
How to Explore a Fast-Changing World

(Cover Time of a Simple Random Walk on Evolving Graphs)

Chen Avin1, Michal Koucký2, and Zvi Lotker1

1 Communication Systems Engineering, Ben Gurion University of the Negev, Israel
{avin,zvilo}@cse.bgu.ac.il

2 Institute of Mathematics, Academy of Sciences of the Czech Republic
koucky@math.cas.cz

Abstract. Motivated by real world networks and use of algorithms
based on random walks on these networks we study the simple random
walks on dynamic undirected graphs with fixed underlying vertex set,
i.e., graphs which are modified by inserting or deleting edges at every
step of the walk. We are interested in the expected time needed to visit
all the vertices of such a dynamic graph, the cover time, under the as-
sumption that the graph is being modified by an oblivious adversary. It
is well known that on connected static undirected graphs the cover time
is polynomial in the size of the graph. On the contrary and somewhat
counter-intuitively, we show that there are adversary strategies which
force the expected cover time of a simple random walk on connected dy-
namic graphs to be exponential. We relate this result to the cover time
of static directed graphs. In addition we provide a simple strategy, the
lazy random walk, that guarantees polynomial cover time regardless of
the changes made by the adversary.

1 Introduction

A random walk on a graph is a simple process of visiting the nodes of the graph
in some random sequential order. The walk starts at some fixed node, and at each
step it moves to a neighbor of the current node chosen at random. The random
walk is called simple when the next node is chosen uniformly at random from
the set of neighbors. In the context of communication networks (e.g., Internet,
wireless ad-hoc networks and sensor networks) and information networks (e.g.,
peer-to-peer file sharing networks and distributed databases), a random walk on
a network (graph) will result when messages are sent at random from device to
device.

Since this process presents locality, simplicity, low memory-overhead and ro-
bustness to changes in the network structure applications based on random-walk
techniques are becoming more and more popular in the networking community.
In recent years, different authors have proposed the use of random walk for a
large variety of tasks and networks; to name but a few: querying in sensor and
ad-hoc networks [18, 5, 1], searching in peer-to-peer networks [12], gossiping [16],
PageRank and search engines on the web [13].

One of the main reasons that random walk techniques are so appealing for
networking application is their robustness to dynamics. Many communication
networks are subject to dramatic structural changes created by mobility, sleep
modes, channel fluctuations, device failures, nodes joining or leaving the system
and other factors. Topology-driven algorithms are at a disadvantage for such
networks, since they incur high overhead to maintain up-to-date topology and
routing information such as routing tables, clusters and spanning trees. In con-
trast, algorithms that require no knowledge of network topology, such as the
random walk, are at an advantage.

While at first glance, the process of a token wandering randomly in the
network may seem overly simplistic and highly inefficient, many encouraging
results prove that it is comparable to other approaches that have been used over
the years. One important property of random walks on graphs that needs to be
evaluated to study the efficiency of the approach is the cover time [2]. The cover
time CG of a graph G is the expected time (measured by number of steps or in
our case by the number of messages) taken by a simple random walk to visit
all the nodes in G. Methods on bounding the cover time of graphs have been
thoroughly investigated with the major result being that cover time is always
at most polynomial for undirected graphs. More precisely, it has been shown by
Aleliunas et al. in their seminal work [3] that CG is always O(mn), where m is
the number of edges in the graph and n is the number of nodes. Tighter bounds
for many classes of graphs have been established and they can be found in the
extensive literature on the subject.

Since real-world networks change over time researches have recently started to
study random walks on such dynamic graphs. Motivated by robotic exploration
of the Web, Cooper and Frieze [7] studied the question of covering a graph that
grows over time. They considered a particular model of so-called web graphs and
showed that a simple random walk on the graph fails to visit a constant fraction
of nodes if a new node appears and is connected to the graph after every constant
number of steps of the walk.

Motivated by sensor networks we consider a similar question on a different
model of dynamic graphs. We consider dynamic graphs with fixed number of
nodes where connections between the nodes appear and disappear over the time.
The question that we study is the cover time of such graphs.

