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Abstract
We consider the problem of elimination in communication complexity, that was first raised by
Ambainis et al. [1] and later studied by Beimel et al. [4] for its connection to the famous direct
sum question. In this problem, let f : {0, 1}2n → {0, 1} be any boolean function. Alice and Bob
get k inputs x1, . . . , xk and y1, . . . , yk respectively, with xi, yi ∈ {0, 1}n. They want to output a
k-bit vector v, such that there exists one index i for which vi 6= f(xi, yi). We prove a general
result lower bounding the randomized communication complexity of the elimination problem for
f using its discrepancy. Consequently, we obtain strong lower bounds for the functions Inner-
Product and Greater-Than, that work for exponentially larger values of k than the best previous
bounds.

To prove our result, we use a pseudo-random notion called regularity that was first used by
Raz and Wigderson [19]. We show that functions with small discrepancy are regular. We also
observe that a weaker notion, that we call weak-regularity, already implies hardness of elimination.
Finally, we give a different proof, borrowing ideas from Viola [23], to show that Greater-Than is
weakly regular.
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1 Introduction

There is a great interest in computational complexity in so called direct sum questions
which consider the complexity of solving k independent instances of a problem at once. In
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21:2 Lower Bounds for Elimination via Weak Regularity

most reasonable models of computation one would expect the cost of solving k independent
instances at once to be k-times the cost of solving a single instance. This is indeed true in
some models of computation such as decision trees [18, 10]. However, in some computational
models we know that one can achieve savings when solving k-instances simultaneously: in
randomized communication complexity [12], in distributional complexity [21] and in zero-error
average complexity [15]. For some other models of computations such as boolean circuits
we do not know whether some savings are possible. However, in all these cases there is a
great interest in the direct sum question as its understanding would shed light on various
aspects of complexity. A direct sum theorem for communication complexity would imply
the separation of NC1 from NC2 [13]. The direct sum for information complexity is used
to prove lower bounds in communication complexity (see for example [2, 11, 3, 5]). This
motivates the study of the direct sum question.

There are several other problems that are closely related to the direct sum question.
In a problem introduced by Beimel et al. [4], one gets k independent instances of some
computational problem and has to decide the correct answer for one of the instances of his
choice. Provided that the instances are independent there is a hope of picking some easy
instance among the k instances. Another problem studied in the literature is the problem of
selection, where one should select a positive instance among a k independent instances. This
problem was studied exhaustively in the context of structural complexity theory (starting
with [20]). Another problem is the problem of distinguishing k positive instances from k

negative instances [4].
The least difficult among all these problems is the problem of elimination. If f : {0, 1}2n →

{0, 1} is a two-player boolean function, the elimination problem elim ◦ fk gives Alice and
Bob k n-bit strings each, and asks them to find a k-bit vector z of answers to the k instances
which differs from the correct answer for at least one of the instances (i.e. zi 6= f(xi, yi)
for some i). Hence, one eliminates a single incorrect vector of answers. In the context of
communication complexity this problem was posed by Ambainis et al. [1] and further studied
by Beimel et al. [4]. To solve the elimination problem one merely has to solve one of the k
instances and negate its answer. Both papers [1, 4] provide examples where one can achieve
some savings, typically � k bits of communication, and they also provide lower bounds for
particular functions.

Ambainis et al. established Ω(n/ logn log logn) lower bound on randomized communic-
ation complexity of elimination for the Inner-Product – elim ◦ IPk – and Disjointness –
elim ◦Disjk – for constant k. Their result can be extended to slightly growing k, but for
k ≥ Ω(logn) the lower bound becomes trivial. Beimel et al. [4] establish a general relationship,
showing that the (public-coin) randomized communication complexity of elimination for fk is
lower-bounded by the (public-coin) randomized complexity of f with error roughly 1

2 − 2−k.
Due to this large allowed error, the lower bound also becomes trivial for large k.

In this work we also consider the problem of elimination in the setting of (public-coin)
randomized communication complexity. We identify two properties of boolean functions
that are closely related to the randomized communication complexity of elimination: the
regularity and weak-regularity. Regularity can be thought of as a generalization of discrepancy
for functions with non-boolean output. The notion was used by Raz and Wigderson [19] to
prove lower bounds in communication complexity. We establish a close relationship between
regularity of fk and the discrepancy of f for any function f . We then relax the notion of
regularity to weak-regularity and show that weak-regularity implies lower bounds for the
elimination problem. The two results together allow us to lower-bound the randomized
communication-complexity of the elimination problem by the inverse-log of discrepancy:
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I Theorem 1. For any boolean function f and a distribution µ on inputs of f ,

Rε(elim ◦ fk) ≥ log 1
Disc(f) − log k + log(1− ε · 2k)−O(1).

