
A Brief Introduction to Kolmogorov Complexity

Michal Koucký
MÚ AV ČR, Praha

<koucky@math.cas.cz>

May 4, 2006

Abstract

In these notes we give a brief introduction to Kolmogorov complexity. The notes are based on the
two talks given at KAM Spring School, Borová Lada, 2006.

1 Introduction

The set of all finite binary strings is denoted by{0, 1}∗. Forx ∈ {0, 1}∗, |x| denotes the length ofx.
Kolmogorov complexitytries to answer the fundamental question: “What is a random object?” Consider

which of the following (decimal) strings seem to be random?

33333333333 (1)

31415926535 (2)

84354279521 (3)

Most people would rule out the first one to be random, and they could agree that the remaining two are
random. Indeed, most statisticians would agree that the latter two are random as they pass essentially all
possible statistical tests. Yet, the second sequence consists of the first eleven digits ofπ. The third one is
taken really at random.

From the perspective of probability, all three strings havethe same probability of being chosen when we
take a string of eleven digits fully at random namely, each ofthem has probability10−11. Hence, they all
are equally likely to be obtained by a random process. So probability does not really explain the intuitive
notion ofrandomness.

Imagine that we would extend our strings to one million digits. Then the first string would became a
million times the digit three, the second one would be the first million digits of π and the last one would be
84354279521. . . . In fact it would take us thousand of pages todescribe the last one. There is no pattern in
it. It is really random.

Hence, the notion of randomness is connected to patterns in strings and to a way how we can describe
them. The first two strings in our example have very short descriptions (few words) whereas the last string
has very long description as it lacks any regularity. The longer the necessary description of a string the more
randomness is in the string. This intuition leads to the following definition ofKolmogorov complexityof
a stringx ∈ {0, 1}∗: the Kolmogorov complexity ofx is the length of the shortest description ofx. Of

1

course the length of the description depends on the languagewe use for our description—we can use Czech
or French or English. . . .

We make it formal as follows. Letφ : {0, 1}∗ → {0, 1}∗ be apartial recursive function. (A partial
recursive function is any functionf for which there is a program that takes an inputy and produces output
f(y). f(y) may not be defined for somey and the program may not halt on suchy’s or to produce any
output.)

Definition 1. For a stringx ∈ {0, 1}∗, the Kolmogorov complexity ofx with respect toφ is

Cφ(x) = min{|p|, p ∈ {0, 1}∗ & φ(p) = x}.

Let us consider several examples. Ifφ1 is the identity functionφ1(x) = x thenCφ1
(x) = |x|. If

φ2(0) = 10111001011110011010110111 andφ2(1x) = x thenCφ2
(10111001011110011010110111) = 1

andCφ1
(x) = |x| + 1 for all other stringsx. So Kolmogorov complexity depends a lot on the chosen

descriptive languageφ. Luckily, the following Invariance Theorem brings some order into this chaos.

Theorem 2. There exists a partial recursive functionU so that for any other partial recursive functionφ
there is a constantc > 0 such that

CU (x) ≤ Cφ(x) + c

for all stringsx.

A machineU satisfying the preceding theorem is in some sense minimal among all machines, and we
will call it universal.

Proof. The proof is quite simple. Letφ0, φ1, φ2, . . . be an enumeration of all partial recursive functions.
(Every p.r.f. can be associated with a program that computesit and that program can be uniquely mapped to
a (possibly huge) integer.) Let〈x, y〉 : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be some simple to compute one-to-one
mapping, e.g.,〈x, y〉 = 0|x|1xy. ThenU is defined as follows: On inputw, decodew into i andp such that
w = 〈i, p〉 and runφi on inputp. If φi(p) stops then output whateverφi had output.

It is easy to verify that such aU is partial recursive and that it satisfies our theorem. 2

So from now on we fix some machineU which satisfies the Invariance Theorem and we will consider
the Kolmogorov complexity ofx to beCU (x). We will write C(x) instead ofCU (x) from now on.

We are ready to define a random string.

Definition 3. A stringx is Kolmogorov random ifC(x) ≥ |x|.

This definition is not void as there is a Kolmogorov random string of every length: there are2n − 1
descriptions of length less thann but there are2n strings of lengthn. Let us consider couple of strings and
their Kolmogorov complexity:

• 0n has Kolmogorov complexitylog n + O(1) as we only need to specify the integern and a short
program that will reconstruct0n from n.

