. If there exists a constant ε > 0 such that DSPACE(n) 6⊆ SIZE(2εn) then for all
constants c there exists a constant c′ and a function G : {0, 1}c′ logn → {0, 1}n such that for
any circuit C of size nc∣∣∣∣ Pr

r∈{0,1}n
[C(r) = 1]− Pr

s∈{0,1}c′ log n
[C(G(s)) = 1]

∣∣∣∣ < 1
n

and G is computable in space logarithmic in n.

1 What this means depends on what we are trying to do. For instance, when solving a decision problem,
M(x, w) should either accept for all choices of w — in which case we say M accepts x — or it rejects
for all possible w — M rejects x.

2 For instance, the pseudo-random generator of [5] has the right properties. Or see Appendix C of [8] and
Theorem 19 of [1].

4 Catalytic space: non-determinism and hierarchy

We will also need a hash family with nice properties. Its proof of existence is a simple
exercise, and we include it in the appendix.

I Lemma 4. For every n, there exists a family of hash functions {hk}n
3

k=1, with each hk
a function {0, 1}n → {0, 1}4 logn, such that the following properties hold. Firstly, hk is
computable in space O(logn) for every k, and secondly, for every set S ⊂ {0, 1}n with
|S| ≤ n there is a hash function in the family that is injective on S.

Remarks on notation.

For two binary strings x, y of equal length, we use x⊕ y for the bitwise XOR of x and y. The
function log always stands for the logarithm of base 2. For simplicity, all Turing machines
are assumed to use a binary alphabet — all definitions and proofs would easily generalize to
larger alphabet sizes, at the cost of introducing notational clutter.

3 Non-deterministic catalytic computation

The model for catalytic computation is defined in terms of deterministic Turing machines.
This gives rise to the question: What would the power of a non-deterministic version of
CL be? In this section we extend the definitions of catalytic-space computation to the
non-deterministic case, and prove basic results about this model.

I Definition 5. LetM be a non-deterministic Turing machine with four tapes: one input
and one output tape, one work-tape, and one auxiliary tape.

Let x ∈ {0, 1}n be an input, and w ∈ {0, 1}sa(n) be the initial contents of the auxiliary
tape. We say thatM(x,w) accepts x if there exists a sequence of nondeterministic choices
that makes the machine accept. If for all possible sequences of nondeterministic choices
M(x,w) does not accept, the machine rejects x.

ThenM is said to be a catalytic non-deterministic Turing machine using workspace s(n)
and auxiliary space sa(n) if for all inputs, the following three properties hold.

1. Space bound. The machineM(x,w) uses space s(n) on its work tape and space sa(n)
on its auxiliary tape.

2. Catalytic condition. M(x,w) halts with w on its auxiliary tape, irrespective of its
nondeterministic choices.

3. Consistency. The outcome of the computationM(x,w) is consistent among all initial
aux-tape contents w. This means that for any given input x, M(x,w) should always
accept, or always reject, regardless of w; however : the specific nondeterministic choices
that makeM(x,w) go one way or the other may depend on w.

I Definition 6. CNSPACE(s(n), sa(n)) is the class of decision problems solvable by a catalytic
Turing machine using workspace s(n) and auxiliary space sa(n), and CNSPACE(s(n)) is
defined as CNSPACE(s(n), 2s(n)). The class CNL is CNSPACE(O(logn)).

We now have an analogue of non-deterministic space-bounded complexity. For convenience,
in the appendix we present an equivalent definition of CNL with all the conditions unfolded.
We also discuss possible alternatives to the definition above, and why they should be ruled
out.

In [3], we proved that CL ⊆ ZPP; we now generalize this to CNL ⊆ ZPP.

Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speelman 5

I Definition 7. Define the directed acyclic graph GM,x,w to be the configuration graph of a
catalytic non-deterministic Turing machineM on input x and auxiliary tape starting contents
w. That is, GM,x,w has a node for every configuration which is reachable by non-deterministic
choices when executingM(x,w).

We will use |GM,x,w| to denote the number of nodes of the configuration graph.

I Lemma 8. Let M be a non-deterministic catalytic machine using space c logn and let
c′ = 2c+ 2. Then for all x

E
w∈R{0,1}nc

[
|GM,x,w|

]
≤ O(nc

′
) .

Proof. Notice that, for any given x ∈ {0, 1}n, and for different auxiliary tape contents w,w′,
the set of configurations in GM,x,w and in GM,x,w′ have to be disjoint. For the sake of
contradiction, consider a configuration q that is reachable both byM(x,w) and byM(x,w′).
Then any halting configuration reachable by q will have the wrong contents on its auxiliary
tape for either the computation that started with w or with w′.