One corollary of this theorem is a lower-bound of Ω(n) for elimination of IPk for k as
large as exponential in n. The best known result before our work, due to Beimel et al., does
not give any non-trivial lower bound for k ≥ n. Similarly, we show a bound of Ω(logn) for
the elimination of GTk, for k < n1/4, where GT is the Greater-Than function. Previous
results yielded interesting bounds only for k ≤ logn.

Our discrepancy to regularity reduction relies on a sophisticated result of Lee et al. [17]
which establishes a direct product theorem for discrepancy. For the Greater-Than function
GT we also provide an elementary proof of weak-regularity. This gives a hope of establishing
stronger lower bounds for the elimination of functions that have large discrepancy, such
as set disjointness. Our proof of weak-regularity designs a hard distribution for GT. Our
distribution borrows ideas from the work of Viola [23], but extends them in a novel way.
While Viola’s distribution is easy for distinguishing k negative instances from k positive
instances for k = O(n), our distribution seems hard even for distinguishing exponentially
many positive or negative instances.

2 The elimination problem

For a boolean function f : {0, 1}n × {0, 1}n → {0, 1}, its corresponding elimination problem,
denoted elim ◦ fk for k ≥ 1, is defined as follows: Alice and Bob are given k strings
x̄ = x1, . . . , xk, and ȳ = y1, . . . , yk respectively, of n-bits each; they must then communicate
in order to agree on an output string out ∈ {0, 1}k, such that out 6= fk(x̄, ȳ) – i.e., they must
eliminate a single possibility for the value of f(x1, y1) . . . f(xk, yk), from among all possible
2k values it could take.

The elimination problem was first studied in the context of communication complexity
in [1], and later in [4]. Other problems of a similar flavor are studied in those works –
enumeration and selection in [1], choice and agreement in [4] – but, in fact, any lower-bounds
for elimination will imply the same lower-bounds for these problems. Since proving lower-
bounds for elimination will give the same lower-bounds for these other problems, we will not
describe the other problems in further detail.

Instead, we will focus on proving lower-bounds against randomized protocols for the
elimination problem. In this setting, we say that Alice and Bob succeed when they output a
string out ∈ {0, 1}k other than fk(x̄, ȳ), as above; otherwise we say that they made an error.

IDefinition 2. The randomized communication complexity of elim◦fk, denotedRε(elim◦fk),
is the maximum length of the smallest randomized protocol with shared randomness, which
on every input x̄, ȳ will succeed except with error probability ≤ ε.

2.1 Basic observations
The first thing to realize is that if both players compute f for a single instance, then they can
output any vector that negates f at that coordinate. So clearlyRε(elim◦fk) ≤ Rε(f) ≤ D(f),
where Rε(f) and D(f) denote the randomized and deterministic communication complexity
of f , respectively.

The next thing to notice is that the randomized task becomes trivial for ε ≥ 2−k. Indeed,
both players can use their shared randomness to choose a uniformly random out ∈ {0, 1}k,
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21:4 Lower Bounds for Elimination via Weak Regularity

and outputting this out causes them to succeed with probability 1 − 2−k. Hence we will
assume from this point onward that ε ≤ 2−k.

As usual, we will make use of Yao’s principle to prove our lower-bounds. So let ρ ∼
{0, 1}2nk be a distribution, and f : {0, 1}2n → {0, 1} a boolean function as before.

I Definition 3. The communication complexity of elim ◦ fk over ρ, denoted Dερ(elim ◦ fk),
is the maximum length of the smallest deterministic protocol which succeeds with error
probability ≤ ε on inputs drawn from ρ.

Yao’s principle then tells us that

Rε(elim ◦ fk) = sup
ρ
Dερ(elim ◦ fk).