• The sequence of the firstn digits of π has Kolmogorov complexitylog n + O(1). The reason is the
same as above. (Just download a program forπ from Internet.)

• There is a Kolmogorov random stringx with C(x) ≥ n. See above.

2

• What about some string of complexity about
√
n? Sure, there is one. Considery ∈ {0, 1}

√
n that is

Kolmogorov random. Thenx = y0n−√
n has Kolmogorov complexity about

√
n + O(1). Why? If

it would have a description much shorter than|y| we could describey using such description: first
producex and then output only its first

√
|x| bits. On the other hand, description ofy is a good

description ofx: producey and then append|y|2 − |y| zeroes. So there are strings of essentially all
possible complexities.

• Every string of lengthn has Kolmogorov complexity at mostn+O(1). Why?

• How many ones and zeroes has a Kolmogorov random string of lengthn? About a half, but exactly?
There are

(
n

n/2

)
strings which have the same number of ones and zeroes. Call the set of such strings

Sn
n/2

. These string can be easily identified and enumerated by a program. Hence, givenn andi, we
can find thei-th stringsi in Sn

n/2
and output it. Thus,C(si) is at most the size of a description of

i, plus the size of a description ofn, plus some constant for the program described above.|Sn
n/2

| <(n
n/2

)
< c2n/

√
n for some constantc, hence to specifyi we only need at mostn− 1/2 log n+ log c

bits. n does not really have to be specified as it can be deduced from the length of the description of
i. Thus, all stringssi ∈ Sn

n/2
have Kolmogorov complexity at mostn− 1/2 log n+O(1).

It turns out that Kolmogorov random strings of lengthn haven/2± c
√
n zeroes. By Chernoff bound

there are relatively few strings of lengthn that have the number of ones farther fromn/2 thanc
√
n,

and by extending the argument above there are also relatively few strings that have the number of ones
closer ton/2 thanc

√
n. Since these strings are few and easy to identify, they have small Kolmogorov

complexity. (In fact, the deviation fromn/2 in the number of ones have to be Kolmogorov random
by itself.) The following proposition generalizes this argument.

Proposition 4. LetA be a recursive (recursively enumerable) set andn be an integer. LetAn = A∩{0, 1}n.
For all stringsx in An it holds,C(x) ≤ log |An| + 2 log n+O(1).

Often the term2 log n can be omitted asn can be deduced from the length of the description.

Proof. The proof is straightforward. SinceA is recursive (recursively enumerable) we can design a program
that giveni andn prints thei-th string ofAn in some enumeration. Hence, all strings inAn can be described
by giving i, n and the program for enumeratingA. The description ofi, n and the program has to be
concatenated into one string in such a way thati, n and the program can be recovered from the string. One
can use the pairing function from the proof of Theorem 2 for doing that. The factor two in the logarithmic
term comes from there. 2

It is useful to note that the set of strings that arenot Kolmogorov random is recursively enumerable—
given a stringx we can run all programs of length shorter thanx in parallel and see if any one of them ever
outputsx. If that happens we acceptx.

This brings us to the fact that the number of strings of lengthn that are Kolmogorov random is Kol-
mogorov random by itself. It is about2n/c for some constantc > 1. If that were not the case, we could find
all strings of lengthn that are not Kolmogorov random, and then print the first one which should be random.
Program for such a computation would only need to know the number of non-random strings of lengthn.
The number of non-random strings is2n minus the number of random strings, i.e., we can easily compute
one from the other one. Since the above program prints out a Kolmogorov random string, both the numbers
of random and non-random strings must require close ton bits to specify. Hence, they are both about2n/c.

3

Proposition 5. It is uncomputable (undecidable) whether a string is Kolmogorov random.

We have seen that non-random strings are recursively enumerable. This proposition thus implies that
Kolmogorov random strings are not recursively enumerable as otherwise we could decide about a string
whether it is Kolmogorov random or not.

Proof. We give two proofs. The first one is very simple, the second oneis more complex but it shows that
deciding Kolmogorov randomness is as hard as deciding the Halting Problem.

1. Assume we can decide whether a string is Kolmogorov randomby some programP . We can then specify
the lexicographically first Kolmogorov random string of lengthn usinglog n+O(1) bits: run programP on
all strings of lengthn in the lexicographical order until you find a string that is Kolmogorov random; print
out the Kolmogorov random string. This only requires to specify the programP andn. Hence, no suchP
can exist.