1.1 Overview of Our Results

We show that somewhat counter-intuitively, there are dynamic graphs of the type
given above that have exponential cover time when explored by a simple random
walk. (For the sake of clarity let us say that our examples are deterministic but
oblivious to the actual random walk.) Moreover, we show that a random walk on
any directed graph G can be simulated (in a way we define later) by a random
walk on an undirected dynamic graph that we construct from G; this gives yet
another justification to our previous claim. Our examples are also valid when
we allow the random walk to make more than a single step between each graph
change. Indeed, we can allow up-to n1−ǫ steps before making each change and

still obtain an exponential cover time. Although one could question whether our
graphs could appear in a real-word scenario we do not consider these graphs
to be far-fetched: for example a particular implementation of sensor networks
with links (network interfaces) going to sleep periodically or nodes switching
communication frequencies could exhibit such behavior.

In addition to these negative results we also show several positive results.
Most importantly we show that a lazy random walk (also known as a max-degree
random walk in literature [15]) does not suffer from these issues. We define
as a lazy random walk a walk that picks each adjacent edge with probability
1/dmax, where dmax is the maximum degree of the graph, and with the remaining
probability it stays at the current vertex. We show that a lazy random walk
covers any connected dynamic graph in time polynomial in the size of the graph.
Furthermore, we also show that when the dynamic graph itself is obtained by
sampling from a certain probability distribution, a simple random walk will also
cover such a graph in expected polynomial time.

2 Models and Preliminaries

2.1 Random Walks on Graphs

Let G(V, E) be an undirected graph, with V the set of nodes and E the set of
edges. Let n = |V | and m = |E|. For v ∈ V , let N(v) = {u ∈ V | (v, u) ∈ E} be
the set of neighbors of v and d(v) = |N(v)| the degree of v. A d-regular graph is
a graph in which the degree of all the nodes is d.

The simple random walk on a graph G is a walk on G where the next node
is chosen uniformly at random from the set of neighbors of the current node,
i.e., when the walk is at node v, the probability to move in the next step to u is
P (v, u) = 1

d(v) for (v, u) ∈ E and 0 otherwise.

The hitting time, Huv, is the expected time for a random walk starting at
u to arrive at v for the first time, and the commute time, Cuv, is the expected
time for a random walk starting at u to first arrive at v and then return to u.
Let Hmax be the maximum hitting time over all the pairs of nodes in G.

The cover time CG of a graph G is the expected time taken by a simple
random walk on G to visit all the nodes in G. Formally, for v ∈ V , let Cv be
the expected number of steps needed for the simple random walk starting at v
to visit all the nodes in G, and the cover time of G is CG = maxv Cv. The cover
time of graphs and methods of bounding it have been extensively investigated
[17]. Results for the cover time of specific graphs vary from the optimal cover
time of Θ(n log n) associated with the complete graph to the worst case of Θ(n3)
associated with the lollipop graph [9, 8].

2.2 Evolving Graphs Model

The most general model to describe a dynamic network is called the Evolving
Graph model. We will use a similar definition as in [14, 11, 10].

Definition 1 (Evolving Graphs) Let G = G1, G2, . . . be an infinite sequence
of graphs on the same vertex set V . We call this sequence an evolving graph.
We say that G has the graph property X if every graph Gi in the sequence has
the property X.

In simple words at time i the structure of the evolving graph G is Gi. For
an integer τ ≥ 1, an evolving graph G is evolving with rate 1

τ if for all i ≥ 1,
Gi 6= Gi+1 implies, Gi+1 = Gi+1+j for all j ∈ {0, . . . , τ − 1}.

A simple random walk on evolving graph G is defined as follows: assume that
at time i the walker is at node v ∈ V , and let N(v) be the set of neighbors of
v in Gi, then the walker moves to one of its neighbors from N(v) uniformly at
random.

The strength and the weakness of the above model have the same origin, its
generality. On the positive side, it captures many interesting scenarios of dy-
namic networks, but on the other hand, most natural problems are NP-complete
such as finding strongly connected components and the equivalence of minimum
spanning tree [10].

2.3 Constructive Evolving Graphs Model

Evolving graphs do not capture the underlying mechanism of how (or why) the
graph evolves. In many situations the evolving graph itself is a product of some
random process. (For example this is the case of web graphs considered in [7].)
We will use the following definition to capture the underlying process in the case
it is a Markov chain. A special case of such graphs is considered in Section 5.

Definition 2 (Markovian Evolving Graphs) Let the space set G be a set
of graphs with the same set V of nodes, let G1 ∈ G and let P be a probability
transition matrix on G. A Markovian evolving graph M = (G, G1, P) is an
evolving graph M1,M2, . . . obtained by the Markov chain given by P with the
initial state G1. Thus for any sequence of graphs G2, G3, · · · ∈ G and any t > 1,
Pr[Mt = Gt | Mt−1 = Gt−1] is given by the appropriate entry of P .