We will use the easy direction (≥) to prove lower-bounds, by presenting a hard distribution ρ

for which Dερ(elim ◦ fk) is high.
In preparation to this, let us think what it means when we say Dερ(elim ◦ fk) ≤ C. It

means that we can partition the space {0, 1}nk ×{0, 1}nk into ≤ 2C combinatorial rectangles
R = A×B, and in each rectangle we will output a single out = out(R) ∈ {0, 1}k. Now, each
rectangle R is itself naturally partitioned into 2k pieces, one piece for each z ∈ {0, 1}k:

Rz = {(x̄, ȳ) ∈ R | fk(x, y) = z}.

(These pieces are possibly empty and non-rectangular.) Then if the success probability is
high, it must happen that on the ρ-large rectangles, Rout has very little mass. Indeed, the
error probability is the sum of every ρ(Rout(R)) over the various rectangles R induced by the
protocol.

This (vague) condition is both necessary and sufficient, because if we do have a (protocol-
induced) partition of {0, 1}nk × {0, 1}nk into rectangles, and on every such rectangle R there
is a piece Rz with very little mass (less than 2−kρ(R), say), we may simply output out = z

on this rectangle, and we will have a non-trivial protocol for elimination.

2.2 Regularity
So a natural way of proving a lower-bound would be to show that, under some carefully
chosen hard distribution ρ, every rectangle R gets split into pieces Rz all of which are
non-vanishing. We may eventually come to the following natural definition:

I Definition 4. Let n, k ≥ 1 be natural numbers, and δ ∈ [0, 1]; let f : {0, 1}n × {0, 1}n →
{0, 1} be a boolean function, and ρ be a distribution over {0, 1}nk × {0, 1}nk.

Then f is said to be δ-weakly-regular with respect to ρ if for every R and z,

ρ(Rz) ≥ 2−k(ρ(R)− δ),

where R ranges over combinatorial rectangles in {0, 1}nk×{0, 1}nk and z ranges over {0, 1}k.

In this definition, if ρ(R) < δ then the condition is satisfied trivially so δ bounds from
below the mass of rectangles for which each Rz should have non-trivial mass.

Now take any protocol π communicating less than C bits, and let R range over the
monochromatic rectangles induced by π. Then if f is δ-weakly-regular w.r.t. ρ, π’s error
probability is

ε =
∑
R

ρ(Rout(R)) ≥
∑
R

2−k
(
ρ(R)− δ

)
≥ 2−k

(
1− δ · 2C

)
.
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This proves that:

I Theorem 5. If f is δ-weakly-regular with respect to ρ, then

Dερ(elim ◦ fk) ≥ log 1− ε · 2k

δ
.

The notion of weak regularity naturally arises from first considerations of the elimination
problem. Interestingly, it is the weak version of a stronger notion, which we define below,
variants of which first appeared in a paper of Raz and Wigderson [19]1 on randomized
communication complexity of Karchmer–Wigderson games [14], and also later – in disguise –
in related work on simulation theorems [9]2.

The stronger notion says that f is regular with respect to ρ if every large rectangle R is
partitioned into rectangles Rz of roughly equal mass (i.e., each Rz comprises approximately
2−k fraction of all the ρ-mass of R). Formally:

I Definition 6. Let n, k, δ, f , and ρ be as in Definition 4. Then f is said to be δ-regular
with respect to ρ if for every R and z

2−k
(
ρ(R)− δ

)
≤ ρ(Rz) ≤ 2−k

(
ρ(R) + δ

)
,

where R ranges over combinatorial rectangles in {0, 1}nk×{0, 1}nk and z ranges over {0, 1}k.

It is obvious that regularity implies weak regularity. We conjecture that the opposite is
not true, i.e., that the two notions can be separated for some function f . A formal statement
of our conjecture appears in the conclusion (§5). In Section 3 we will establish a strong
two-way connection between regularity and matrix discrepancy.

The reader may wonder why the notion is called regularity. Indeed, if we think of a
bipartite graph Gz with {0, 1}nk on each side, and put an edge between x̄ and ȳ if fk(x̄, ȳ) = z,
then the regularity property implies that the edge-density between any two large sets A and
B will be roughly what one would expect if the edges of Gz had been chosen at random.
This is regularity in the sense of Szemerédi [22].