2. Define the Halting Problem byH = {x; programx halts on the input 0}. Assume we can decide
which strings are Kolmogorov random by some programP . We can then decide for any stringx whether
the programx halts on the input 0 or not as follows: Letn = |x|. UsingP decide for each stringy of
length2n whether it is Kolmogorov random or not. For each stringy that is not random find some program
py of length less thann that prints it out. Letty be the number of steps that it takes topy to outputy. Set
tx = maxy ty. Runx on the input 0 fortx steps and if it accepts withintx steps then outputx ∈ H otherwise
outputx 6∈ H.

The reason why the above program would decideH correctly is that ifx ∈ H but the running time ofx
on the input 0 is more thantx then the actual running time ofx can be used as an upper bound for the running
time of allpy ’s. As the running time ofx can be specified usingn+O(1) bits (namely by specifyingx) we
could specify all non-random strings of length2n using onlyn+ 2 log n+O(1) bits. (Run all programs of
length less than2n for tx steps and see what they output.) Hence, we could describe thelexicographically
first Kolmogorov random string of length2n using onlyn + 2 log n + O(1) bits. Thus the running time of
x must be smaller thantx.

Since our program could correctly decide the Halting Problem, Kolmogorov randomness of strings must
be undecidable. 2

2 Applications

We give here several applications of Kolmogorov complexity.

2.1 Graph labelings

We start with an example related to the talk of Arnaud Labourel on graph labelings. For a (finite) class of
graphsG a labeling scheme of label lengthℓ is a functionA : {0, 1}ℓ × {0, 1}ℓ → {0, 1} together with
a labelinglG : V (G) → {0, 1}ℓ of every graphG ∈ G so that for allx, y ∈ V (G), (x, y) ∈ E(G) iff
A(l(x), l(y)) = 1. We have already seen in the talk of Arnaud that the class of all the trees onn vertices has
labeling scheme with labels of lengthlog n + O(1). The natural question is how large labels are needed to
label the class of all the graphs onn vertices. We claim that this length isn/2 +O(log n).

First, we show that labels of lengthn/2 + log n are sufficient. This is due to Jiřı́ Sgall. Each vertex is
going to be labeled by its vertex number plus a bit-vector of lengthn/2 which specifies to which of the next

4

n/2 vertices under a cyclic ordering of vertices the vertex is connected. Given two vertex labels at least one
of the labels contains the required adjacency information.

Using Kolmogorov complexity we want to show thatn/2 bits are needed. First notice that by exhaustive
search we can actually find the best labeling scheme for graphs onn vertices. In fact we can write a
program that will find it. This program will produce the function A. Each graphG on n vertices can
be fully described by listing labels of its verticeslG(1), lG(2), . . . , lG(n) in the optimal labeling scheme.
Such a description requiresℓn bits. Hence, every graph can be described byℓn + 2 log n + O(1) bits, by
providing the vertex labels,n and the program to computeA. On the other hand, a graph onn vertices
may contain

(n
2

)
= n(n − 1)/2 different edges. Hence, there are at least2n2/2−n different graphs onn

vertices and each of them is uniquely described by a description of lengthℓn + 2 log n + O(1). Thus
ℓn+ 2 log n+O(1) ≥ n2/2 − n, i.e.,ℓ ≥ n/2 − 2, for n large enough. Thus a labeling scheme for graphs
onn vertices requires labels of length aboutn/2.

2.2 Prime Number Theorem

We provide another application of Kolmogorov complexity tonumber theory. Letpi denote thei-th prime
number. We will show the following theorem:

Theorem 6 (Weak Prime Number Theorem). There is a constantc such that for infinitely manyi, pi <
c · i · log2 i.

This theorem is a weak version of the usual Prime Number Theorem thatpi/i ln i→ 1 asi→ ∞.

Proof. For a positive integern let 1n̂ be its binary representation witĥn ∈ {0, 1}∗. Clearly2|bn| ≤ n <
2|bn|+1. Fix a large enough integerx with Kolmogorov randomx̂. We will make several observations
regardingx.

1. x = pey, for somep, e andy, wherep is a prime andpe > log x/ log log x. If all maximal prime-power
factors ofx were at mostlog x/ log log x, thenx ≤ (log x/ log log x)! < log xlog x/ log log x = x.