The number of bits needed to describe a configuration ofM, excluding the contents of
the input tape, is bounded by

c logn+ nc + lognc + logn+ log (c logn) +O(1) ≤ (2c+ 2) logn+ nc +O(1),

where we do include the encoding of the location of the tape heads and the internal state of
the Turing Machine. Therefore the total number of reachable configurations, counted over
all possible starting auxiliary tape contents, is at most∑

w∈{0,1}nc

|GM,x,w| ≤ 2c
′ logn+nc+O(1) = O(nc

′
)2n

c

And thus:
1

2nc

∑
w∈{0,1}nc

|GM,x,w| = E
w∈R{0,1}nc

[
|GM,x,w|

]
≤ O(nc

′
) . J

Now suppose we have CNL machineM, and let x ∈ {0, 1}n be the input string. Consider
an algorithm which flips a random string w and searches GM,x,w for a path from the initial
configuration to an accepting configuration. This takes time polynomial in |GM,x,w|. By
Lemma 8 this graph is polynomial-sized in expectation, and therefore this procedure finishes
in expected polynomial time. Thus we obtain:

I Corollary 9. CNL ⊆ ZPP.

4 An analog of the Immerman–Szelepcsényi theorem

This section is devoted to proving that CNL is closed under complement. Our proof strategy
is based on the inductive-counting argument to prove the Immerman–Szelepcsényi theorem.
In order for the proof to work for catalytic computation, we will need a couple of new ideas.

Suppose we are given a CNL machineM, and wish to construct a CNL-machineM′ to
compute the complementM, via an inductive-counting argument on the configuration graph
ofM.

First of all, notice that wheneverM′ wishes to simulate a run ofM, it must necessarily
use its own aux-tape to simulate the aux-tape ofM, because it is the only read-write tape
that is big enough.

6 Catalytic space: non-determinism and hierarchy

Now, for some w (initial contents of the aux-tape), M may visit exponentially many
configurations. Then the inductive counting would be impossible to do with only logarithmic
space. So the first idea is to use the pseudo-random generator G of Lemma 3 to avoid such
bad w, by using the binary XOR w ⊕G(s) for different seeds s. Lemma 10 below explains
why this works.

Notice also that we must be careful thatM′, when simulating a run ofM, can always
restore the initial contents of its aux-tape. We can make sure this happens correctly by using
the catalytic condition applied toM: whenever we need to restore the initial contents of the
aux-tape, it will be enough to run the simulation ofM to an arbitrary halting configuration.

Finally, recall that the inductive-counting argument involves storing and comparing
configurations ofM; but the configurations ofM include the aux-tape, and are too big for
M′ to store on its work tape. So the second idea is to use the family of hash functions of
Lemma 4, and do inductive-counting by storing and comparing the hashes of configurations
instead.

Putting the whole thing together, however, is rather delicate, because our pseudo-random
generator will still give us bad seeds — meaning w⊕G(s) might visit too many configurations.
Furthermore, even if we pick a good seed, we may still happen to pick a bad hash function —
meaning a hash function which is not collision-free on the set of reachable configurations. So
the algorithm needs to be able to handle bad seeds and bad hash functions.

It will happen that a bad seed may lead us to falsely certifying that the accepting
configuration is unreachable, when in fact it is reachable. This is solved simply by trying all
seeds and doing a majority vote.

For good seeds, the number of reachable configurations is bounded by c = nO(1), but it
may still happen that the hash collisions of a bad hash function will lead us to falsely believe
that there are fewer reachable configurations than the actual number (that c is smaller than
it actually is) — because configurations with the same hash are only counted once. But
fortunately, good hash functions will give us the correct c, and bad hash functions will always
give us a smaller value. So we overcome this problem by remembering, for all hash function
we try, the largest claimed number of reachable configurations — this will be the true c.

Let us start by showing how to avoid bad w’s.

I Lemma 10. Assume the derandomization condition of Lemma 3, and let G be as given
therein. Let M be a non-deterministic catalytic Turing machine using workspace c logn.
Then, for every input x and aux-tape contents w, at least half of the seeds s ∈ {0, 1}O(logn)

will cause the non-deterministic computationM(x,G(s)⊕ w) to reach at most n2c+3 many
different configurations.

Proof. Let M be a CNL machine using workspace c logn and auxiliary space nc. Let
x ∈ {0, 1}n, w ∈ {0, 1}nc be given.

Let Cx,w be a boolean circuit which, on input r ∈ {0, 1}nc , does a breadth-first traversal
of GM,x,r⊕w

3, starting on the initial configuration, until either:

i. More than n2c+3 nodes have been found, in which case it outputs 0; or
ii. The graph has been fully traversed, in which case it outputs 1.