Regularity is a form of pseudo-randomness
We now give an alternative definition for regularity, which we found curious and worth noting.
Say that a set G ⊂ {0, 1}nk × {0, 1}nk is δ-pseudorandom against combinatorial rectangles
under ρ if for any such rectangle R ⊂ {0, 1}nk×{0, 1}nk we have ρ(R)−δ ≤ ρ(R∩G)

ρ(G) ≤ ρ(R)+δ.
Call G a δ-hitting set for combinatorial rectangles under ρ if ρ(R∩G)

ρ(G) ≥ ρ(R)− δ.
Now suppose that ρ = µk, where µ is a balanced distribution over {0, 1}n. It then

follows that f is δ-regular with respect to ρ if and only if, for every z ∈ {0, 1}k, (fk)−1(z)
is δ-pseudorandom against combinatorial rectangles under ρ. In the same way, f is weakly
regular if every inverse image (fk)−1(z) is a δ-hitting set

It should also be clear that, if δ is small enough and π is a sufficiently-short protocol, or
part of a protocol, then whatever output or transcript distribution π may have on ρ, the
corresponding distribution on the conditional ρ | (fk)−1(z) will be close, so, in some sense, π
cannot distinguish the two distributions. We found this to be a good intuition, although in
our results it is used only implicitly.

1 See the comments on p. 10, before Lemma 2.2, of the full (preprint) version.
2 When the authors show that block-wise density implies uniformity, they are essentially showing that

large R are broken into equally sized Rz .
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21:6 Lower Bounds for Elimination via Weak Regularity

2.3 The contents of our paper
The next two sections form the core of the paper. In Section 3 we will explain the relationship
between discrepancy and regularity, and this will give us the strongest possible randomized
lower-bounds for the elimination problem of any function with sufficiently high discrepancy.
This result improves the bound from [4] (we will see how in Section 3), and establishes that
regularity holds for a large class of functions, a result which is interesting in its own right.

We then present, in Section 4, a proof of weak regularity of the Greater-Than function.
Braverman and Weinstein [6] have proven that the Greater-Than function has small dis-
crepancy (O( 1√

n
)), and this, together with the previous Section 3, is enough to prove a

comparable lower-bound. However, we feel that this proof is interesting for two reasons.
First of all, it is a proof from first principles, whereas the proof that discrepancy implies
regularity uses the XOR lemma for discrepancy of Lee et al. [17], which can be considered
heavy machinery. Second, perhaps more importantly, it is noteworthy that we are still unable
to prove elimination lower-bounds for functions with large discrepancy, such as disjointness.
Because regularity is a stronger property than discrepancy, there is little hope to use the
regularity property to prove such lower-bounds. But because our second proof is based on
weak regularity, we can hope that the techniques therein will one day allow us to understand
the elimination problem for high-discrepancy functions.

3 Discrepancy and regularity

For the remainder of this section, let n, k ≥ 1 be natural numbers; let f : {0, 1}n×{0, 1}n →
{0, 1} be a boolean function, and µ be a distribution over {0, 1}n × {0, 1}n; let the letter R
always denote a combinatorial rectangle in {0, 1}nk × {0, 1}nk and let z always denote an
element of {0, 1}k. For a given R, let Rz be as defined in Section 2:

Rz = {(x̄, ȳ) ∈ R | ∀i f(xi, yi) = zi}.

Begin by recalling the well-known notion of matrix discrepancy [16]:

I Definition 7. The discrepancy of f with respect to µ equals

Discµ(f) = max
A⊂{0,1}n,B⊂{0,1}n

∣∣∣∣∣∣
∑

a∈A,b∈B

µ(a, b)(−1)f(a,b)

∣∣∣∣∣∣ .
We will now show that discrepancy and regularity (Definition 6) are closely related. On

one hand, it is easy to see that regularity for k = 1 is equivalent to discrepancy. To see this,
notice that f is δ-regular with respect to µ if and only if µ(R0) and µ(R1) are both within
µ(R)

2 − δ
2 and µ(R)

2 + δ
2 for all R, which again happens if and only if Discµ(f) ≤ δ.

I Lemma 8. Let k = 1. Then f is δ-regular with respect to µ if and only if Discµ(f) ≤ δ.

It is somewhat harder to show the relation for k > 1. Our proof makes use of the following
remarkable result, which was proven in [17, Theorem 19]:

I Lemma 9 (XOR-lemma for discrepancy). Let µt be the t-fold product of µ, and ⊕tf be the
t-fold XOR of f . Then

Discµt(⊕tf) ≤ 64t ·Discµ(f)t

Our main result in this section is the following:



A. Chattopadhyay, P. Dvořák, M. Koucký, B. Loff, and S. Mukhopadhyay 21:7

I Lemma 10. Every f is O(k ·Discµ(f))-regular with respect to µk, whenever k ≤ 1
64Discµ(f) .