2. e = 1. Note,2e|bp| · 2|by| < pey = x. Hence,

e|p̂| + |ŷ| ≤ |x̂| ≤ C(x̂).

At the same time,x can be specified by givinge, p, andy. Hence,x̂ can be given by some encoding
of ê, p̂ and ŷ into one binary string so that we would be able to tell apart all three of them. The pairing
function used in the proof of Theorem 2 is too inefficient for our purposes. We can use the following pairing
function: 〈u, v〉 = lu01uv, wherelu is the binary representation of|u| in which each digit is doubled. Thus
| 〈u, v〉 | ≤ |u| + |v| + 2 log |u| + 2. Using this pairing function we can describeê, p̂ andŷ to obtain:

C(x̂) ≤ |ê| + |p̂| + |ŷ| + 2 log |ê| + 2 log |p̂| +O(1).

But this implies thate = 1. (If e > 1 is small thenp must be large and hence(e − 1)|p̂| outweighs
|ê| + 2 log |ê| + 2 log |p̂| +O(1). If e is large then(e− 1)|p̂| also outweighs the additional terms.)

From 1. and 2. we can deduce thatx = py for some primep > log x/ log log x. Let i be such that
p = pi. Primepi can be described by giving its indexi plus a short program that will reconstructpi from i.
Hence,

C(x̂) ≤ |̂i| + |ŷ| + 2 log |̂i| +O(1).

5

Together with the above lower bound onC(x̂) we get

|p̂i| ≤ |̂i| + 2 log |̂i| +O(1).

Using the relationship betweenn andn̂, we concludepi ≤ c · i log2 i, for some constantc independent of
i. From the fact that this is true for arbitrarily large constant x andpi > log x/ log log x we conclude the
theorem. 2

2.3 Gödel Incompleteness Theorem

Let T be a sound logical theory over a countable language with recursively enumerable axioms. IfT is rich
enough to describe computation of Turing machines then for some constantcT and integerx, the formula
“C(x) ≥ cT ” is true but unprovable, wherex is the constant describingx. (This is aΠ1 formula saying that
for all programsp smaller thancT and for all computationsτ , if τ is a computation ofp then the output ofτ
is notx.) If for all x and allcT such formula were provable whenever it would be true then by enumerating.
all proofs, for givencT we could find the firstlargex with C(x) ≥ cT . But if we choosecT with succinct
representation (very low Kolmogorov complexity), then we will be able to producex of high Kolmogorov
complexity merely from the description ofcT , the description ofT and some small program. Of course, that
is impossible. So “C(x) ≥ cT ” cannot be provable for any large enough Kolmogorov non-random cT and
anyx although it is true for manyx andcT .

2.4 Universal search procedure

The problem SAT= {ψ; ψ is a satisfiable Boolean formula} is a well known NP-complete problem. A
related problem is SAT-search where given a satisfiable Boolean formulaψ we want to output an assignment
a to ψ such thata satisfiesψ. The computational complexities of SAT and SAT-search are closely related.
If SAT has an efficient algorithm then SAT-search has one as well: perform a binary search for a satisfying
assignment ofψ by choosing the assignment bit by bit. On the other hand if SAT-search has an efficient
algorithm (and we know its running time) then SAT has an efficient algorithm as well: run algorithm for
SAT-search onψ and if it produces an assignment within its allowed running time and the assignment
satisfiesψ thenψ belongs to SAT. We will present an (almost) optimal algorithm for SAT-search. We will
need the following definition.

Let 〈·, ·〉 be a pairing function. Levin defines the time-bounded Kolmogorov complexity of a stringx
relative to a stringy by:

Ct(x|y) = min{|p| + log t, p ∈ {0, 1}∗ & U(〈p, y〉) = x in t steps}.

The algorithm for SAT-search works as follows: on input formula ψ, for i = 1, 2, . . . try all stringsa
with Ct(a|ψ) = i, and see if any of them satisfiesψ. If yes, output such ana.

We leave implementation details of this algorithm to the interested reader. Ifp is the optimal algorithm
for SAT-search andt is its running time on formulaψ then the satisfying assignment forψ will be found
in time about2|p|t2 by our algorithm. Hence, our algorithm for SAT-search is at most quadratically slower
than the best algorithm for SAT-search. The only thing that stands in our way towards$1, 000, 000 is that
we do not have a good estimate on the running time of our SAT-search algorithm.

6