3 Recall that GM,x,r⊕w is the configuration graph of M, for input x and aux-tape contents given by the
bit-wise XOR of r and w.

Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speelman 7

The size of Cx,w can be bounded by a polynomial, say nd. The circuit Cx,w outputs 1 on
input r if and only if |GM,x,r⊕w| ≤ n2c+3. Therefore, for large enough n, for all x ∈ {0, 1}n
and all w ∈ {0, 1}nc ,

Pr
r∈R{0,1}nc

[Cx,w(r) = 0] = Pr
r∈R{0,1}nc

[
|GM,x,r⊕w| ≥ n2c+3]

= Pr
r∈R{0,1}nc

[
|GM,x,r| ≥ n2c+3]

≤ 1
n2c+3 E

r∈R{0,1}nc

[
|GM,x,r|

]
≤ O

(
1
n

)
.

Here we have used the fact that, for a fixed w, r and r ⊕ w are equidistributed. The last
inequality follows from Markov’s inequality and Lemma 8.

Now Lemma 3 provides us with a log-space computable function G : {0, 1}O(logn) →
{0, 1}nc such that, for all x ∈ {0, 1}n and w ∈ {0, 1}nc ,∣∣∣∣ Pr

r∈{0,1}nc
[Cx,w(r) = 0]− Pr

s∈{0,1}O(log n)
[Cx,w(G(s)) = 0]

∣∣∣∣ ≤ 1
n
.

In particular, for all sufficiently large n we get the rough bound:

Pr
s∈{0,1}O(log n)

[Cw(x,G(s)) = 0] ≤ 1
n

+O

(
1
n

)
<

1
2 .

Therefore, for any x and w, at least half of the seeds s will ensure that the configuration
graph GM,x,G(s)⊕w has at most n2c+3 nodes. J

Our goal is now to use an inductive counting argument on GM,x,G(s)⊕w. Like we mentioned
earlier, inductive counting requires us to write down configurations in the work tape, but the
tape is not big enough. To circumvent this, we will instead write down the hash values of
the configurations, via the hash family of Lemma 4. The proof below puts it all together.

I Theorem 11 (Immerman–Szelepcsényi for catalytic computation). If there exists a constant
ε > 0 such that DSPACE(n) 6⊆ SIZE(2εn) then CNL = coCNL.

Proof. LetM be a nondeterministic Turing machine that uses d logn work space, and has
an auxiliary tape of size nd. We wish to construct a nondeterministic catalytic Turing
machineM′, using workspace O(logn), such that for any n and any input x ∈ {0, 1}n our
computation accepts x ifM rejects x, and vice-versa.

Without loss of generality, assume that for any given w ∈ {0, 1}nd ,M(x,w) has a unique
accepting configuration accw. Let startw be the initial configuration of M(x,w) and let
e = 2d+ 3.

By the consistency property, either there exists a path from startw to accw for all w, or
it is impossible to reach accw from startw, for any w. We prove Theorem 11 by describing a
way of certifying that there exists no path between startw and accw in GM,x,w.

Fix some input x, and let w′ denote the initial contents of the aux-tape of M′. By
Lemma 10, we know that for at least half of the possible seeds s ∈ {0, 1}O(logn), we have

|GM,x,G(s)⊕w′ | ≤ ne . (1)

If (1) holds, we say s is a good seed.

8 Catalytic space: non-determinism and hierarchy

Lemma 4 gives us a family of hash functions {hk}n
3e

k=1, with the property that, for every
good seed s, there is at least one hash function in the family which is one-to-one on the
nodes of GM,x,w.

In page 9, we give the pseudo-code forM′’s algorithm. Let us now do a guided reading
of this code. We begin by breaking the code into three sections, for the lines 2–6, 7–26, and
27–32.

In lines 2–6, we initialize a variable N to 0 (line 2), cycle through every seed s (line 3),
XOR the contents of the aux-tape with G(s) (line 4), and initialize two variables g and ` to
0 (lines 5 and 6).

Then, in lines 7–26, we have an inner loop that cycles through every hash function (line
7). Below we will prove:
Property I If the seed s is good, then (I.a) some sequence of non-deterministic bits will

cause the inner loop to exit normally at line 27, with the promise that g = |GM,x,w|, and
that h` is one-to-one on GM,x,w; and (I.b) any sequence of non-deterministic bits that
fails this promise will exit the inner loop by jumping directly to line 30.