The constant hidden in the O-notation is 64e (e is Euler’s number).

Proof. Abbreviate ρ ≡ µk. For any given rectangle R = A × B ⊂ {0, 1}nk × {0, 1}nk, we
will compute ρ(Rz) directly. Let a range over A and b over B, and set fj = f when zj = 1
and fj = 1− f when zj = 0; then

ρ(Rz) =
∑
a,b

ρ(a, b)
∏
j∈[k]

1 + (−1)fj(aj ,bj)

2 ;

Expanding the product and separating out the resulting “1” term:

ρ(Rz) = 2−k
∑

a,b

ρ(a, b) +
∑

∅ 6=T⊂[k]

σT

 ,

σT =
∑
a,b

ρ(a, b)
∏
j∈T

(−1)fj(aj ,bj)

The left term is simply ρ(R), so we now bound |σT |. Say |T | = t; let a′ ∈ {0, 1}n(k−t) range
over the projection3 A[k]\T and let a′′ range over the elements of AT such that a′a′′ ∈ A;
similarly for b′ and b′′ with respect to B; then

|σT | ≤
∑
a′,b′

µk−t(a′, b′) ·

∣∣∣∣∣∣
∑
a′′,b′′

µt(a′′, b′′)
∏
j∈T

(−1)f(a′′j ,b
′′
j )

∣∣∣∣∣∣ .
This inequality follows from the triangle inequality, since ρ = µk. Notice that fj may be
replaced by f , since any resulting multiplication with −1 gets absorbed by taking the absolute
value. Now the innermost sum is upper-bounded by Discµt(⊕tf). Let D = 64 · Discµ(f).
Now Lemma 9 allows us to simplify:

|σT | ≤
∑
a′,b′

µk−t(a′, b′) ·Dt ≤ Dt.

But then

∑
∅6=T⊂[k]

|σT | ≤
k∑
t=1

(
k

t

)
Dt = (1 +D)k − 1.

By taking the derivative with respect to D, we find that (1 + D)k − 1 ≤ ekD whenever
k ≤ 1

D . So we conclude that

ρ(R) · 2−k − ekD · 2−k ≤ ρ(Rz) ≤ ρ(R) · 2−k + ekD · 2−k. J

3 AS for S ⊂ [k] is the projection of A into the coordinates in S, i.e., those settings a′ of the coordinates
in S which can be completed with some a′′ in the coordinates in [p] \ S to get a string in A.
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Lower-bounds from discrepancy
The connection between regularity and discrepancy results in a general lower-bound for the
elimination problem of small-discrepancy functions:

I Corollary 11. For any boolean function f : {0, 1}2n → {0, 1}, any distribution µ over
{0, 1}2n, and any k ≤ 1

64Discµ(f) ,

Dεµk(elim ◦ fk) ≥ log 1
Discµ(f) − log k + log(1− ε · 2k)−O(1).

From Corollary 11, Yao’s principle now gives us Theorem 1 mentioned in the introduction.
This result should be compared with a similar result, which is implicit in [4]:

I Proposition 12 ([4]). For any f and µ,

Dεµk(elim ◦ fk) ≥ log 1
Discµ(f) − k + log(1− ε · 2k)−O(1).

As the reader may see, the gain that we achieve is to show the theorem for much larger k.
Our result will still hold for an exponentially larger k than what was previously allowed.

Recall the Greater-Than function GTn – GTn(x, y) = 1 if and only if x ≥ y, where x and
y are two n-bit numbers written in base 2. Braverman and Weinstein [6] have provided a
distribution µ on which Discµ(GTn) = Ω( 1√

n
), and so as a corollary we obtain the following

lower-bound:

I Corollary 13. Rε(elim ◦ GTkn) ≥ 1
2 logn− log k + log(1− ε · 2k).

When IPn equals the Inner-Product mod-2 function, we get:

I Corollary 14. Rε(elim ◦ IPkn) ≥ n
2 − log k + log(1− ε · 2k).