It is clear that a Markovian evolving graph is a random variable. By a ran-
dom walk on a Markovian evolving graph we understand a random walk on the
outcome of the random variable. When considering the expected cover time of
a random walk on a Markovian evolving graph we consider the expectation over
the choice of both the evolving graph and the random walk.

3 Exponential Hitting Time of Evolving Graphs

In this section we address the cover time of the simple random walk on evolving
graphs by studying the maximum hitting time. Clearly the cover time must be
at least as large as the maximum hitting time. First, we mention some technical
issues. On static graphs the cover time is finite only for connected graphs. This is
not the case for evolving graphs as we will see in Section 5. For simplicity though

we restrict our discussion mostly to evolving graphs in which every graph in the
sequence G is connected. (In the Markovian model we require that every graph
in the set G is connected, and call G connected if that is the case). Moreover
we require that all graphs have a self-loop for each of the nodes. This is simply
a technical condition to avoid pathological cases such as the walk switching
forever between two nodes. In the case of static graphs this is a standard way of
enforcing ergodicity. An evolving graph G that has the above properties we call
an explorable evolving graph.

Now one can easily claim the following for explorable evolving graphs (a
similar claim can be made for Markovian evolving graphs):

Claim 3 Let G be an explorable evolving graph, then the cover time of G is
bounded by nO(n).

We outline the argument here. Let V be the set of vertices of G. Fix two
vertices u and v from V . For i ≥ 1, let Vi be the set of vertices that could be
visited within first i steps of a simple random walk on G starting from u. Since
G is connected it must be the case that for each i, Vi (Vi+1 unless Vi = V .
In particular, Vn must contain all vertices of G and in particular v. Thus, the
probability of reaching v starting from u is at least n−n. Indeed, this is true for
any two vertices u and v and starting from any time t. A standard argument
now implies that the cover time is at most nO(n).

Requiring connectivity at each step of the evolving graph may look like a
very strong condition that should imply polynomial cover time and maximum
hitting time. Surprisingly we show that this is not the case.

Theorem 4 There exists an explorable evolving graph G, such that the maxi-
mum hitting time of the simple random walk on G is Ω(2n).

One can think of this result in the following way: consider a random walk on
an evolving graph that is controlled by an oblivious adversary that is deciding
what will be the next graph at each time step. In such a case the adversary,
although unaware of the random walk location, can force the walk to step ex-
ponential number of steps before exploring the whole graph. We give below the
basic details of the proof.
Proof of Theorem 4. Let G1 be the star of size n (with the addition of a self-
loop at each node) where nodes called 1, 2, . . . , n − 2 and n are always the leafs
and node called n− 1 is always the center. The random walk starts at the node
originally called 1 and we will bound the hitting time to the node called n.
The adversary is the following deterministic process: At each time step vertices
1, . . . , n − 1 will trade their places, i.e., the adversary changes the edges by
changing the names of the nodes. The adversary uses the following renaming
strategy: for 1 ≤ i ≤ n − 1, node i changes its name to i + 1(mod n − 1). Note
that node n does not change its name, nodes 1, . . . , n− 2 increase their name by
one, node n − 1 becomes 1.

The only way to reach node n is through the center. By induction on i =
2, . . . , n−2 one can see the following. Unless we have already reached the center

RL a 1 a 2 a 3 a l
b 1 b 2 b 3 b l. . .c 1 c 2 c 3 c lc 0 c l � 1

Fig. 1. the gadget Hℓ (dashed lines show node transformations)

of the star the only way to be at the leaf named i after the adversary move is
to be at the leaf named i − 1 before the adversary renaming. That implies we
must have used a self-loop at that random step. Hence, to get to the leaf named
n− 2 we must have had a sequence of n− 3 random steps all taking a self-loop.
To get to the center we have to stay at leaf n − 2. All in all to be at the center
after the adversary move the random walk must have made a sequence of n− 2
consecutive self-loop steps. That happens with probability 2−n+2 in a sequence
of n − 2 consecutive steps. Therefore the expected time before we observe the
random walk to make such a sequence of steps is Ω(2n). �

We would like to point out that all graphs in G are isomorphic and rapidly
mixing (the cover time of each of them is in fact O(n log n)). This fact shows
that common tools like spectral analysis cannot be applied näıvely to dynamic
graphs.