At line 27, we use the value of g and ` we have obtained to try and certify that accw is
not reachable. If we succeed to do so, we increment N (line 28). Below we will also prove:
Property II If the seed s is good, g = |GM,x,w|, and h` is one-to-one on GM,x,w, then some

sequence of non-deterministic bits will cause us to successfully certify that accw is not
reachable if and only if M(x,w) rejects.4

Before we move on to the next seed, we first restore the initial contents of the aux-tape,
by once again XORing them with G(s) (line 30).

Finally, the procedure accepts if and only if N > S/2 in line 32. Let us prove that,
assuming Properties I and II, the procedure accepts if and only if M(x,w) rejects. Lemma 10
ensures that more than half the seeds are good, and hence:

1. If M(x,w) rejects: Property I ensures that, for each good seed s, some non-deterministic
guess will cause us to reach line 27 with g = |GM,x,w| and h` one-to-one on GM,x,w; then
Property II ensures that some further guess will result in N being incremented; hence
some overall non-deterministic guess will give N > S/2, and the procedure will accept in
line 32.

2. If M(x,w) accepts: Property I ensures that, for each good seed s, if we reach line 27,
then g = |GM,x,w| and h` one-to-one on GM,x,w, and thus, by Property II, N will not be
incremented in line 28. If some non-deterministic guess fails to get us to line 27, then
Property I tells us that the execution jumped directly to line 30, so N was again not
incremented. Because no good seed will ever cause N to be incremented, N < S/2 and
the procedure rejects in line 32.

So all we need to do is prove properties I and II. We first need to specify the canReach
and cannotReach subroutines. Their correctness is easy to see from the description and
pseudo-code.

4 But if s, g or h` are not as assumed, we might get a false-positive, claiming that accw is not reachable
when in fact it is.

Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speelman 9

Algorithm 1 Pseudo-code forM′.

Here G is the log-space PRG of Lemma 3, S is the number of seeds, M = ne stands for the
maximum number of configurations allowed in the configuration graph, and H is the size
of the hash family given by Lemma 4. The aux-tape is represented by a variable w, whose
initial value is w′. The lines that use non-determinism are marked with a (*).
1: procedure coCNL-Simulation(Input x, Aux-Tape w ← w′)
2: N ← 0
3: for s = 0 . . . S do
4: w ← G(s)⊕ w
5: g ← 0
6: `← 0
7: for k = 1 . . . H do
8: c← 1
9: for i = 1 . . .M do
10: c′ ← 0
11: for v = 0 . . .M do
12: if canReach(v, i, hk) then . (*)
13: c′ ← c′ + 1
14: else if cannotReach(v, i, c, hk) then . (*)
15: Do nothing
16: else
17: Jump to line 30
18: end if
19: end for
20: c← c′

21: end for
22: if c > g then
23: g ← c
24: `← k
25: end if
26: end for
27: if cannotReach(h`(accw),M + 1, g, h`) then . (*)
28: N ← N + 1
29: end if
30: w ← G(s)⊕ w
31: end for
32: Accept if N > S/2, and Reject otherwise
33: end procedure

The canReach(v, i, hk) subroutine (see page 10) checks whether there is a node w in
GM,xw, reachable within i steps, with hk(w) = v.

Behavior of the canReach subroutine. If such a w exists, then some non-deterministic
guess will cause the procedure to return TRUE, and, otherwise, every non-deterministic
guess will return FALSE.

canReach non-deterministically works as follows: we guess a length L ≤ i, and simulate
M for L steps. After this, we hash the configurationM is currently in, and compare it to v.
We will then return TRUE if and only if the two hashes are the same, but before we return,

10 Catalytic space: non-determinism and hierarchy

we finish the simulation ofM until we reach a halting state, in order to restore the contents
of the aux-tape.

Algorithm 2 The canReach subroutine.

The subroutine to check that a node hashing to v is reachable in at most i steps, given some
hash function hk.
1: procedure canReach(v, i, hk)
2: z ← 0 . Workspace and internal state of simulated machine
3: Non-deterministically guess L ≤ i . (*)
4: SimulateM(x,w) using z as workspace for L steps . (*)
5: if hk(z, w′) = v then
6: r ← TRUE
7: else
8: r ← FALSE
9: end if
10: Continue simulation ofM(x,w) using z and reach any halting state
11: return r

12: end procedure

The cannotReach(v, i, c, hk) subroutine (see page 11) checks that there is no node in
GM,x,w hashing to v and reachable within i steps, as long as c and hk fulfill the promise that
there are exactly c nodes in GM,x,w that are reachable within i − 1 steps, and that hk is
one-to-one on GM,x,w.