While our improvement may seem minor at first, we believe it is actually very significant.
Notice that, remarkably, the Inner-Product lower-bound is linear even for k = 2Ω(n). For the
Greater-Than function, the previously known lower-bounds would be meaningless for any
k ≥ logn, whereas our lower-bounds can go as far as k = Ω(n). We conjecture that these
lower-bounds are optimal when the allowed error is Ω(2−k); we will have more to say in the
conclusion.

4 Lower-bound for elim ◦ GT from first principles

Our “hard” distribution µ on {0, 1}n × {0, 1}n is as follows. Let m and ` be integers such
that n = m`. (Think of m =

√
n.) We split each n-bit output into m blocks of ` bits each.

We set X = X1 . . . Xm, where each block Xi is uniformly and independently selected from
the set B` = {0, 1}` − {0`, 1`} (i.e. we forbid the all-0s and all-1s strings). Then we pick
a uniformly-random block-index J ∈ [m], and a uniformly-random bit Z ∈ {−1, 1}, and
set Y = X1 . . . XJ−1(XJ + Z)0 . . . 0, where XJ is interpreted as an integer. Let µ̄ denote
the distribution of (X,Y, Z, J) generated by this process; then µ is the projection of µ̄ onto
(X,Y ).

Then the main theorem of this section is:

I Theorem 15. GTn is n−1/17-weakly-regular with respect to µk, provided k ≤ n1/4.



A. Chattopadhyay, P. Dvořák, M. Koucký, B. Loff, and S. Mukhopadhyay 21:9

Our proof is inspired by a paper of Viola [23] who proved lower bound on the randomized
communication complexity of GTn. To prove Theorem 15 we will review some basic lemmas
and definitions.

If A and B are two random variables over the same universe, we will use ∆(A;B) to
denote the statistical distance (or total variation distance) of their distributions; we use H(A)
to denote the entropy of A’s distribution. Definitions of these concepts may be found on [7],
or via a simple internet search.

I Lemma 16 (Pinsker’s inequality). Let V be a random variable taking values in a set S,
and let U be a uniform variable over S. Then ∆(V ;U) ≤

√
log |S| −H(V ).

See [8, p. 44] for a proof of the above.

I Lemma 17. For x ≥ 2, it holds log(2x − 2) ≥ x− 1
2x−2 .

Proof. We will prove an equivalent inequality

log(2x − 2)− log(2x) ≥ − 1
2x−2 .

By convexity of the exponential function we have 1− y ≥ 2−2y for y ∈ [0; 1
2 ]. Then

log(2x − 2)− log(2x) = log(1− 21−x) ≥ log(2−22−x
) = − 1

2x−2 . J

Proof of Theorem 15. Let the random variables X = X1 . . . Xk, Y = Y 1 . . . Y k, J =
J1 . . . Jk and Z = Z1 . . . Zk be drawn according to the distribution µ̄k, by the process given
above, so that (X,Y ) is distributed according to µk.

Fix a large rectangle R = R1×R2 – i.e., a rectangle such that µk(R) ≥ 1
n . Let X = (B`)mk

be the support of X. Since µk has zero mass outside of X × {0, 1}kn, assume without loss of
generality that R1 ⊂ X .

Let W denote a random variable distributed as Y conditioned on X ∈ R1, and Wz be
distributed as Y conditioned on X ∈ R1 and Z = z. We will prove that, for any z ∈ {0, 1}k,

∆(W ;Wz) ≤
1

n1/17 . (I)

This implies Theorem 15, because4

2kµk(Rz) = 2k · Pr
µk

[X × Y ∈ Rz]

= 2k · Pr
µk

[X ∈ R1, Y ∈ R2, Z = z]

= Pr
µk

[X ∈ R1] · Pr
µk

[Y ∈ R2 | X ∈ R1, Z = z]

≥ Pr
µk

[X ∈ R1] ·
(

Pr
µk

[Y ∈ R2 | X ∈ R1]− 1
n1/17

)
≥ Pr

µk
[X ∈ R1] · Pr

µk
[Y ∈ R2 | X ∈ R1]− 1

n1/17

= µk(R)− 1
n1/17

4 We should note that the same property will trivially hold if µk(R) < 1
n .
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V 1
1 V 1

j1
V 1
m

V 2
1 V 2

j2
V 2
m

. . . . . .

V k−1
1 V k−1

jk−1
V k−1
m

V k1 V kjk
V km

V

V 1
1 V 1

j1
− z1

V 2
1 V 2

j2
− z2

. . .