3.1 Simulating Directed Graphs

One way to understand the results of the previous section is by relating random
walks on explorable evolving graphs to random walks on static directed graphs.
In fact we can simulate a simple random walk on a directed graph G by a
careful choice of evolving graph G. We will use the following gadget H to replace
every directed edge of G. For ℓ > 0, the gadget Hℓ is a sequence of graphs
H0

ℓ , H1
ℓ , H2

ℓ , H0
ℓ , H1

ℓ , H2
ℓ , H0

ℓ , . . . with vertices L, R, s0 and si,j , for i = 1, . . . , ℓ
and j = 0, 1, 2. The graph Hk

ℓ is obtained from the graph in Fig. 1 by mapping
vertices L → L, R → R, s0 → c0 and si,k → ci, si,k+1 mod 3 → bi, si,k+2 mod3 →
ai, i = 1, . . . , ℓ. (We deviate here from our convention of having self-loops at
every node for the sake of simplicity of the analysis. As it will be clear in the
next section with minor modification of bounds our claims would be true even if
we would add a self-loop to every node.) The main property of a simple random
walk on H is summarized in the following lemma.

Lemma 5 Let ℓ > 0, Hℓ = H0
ℓ , H1

ℓ , H2
ℓ , H0

ℓ , H1
ℓ , H2

ℓ , H0
ℓ , . . . and ǫ = ℓ(1/2)ℓ +

(3/4)ℓ. Consider a simple random walk on Hℓ. If the walk starts at vertex L then
the probability of returning to L before visiting R is at least 1 − ǫ. Moreover if

the walk starts at vertex R then the probability of returning to R before visiting
L is at most ǫ.

We omit the proof of this lemma due to space constraints. Thus the gadget
Hℓ has essentially the same effect for a simple random walk as a directed edge
from R to L with a self-loop at L. Given a directed graph G with a self-loop at
every vertex we can replace all its directed edges between different vertices by a
copy of Hℓ to obtain a sequence of graphs G on which a simple random walk will
simulate a simple random walk on G (up-to some error ǫ). Of course, replacing
several edges incoming to a vertex by the gadget will introduce several self-loops
to that vertex. To avoid that we can collapse the vertices c0 from these gadgets
into one thus obtaining an equivalent of one self-loop. (This collapse will affect
ǫ slightly but no more than by a factor polynomial in the number of replaced
edges.) We also remove the original self-loops from the graph G.

If we perform a simple random walk on G and we restrict ourselves to observ-
ing only visits to the vertices of the original graph G we will observe essentially
the same probability distribution as of a simple random walk on G. In partic-
ular, if we choose ℓ = nk+1, for k > 1 and n being the size of G, then the
probability of observing an edge being traversed in the opposite direction in the

first 2nk

steps is at most 2−O(nk+1). Since for example the maximal hitting time
on any strongly connected directed graph is bounded by 2O(n log n) this error is
negligible.

4 Slowly Evolving Graphs

The previous section has shown that there are evolving graphs for which a simple
random walk essentially fails as a means of exploring it. All our examples so far
considered graphs that evolve at rate one. This would not really be a typical
case in a real-world application. The rate at which graphs evolve is usually
slower compared to unit operations such as sending a packet. So could it be the
case that a simple random walk covers in polynomial time all graphs evolving
at lower rate? In this section we show that this is not the case. Namely for any
constant 0 < ǫ < 1 and an integer n large enough, we provide an example of
an evolving graph on O(n) vertices that evolves at rate 1

n1−ǫ so that a simple

random walk needs expected time 2Ω(nǫ) to cover the graph. Indeed the graph
is essentially the gadget from the previous section with the speed of evolution
slowed down.

Let F i
ℓ be the graph Hi

ℓ from the previous section modified by adding possibly
several self-loops to each vertex so that the probability of staying at the same
vertex is precisely one half. (So in particular vertices of degree two will receive
two self-loops and vertices of degree four will receive four of them. We remark
that our claim would be true even without these self-loops but in some cases for
trivial reasons. So to capture the most general situation we introduce the loops.)

For 0 < ǫ < 1 and an integer n ≥ 21/(1−ǫ), we define an evolving graph Gǫ
n to

consist of repeated sequence F 0
2n, F 0

2n, . . . , F 0
2n, F 1

2n, F 1
2n, . . . , F 1

2n, F 2
2n, . . . , F 2

2n,

where each block of consecutive F i
2n’s consists of n1−ǫ copies of F i

2n. Clearly Gǫ
n

evolves at rate 1
n1−ǫ . We claim:

Theorem 6. The cover time of Gǫ
n is 2Ω(nǫ).