Behavior of the cannotReach subroutine. If the hash v is unreachable within i
steps and the given c, hk obey the promise, then some non-deterministic guess will cause the
procedure to return TRUE. If v is reachable and c, hk obey the promise, every guess will
return FALSE. Furthermore, if the hash v is unreachable within i steps, and c is smaller
than the number of nodes in GM,x,w that are reachable within i − 1 steps, then there is
a non-deterministic guess that causes the procedure to return TRUE, even if hk is not
one-to-one.

The cannotReach subroutine visits c different nodes of GM,x,w in order of ascending
hash value, and for each of them checks that none of their neighbors hash to v. Since a single
step of a computation only makes a local change, it is possible to remember this step and
revert it afterward to continue with the next neighbor. If one of the neighbors hash to v or if
a wrong non-deterministic guess has been made somewhere, we restore the aux-tape and
return FALSE. Otherwise finish the simulation ofM until a halting configuration is reached,
to restore the orginal value of w. If we have visited c distinct nodes without finding v as a
neighbor, then we return TRUE.

Property II follows easily from the correctness of the cannotReach subroutine: indeed,
if M(x,w) rejects, then accw is not reachable, and hence with the promise made on g and
h`, some guess will cause cannotReach(h`(accw),M + 1, g, h`) to return TRUE.

We now complete the proof of the theorem by proving Property I. Let us focus on the
k-loop (lines 7–26) which goes through every hash function hk. For each hk a value c is
computed (see lines 8, 10, 13 and 20).

It might happen that the k-loop is aborted (in line 17), but if this never happens, then c
will be compared to g (line 22), so that by the time the k-loop terminates, g will hold the
maximum c produced for any value of k (line 23), and ` will hold the first value of k which
produced this maximum (line 24).

Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speelman 11

Algorithm 3 The cannotReach subroutine.

The subroutine checking that a node hashing to v is not reachable within i steps, for hash
function hk, when given c, the number of nodes reachable in i− 1 steps.
1: procedure cannotReach(v, i, c, hk)
2: h′ ← −1 . Hash of previously seen node
3: for j = 1 . . . c do
4: z ← 0 . Workspace and internal state of simulated machine
5: Non-deterministically guess L ≤ i− 1 . (*)
6: SimulateM(x,w) using z as workspace for L steps . (*)
7: if hk(z, w) ≤ h′ then . Visited the nodes in wrong order
8: SimulateM(x,w) using z and reach any halting state
9: return FALSE
10: end if
11: h′ ← hk(z, w)
12: while there are unvisited neighbours do
13: StepM(x,w) with workspace z into a neighbour configuration
14: if hk(z, w′) = v then . v is reachable in i steps
15: SimulateM(x,w) using z and reach any halting state
16: return FALSE
17: end if
18: Revert simulation with one step back
19: end while
20: Continue simulation ofM(x,w) using z and reach any halting state
21: end for
22: return TRUE
23: end procedure

Now we make the following two claims:

(i) If s is good, and hk is one-to-one on GM,x,w, the i-loop (lines 9–21) will either abort,
or set c = |GM,x,w|. Furthermore, some non-deterministic choice within the i-loop will
not abort.

(ii) If s is good, but hk is not one-to-one on GM,x,w, the i-loop will either abort, or set c to
a value strictly smaller than |GM,x,w|. As above, some non-deterministic choice within
the i-loop will not abort.

From these, it follows that if s is good, then for every k there is a non-deterministic guess
which does not abort, and using any such non-aborting guess, g will be set to |GM,x,w|, and
` will be the smallest k for which hk is one-to-one. This gives us Property I.

Let us prove claim (i). Suppose that hk is one-to-one, and that the i-loop does not abort.
Then we may prove inductively that in every iteration of the i-loop, c is the number of nodes
in GM,x,w reachable by M(x,w) within i−1 steps. Now, c, hk satisfy the promise required by
cannotReach, and hence, for any non-aborting guess, the v-loop will set c′ to the number
of nodes in GM,x,w reachable within i steps; this value is then copied to c (line 20) for the
next iteration of the i-loop. When the i-loop ends, c has been set to the number of nodes
reachable within M steps, which is exactly |GM,x,w|. The fact that there always exists such
a non-aborting guess follows from the behavior of the canReach procedure, and from the
behavior of the cannotReach procedure in the case when c, hk fulfill the promise.