V k−1
1 V k−1

jk−1
− zk−1

V k1 V kjk − zk

Wz

Figure 1 V and Wz. V<j appears in dark gray; light gray marks zeros.

To prove (I), it suffices bounding ∆(Wb;Wa) ≤ 1
n1/17 for arbitrary a, b ∈ {1,−1}k, because:

∆(W ;Wa) = 1
2
∑
ȳ

∣∣Pr[W = ȳ]− Pr[Wa = ȳ]
∣∣

= 1
2
∑
ȳ

∣∣∣ ∑
b∈{1,−1}k

Pr[Z = b] · Pr[Wb = ȳ]− Pr[Wa = ȳ]
∣∣∣

≤
∑

b∈{1,−1}k

1
2k ·

1
2
∑
s

∣∣Pr[Wb = ȳ]− Pr[Wa = ȳ]
∣∣ =

∑
b∈{1,−1}k

1
2k∆(Wb;Wa)

Then let V denote a random variable distributed as X conditioned on X ∈ R1; since R1 ⊂ X
and X is uniform over X , V itself is drawn uniformly from R1. First we prove that

H(V ) ≥ nk − o(1)− logn (II)

Since V is uniform on R1, H(V ) = log |R1|. As we assumed R was large,

|R1|
|X |

= Pr(X,Y )[X ∈ R1] ≥ 1
n
.

Thus by Lemma 17:

H(V ) ≥ log |X |
n

= log
[
(2n/m−2)mk

]
−logn ≥ mk

( n
m
− 1

2 n
m−2

)
−logn = nk−o(1)−logn.

The variable V can be divided into same blocks as the variable X. Thus, V = V 1, . . . , V k

where each V i is an n-bit number. Each V i is V i1 . . . V im where each V ij is an `-bit number.
Let j be a vector in [m]k. By V<j we denote all blocks V is for i ∈ [k] and s < ji. The universe
of V<j is denoted by V<j . For j ∈ [m]k, v ∈ V<j and z ∈ {−1, 1}k, let Vj,v,z be the random
variable V 1

j1
− z1, . . . , V

k
jk
− zk, conditioned on V<j = v. This is the same distribution as the

projection of Y , conditioned on J = j, Z = z and V<j = v, onto blocks given by j. Figure 1
illustrates the notation.

Then from the triangle inequality we get

∆(Wb;Wa) ≤
∑

j∈[m]k

∑
v∈V<j

Pr
J,V

[J = j, V<j = v] ∆(Vj,v,b;Vj,v,a).

Now notice that Vj,v,a = π(Vj,v,b) = π′(Vj) for some permutations π and π′ of the domain
{0, 1}nkm ; then for U uniform over {0, 1}nkm ,

∆(Vj,v,b;Vj,v,a) ≤ ∆(Vj,v,b;U) + ∆(U ;Vj,v,a) = 2∆(U ;V 1
j1
, . . . , V kjk | V<j = v).
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k


p . . . p′ R R

p . . . p′ R R

L L p . . . p′

L p . . . p′ R︸ ︷︷ ︸
m

Figure 2 An example how to cover all blocks in the sum M (gray blocks) and the variable L and
R. Each rectangle represents a block of n

m
bits.

Pinsker’s inequality then tells us that ∆(Vj ;U) ≤
√

nk
m −H(V 1

j1
, . . . , V kjk | V<j = v). We may

thus bound

∆(Wb;Wa) ≤ 1
mk

∑
jv

Pr
V

[V<j = v]
√
nk

m
−H(V 1

j1
. . . V kjk |V<j = v)

≤
√

1
mk

∑
jv

PrV [V<j = v]
(nk
m
−H(V 1

j1
. . . V kjk |V<j = v)

)
(by concavity of

√
·)

=
√
nk

m
− 1
mk

∑
j

H(V 1
j1
. . . V kjk |V<j) (by definition of conditional entropy)

Now we need to bound the sum
∑
j H(V 1

j1
. . . V kjk |V<j). The sum is over all vectors j in

[m]k. We will divide the summands into parts that allow us to use the chain rule. We call
a vector p ∈ [m]k a pattern if p contains 1 in some coordinate. We denote the set of all
patterns by P. For a pattern p ∈ P we define a width w(p) of pattern p as the maximum of
entries of p:

w(p) = max
i∈[k]

pi.

Denote the set of all patterns of width w by Pw. For an integer s, (p + s) = (p1 + s, p2 +
s, . . . , pk + s). In this way, we can rewrite the sum of entropies:

∑
j∈[m]k

H(V 1
j1
. . . V kjk |V<j) =

∑
w∈[m]

∑
p∈Pw

m−w∑
s=0

H(V 1
p1+s . . . V

k
pk+s|V<(p+s)). (III)

Let fix some pattern p ∈ Pw and bound the last sumM =
∑m−w
s=0 H(V 1

p1+s . . . V
k
pk+s|V<(p+s)).

Let p′ be a vector such that we add m− w to every entry of p, i.e., p′ = (p+m− w). Let L
be blocks of V “to the left” of p and R be blocks “to the right” of p′. Formally,

L = V 1
1 . . . V

1
p1−1 . . . V k1 . . . V kpk−1 R = V 1

p′1+1 . . . V
1
m . . . V kp′

k
+1 . . . V

k
m

The variables L and R are chosen in a way that they, together with the blocks used in the
sum M , “cover” all blocks of V . For a better understanding see Figure 2.

Note that variables L and R contains together (w − 1)k blocks (i.e., n
m (w − 1)k bits)

independently of the choice of p ∈ Pw. The chain rule then says that H(V ) = H(L) +M +
H(R|V≤p′), and so

M = H(V )−H(L)−H(R|V≤p′) ≥ H(V )− n

m
(w − 1)k.
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We are ready to bound the sums from Equation (III).

∑
w∈[m]

∑
p∈Pw

m−w∑
s=0

H(V 1
p1+s . . . V

k
pk+s|V<(p+s)) ≥

∑
w∈[m]

∑
p∈Pw

H(V )− n

m
(w − 1)k

≥
∑
w∈[m]

∑
p∈Pw

nk − o(1)− logn− n

m
(w − 1)k (by II)

= nk

m

( ∑
w∈[m]

∑
p∈Pw

m− w + 1
)
− |P|

(
o(1) + logn

)
= mk nk

m
− |P|

(
o(1) + logn

)
Bounding the number of all patterns by |P| ≤ kmk−1, we can also bound

∆(Wa;Wb) ≤
√
nk

m
− 1
mk

∑
j

H(V 1
j1
. . . V kjk |V<j)

≤
√
nk

m
− 1
mk

(
mk

nk

m
− |P|

(
o(1) + logn

))
=
√
kmk−1

mk

(
logn+ o(1)

)
(for m =

√
n, k ≤ n1/4)

=
√

1
n

1
4

(
logn+ o(1)

)
≤ 1
n

1
17

J

5 Conclusion and open problems

We have given strong lower bounds on the elimination problem with an exponentially improved
dependence on k for functions with small discrepancy. We have singled out two measures of
complexity, regularity and weak regularity, which appeared implicitly in previous works on
communication complexity. We have found regularity to be a natural property to keep in
mind, whenever Alice and Bob are given multiple instances x1, y1, . . . xk, yk, and must solve
some problem that depends on the pointwise application fk(x̄, ȳ).

The first question that is not at all clear to us is: how do these notions relate to each
other? Is there a function f for which the elimination problem is hard, and which is still not
weakly-regular? Is there a function f which is weakly-regular but not regular?

Open problem. Can we separate the notion of elimination from weak regularity, and weak
regularity from regularity?

The second problem we would like to understand is the following. As far as we are able
to tell, it could be that elimination is simply as hard as communication of a single instance.
We would like to see settled the following conjecture:

Conjecture (Elimination is as hard as communication)

Rε(elim ◦ fk) ≥ Ω(Rδ(f)) (for δ = Ω(1), ε = Ω(2−k) and k ≤ 2Ω(Rδ(f)))

Third, and finally, we would like to know if our lower-bounds are tight with respect to
the parameter k. We do not know whether this is the case. For example, it could be that if
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k is as large as 10n, say, then it would be possible to solve elim ◦ GTk with o(logn) bits; or
if k ≥ 210n, say, solving elim ◦ IPkn would be possible with o(n) bits of communication. Or it
could be that stronger lower-bounds can be proven, with much larger k. This is an open
question.

Acknowledgements. Part of the research for this work was done at the Institut Henri
Poincaré, as part of the Nexus of Information and Computation Theories workshop.
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