To prove claim (ii), notice that the value of c′ is incremented in line 13, and is thus

12 Catalytic space: non-determinism and hierarchy

bounded by the the size of image hk(GM,x,w). So if hk is not one-to-one, c′ will always be
strictly less than |GM,x,w|. On the other hand, it is always possible to find a non-deterministic
guess which does not abort, even when hk is not one-to-one. Whenever hash v is reachable
in i steps, we can take the guess which makes canReach in line 12 return TRUE; when
hash v is not reachable in i steps, we know from the behavior of cannotReach, that we
can find a guess that makes cannotReach return true, provided that the argument c given
to cannotReach in iteration i is not more than the number of nodes reachable within i− 1
steps. This follows from the fact that, in iteration i− 1, c′ is bounded by the number of such
nodes (because it is incremented only conditional on canReach of line 12. J

5 Hierarchies for Catalytic Computation

In this section we prove space-hierarchy theorems for deterministic and non-deterministic
catalytic computation. Hierarchy theorems are usually proven using diagonalization. Since
catalytic computation is a semantic model we do not know how to use diagonalization directly.
Similarly to other semantic models (such as bounded-error randomized computation) we have
to settle for hierarchy theorems with advice. This advice is used to tell the diagonalizing
machine which machines can be safely simulated and diagonalized against, and which should
not be simulated (so that the diagonalizing machine remains in the model).

The hierarchy theorem can be proven using the technique of Van Melkebeek and Pervy-
shev [10], which are sophisticated variations of [11]. Separations for certain space bounds
follow directly from previous results on generic hierarchy theorems for semantic models of
computation [7, 10]. For some ranges of parameters we provide a direct proof, mainly the
calculations justifying the correctness of the bounds. Due to space constraints, the proof is
left for the appendix. The theorem is:

I Theorem 12. Let a ≥ 1 be an integer and s′(n) and s(n) be space-constructible functions.
There is a function in CNSPACE(s(n))/1 that is not in CNSPACE(s′(n))/a, and there is
a function in CSPACE(s(n))/1 that is not in CSPACE(s′(n))/a if any of the following is
satisfied:

1. s′(n) = O(logn) and s(n) = ω(logn).
2. s′(n) = O(logk

′
n) and s(n) = Ω(2(log logn)k′), for some constant k′ > 1.

3. s′(n) = O(nk′) and s(n) = Ω(nk), where 0 < k′ < k/2 and k′ < 1/(1 + a).
4. s′(n) = O(nk′) and s(n) = Ω(nk), where k, k′ > 0 are such that k ≥ 2a and k ≥ d4ak′

2
e.

The following corollary follows by using a padding argument (see [10], §4.4).

I Corollary 13. Let a ≥ 1 be an integer and k > k′ be positive reals. Then there is a function
in CNSPACE(nk)/a that is not in CNSPACE(nk′)/a.

References
1 E. Allender, H. Buhrman, M. Koucký, D. van Melkebeek, and D. Ronneburger. Power from

random strings. SIAM J. Comput., 35(6):1467–1493, June 2006.
2 S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge

University Press, 2009.
3 H. Buhrman, R. Cleve, M. Koucký, B. Loff, and F. Speelman. Computing with a full

memory: Catalytic space. In Proceedings of the 46th Annual ACM Symposium on Theory
of Computing, STOC ’14, pages 857–866, New York, NY, USA, 2014. ACM.

Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speelman 13

4 N. Immerman. Nondeterministic space is closed under complementation. SIAM Journal
on Computing, 17(5):935–938, 1988.

5 R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: Derandom-
izing the XOR lemma. In Proceedings of the Twenty-ninth Annual ACM Symposium on
Theory of Computing, STOC ’97, pages 220–229, New York, NY, USA, 1997. ACM.

6 R. Karp and R. Lipton. Turing machines that take advice. L’Enseignement Mathématique,
28:191–209, 1982.

7 J. Kinne and D. van Melkebeek. Space hierarchy results for randomized and other semantic
models. Computational Complexity, 19(3):423–475, 2010.

8 A. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential size proofs
unless the polynomial-time hierarchy collapses. SIAM Journal on Computing, 31(5):1501–
1526, 2002.

9 R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta
Informatica, 26(3):279–284, 1988.

10 D. van Melkebeek and K. Pervyshev. A generic time hierarchy with one bit of advice.
Computational Complexity, 16(2):139–179, 2007.

11 S. Žák. A Turing machine time hierarchy. Theoretical Computer Science, 26(3):327 – 333,
1983.

14 Catalytic space: non-determinism and hierarchy

A Appendix

A.1 Existence of hash family
I Theorem (Chinese Remainder Theorem). Let p1, . . . , pm be a list of relatively prime integers.
Any positive integer x is uniquely specified by the list of remainders a1 = x mod p1, a2 = x

mod p2, . . . , am = x mod pm, provided that x <
∏m
i=1 pi.

Proof of Lemma 4. For a natural number k, let pk be the k-th prime number. For every
k = 1, . . . , n3 define the hash function hk(x) = x mod pk. We will show that for any set
S ⊂ {0, 1}n of size n, there exists a number k∗ ∈ {1, . . . , n3} such that the function hk∗ is
injective on S. Here we interpret binary strings as natural numbers in the usual way, and
hence we can upper bound any element of S by 2n.

For all x, y ∈ S, where x 6= y, define Bx,y = {pk | x mod pk = y mod pk, 1 ≤ k ≤ n3} to
be the set of primes for which x and y hash to the same value. Then B =

⋃
x,y∈S,x 6=y Bx,y is

the set of all primes which give a hash collision on the set S.
For any pair x, y it now holds that |Bx,y| ≤ n. Indeed, assume for a contradiction that

the set contains a subset of n+ 1 primes for which x and y have the same remainders. Noting
that the product of these n + 1 primes is at least 2n, larger than both x and y, and that
prime numbers are relatively prime, we find an immediate contradiction with the Chinese
Remainder Theorem.

We can bound the number of primes that give a collision by

|B| ≤
∑

x,y∈S,x 6=y
|Bx,y| ≤

(
n

2

)
n ,

which is strictly less than n3 for n > 1. Therefore there exists a prime pk with 1 ≤ k ≤ n3

such that pk 6∈ B, and therefore x mod pk is unique for all x ∈ S.
Left is to show this algorithm can be executed in logarithmic space. First note that using

the prime number theorem we can (imprecisely) bound pk ≤ n4, for 1 ≤ k ≤ n3. Since every
number p ≤ n4 we try as modulus can be stored using 4 logn bits, checking primality is also
readily seen to be in space O(logn), just by checking all possible factors. To hash a value
x ∈ {0, 1}n we can, for example, sum 2i mod p for all i such that xi = 1. The value 2i mod p
can easily be computed in space O(logn) by repeated multiplication by 2, i.e., a bit shift,
followed by subtraction of p whenever the intermediate value becomes too large. J

A.2 CNL definition, equivalent to Definition 6
IDefinition 14. A decision problem L is in CNL if there exists a constant c and a deterministic
Turing machineM, with a read-only input tape, a uni-directional certificate tape, work tape
of size c logn and an auxiliary tape of size nc, such that for all n-bit strings x and for all
w ∈ {0, 1}nc it holds that

x ∈ L ⇐⇒ ∃u ∈ {0, 1}2nc

M(x, u, w) accepts

and

∀u ∈ {0, 1}2nc

M(x, u, w) halts with w on its aux-tape.

The string u represents the contents of the uni-directional certificate tape, and w is the
starting contents of the auxiliary tape.

Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speelman 15

A.3 Alternatives to our definition of CNSPACE, and why they should be
ruled out.

There are multiple possible ways to add non-determinism to a catalytic Turing machine.
For instance, we require the machine to restore the contents of the auxiliary tape for any
given sequence of non-deterministic bits; but at a first glance, it seems we could make
this requirement only for those non-deterministic guesses which result in accepting states.
However, defining the model in this way is less natural for several reasons. For one, we
can not run two machines sequentially and accept if one of them accepts: if one of the two
machines would reject, the whole computation needs to reject, because the auxiliary tape may
have been irreversibly changed; so the class would not be closed under union. This would
also prevent amplification of success probability in a probabilistic class defined using such
machines. Philosophically speaking, having a catalytic machine which ‘sometimes’ destroys
all data it is guaranteed to preserve, seems to go against the spirit of the model.

Another possible variation would be to require that the accepting sequence of non-
deterministic choices is independent of the initial contents of the auxiliary tape, which would
give a weaker model. Indeed, this would not look very strange in a certificate definition,
effectively requiring that there exists a read-once certificate, independent of the initial
contents of the aux-tape, which can be verified by a deterministic log-space catalytic Turing
machine. Even so, when describing the model with non-deterministic Turing machines it
seems unnatural to have this restriction. Furthermore, the model is weaker, so if we expect
to make some use of non-determinism, it should be easier if we define it in the current way.
Hence we have also ruled out this alternative definition.

A.4 Proof of the hierarchy theorem
Proof of Theorem 12. The first part is immediate from Kinne and Van Melkebeek [7] as
catalytic computation satisfies the requirements on a reasonable semantic model and allows
complementation with linear-exponential overhead.

Now we prove the third part using the technique of Van Melkebeek and Pervyshev [10].
Fix a small enough ε > 0 and let’s consider the case when s′(n) = nk

′+ε and s(n) = nk. Let
Mi be an enumeration of possibly catalytic machines working in space s′(n) with catalytic
tape of size 2s′(n). Assume without loss of generality that each machine appears infinitely
often in this enumeration. We will construct a machine M and an advice sequence {bn}n>0
so that M/bn behaves catalytically on inputs of length n and uses space at most s(n) and
catalytic space 2s(n). No machine Mi will accept the same language as M/{bn} regardless of
its a-bit advice.

The proof diagonalizes against all machines Mi with all possible advice sequences. We
define a sequence of integers ni and n∗i as follows:

n∗0 = a, ni = n∗i−1 + 1, and n∗i = n1+ani
i .

We will diagonalize against Mi with all possible advices on input of length between ni
and n∗i . Let mi = logni and for j = 0, . . . ,mi define

ni,j = ni · (nai)2j

.

For w ∈ {0, 1}a(mi−j−1) and z ∈ {0, 1}a define ni,j,wz = ni,j + wz, where wz is the integer
represented by wz in binary. For y ∈ {0, 1}ni,j,wz define the function

f(y) = yz0ni,j+1,w−ni,j,wz−a.

16 Catalytic space: non-determinism and hierarchy

Since all ni,j,wz are distinct, this is a well defined partial function. We are ready to define
the machine M which takes {bn}n>0 as its advice sequence.

1. On input x of length n do:
2. If bn = 0 then REJECT.
3. If n = ni,j,wz for some i, j, wz, where j ≤ mi, |w| = a(mi − j − 1) and |z| = a then

(nondeterministically) simulate Mi with advice z on input f(x) and ACCEPT iff Mi

accepts, and REJECT iff Mi rejects.
4. If n = n∗i then find y such that f(f(· · · f(y) · · ·)) = x, where f is applied mi-times. If

no such y is found (such a y is a prefix of x) then REJECT. Let z be the first a bits of
y. Using Savitch’s algorithm decide whether Mi with advice z accepts y. If it accepts,
REJECT, otherwise ACCEPT.

This defines the behavior of machine M . The advice {bn}n>0 is defined to be 1 of inputs
of length ni,j,wz if and only if on all inputs of length ni,j+1,w machine Mi with advice z
behaves in a correct catalytic manner (hence it is safe to simulate).

Assuming that machine M can perform the simulations in the designated space, it is easy
to verify that it behaves catalytically and it diagonalizes against all machines Mi and all
their possible advice sequences infinitely often.

So we only need to argue about the used space. Let Mi with advice sequence {zn}n>0 be
a catalytic machine using work space s′(n) and catalytic space 2s′(n). On inputs of length
ni,j,wzni,j+1,w

, M will simulate Mi on inputs of length ni,j+1,w with advice zni,j+1,w . By the
choice of small enough ε, for all large enough ni

s′(ni,j+1,w) ≤ 2n(1+2j+1a)(k′+ε)
i

≤ n(1+2ja)k
i /n

k/2
i ≤ s(ni,j,wz)

n
k/2
i

.

Hence, M can successfully simulate Mi on these input lengths using its work space and the
catalytic space. It remains to verify that the space necessary for Savitch’s algorithm on
inputs of length n∗i will fit into our work space. Savitch’s algorithm for machine Mi on input
y will require space at most O((log |y|+ log s′(|y|) + 2s′(|y|) + 2s′(|y|))2), which is less than
23s′(|y|) for y (resp. ni) large enough. The length of y is at most 2n1+a

i . Thus

s′(|y|) ≤ 2n(1+a)(k′+ε)
i < 2ni

and

23s′(|y|) ≤ 26ni ≤ s(n∗i),

for ni large enough.
To prove the second part one uses the same argument as above but verifies that the space

needed by M for the simulations fits into its space bounds:

s′(ni,j+1,w) ≤
(

log 2n(1+2j+1a)
i

)k′
=

(
1 + (1 + 2j+1a) · logni

)k′
≤ o

(
2logk′((1+2ja)·logni)

)
= o

(
2logk′ logn(1+2j a)

i

)
= o(s(ni,j,wz)).

Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speelman 17

Similarly,

23s′(2n1+a
i

) ≤ o(s(n∗i)) .

For the fourth part we set the parameters exactly like Van Melkebeek and Pervyshev [10, 7]:
a constant d = max(2a, d4ak′

2
e), n∗i = n

nd
i
i and ni,j = nd

j

i . With these parameters there is
sufficient space for M to simulate Mi’s. J

	Introduction
	Preliminaries
	Non-deterministic catalytic computation
	An analog of the Immerman–Szelepcsényi theorem
	Hierarchies for Catalytic Computation
	Appendix
	Existence of hash family
	CNL definition, equivalent to Definition 6
	Alternatives to our definition of CNSPACE, and why they should be ruled out.
	Proof of the hierarchy theorem