In order to prove the theorem we analyze a concept that we call a random
walk on a line with a drift. A random walk on a line with a drift is a simple
random walk on a line of size n where each ℓ = n1−ǫ steps, a step biased towards
the same direction is taken. We show that such a walk requires in expectation
an exponential number of steps to traverse the line in the direction opposite to
the bias. Due to space limitations we omit the detailed analysis from this version
(see [6] for the proof).

5 Polynomial Cover Time of Dynamic Graphs

We turn our attention to cases where the cover time of evolving graphs is ”good”,
i.e., polynomial. Our first example is of a simple Markovian case.

Definition 7 (Bernoulli evolving graph) Let G be a set of graphs with the
same set V of nodes and let P̄ be a probability distribution over G. A Bernoulli
evolving graph B = (G, P̄) is a Markovian evolving graph in which the rows of
the transition matrix P are identical and equal to P̄ and the initial graph G1 is
taken at random according to P̄ , i.e., the random graphs Gi, are i.i.d.

We show that the bound for the cover time of the simple random walk on
Bernoulli evolving graphs is very similar to the bound of static graphs; essentially
when the process is time invariant and the graph is always connected then the
bound of Aleliunas et al. [3] can be extended to dynamic graphs.

Theorem 8 For any explorable Bernoulli evolving graph, B = (G, P̄), the cover
time of the simple random walk on B is O(n3 log n) and the maximum hitting
time is O(n3).

The property that G is connected is not necessary to obtain a polynomial
bound on the cover time as the following statement shows. (We omit proofs of
both of these theorems due to space limitations.)

Theorem 9 Let B = (G, P̄) be a Bernoulli evolving graph, G be the set of all
maximum matching of the complete graph (any such graph is disconnected) and
P̄ is the uniform distribution over G. The cover time of the simple random walk
on B is the same as the cover time of the complete graph, n logn(1 + o(1)).

5.1 d-regular Dynamic Graphs

It is known that simple random walks on regular, connected, non-bipartite static
graph have cover time of O(n2) [17]. Interestingly, it turns out that a similar
result holds true for regular, connected, non-bipartite evolving graphs.

Theorem 10. For any d-regular connected non-bipartite evolving graph G the
cover time of the simple random walk on G is O(d2n3 ln2 n).

We will need the following lemma proof of which omitted is due to space
limitations:

Lemma 11 Let G be an undirected d-regular (multi)graph on n vertices and p =
(p1, . . . , pn) be a probability distribution on its vertices. Let AG be the transition
matrix of a simple random walk on G. Then:

1.
∥

∥

∥

∥

pAG − I

n

∥

∥

∥

∥

2

2

≤
∥

∥

∥

∥

p − I

n

∥

∥

∥

∥

2

2

.

2. If G is connected non-bipartite

∥

∥

∥

∥

pAG − I

n

∥

∥

∥

∥

2

2

≤
(

1 − 1

d2n2

) ∥

∥

∥

∥

p − I

n

∥

∥

∥

∥

2

2

.

Here I stands for a vector of ones of an appropriate dimension.

As an immediate corollary to the previous lemma we obtain:

Corollary 12 Let G = G1, G2, . . . be a sequence of d-regular graphs on the
same vertex set V = {1, . . . , n}. For integers 0 ≤ ℓ ≤ t let at least ℓ of the graphs
G1, . . . , Gt be non-bipartite connected. If p0 is the initial probability distribution
on V and we perform a simple random walk on G starting from p0, then the
probability distribution pt of the walk after t steps satisfies:

∥

∥

∥

∥

pt −
I

n

∥

∥

∥

∥

2

2

≤
(

1 − 1

d2n2

)ℓ ∥

∥

∥

∥

p0 −
I

n

∥

∥

∥

∥

2

2

.

A technique similar to [4] gives the following lemma.

Lemma 13 Let Y0, Y1, Y2, . . . be a sequence of random variables with range
V = {1, . . . , n} satisfying for all u, v ∈ V and i > 0, Pr[Yi = u|Yi−1 =
v] ≥ 1/2n. If t = min{i; {Y0, Y1, . . . , Yi} = V } then the expectation E[t] ≤
3n lnn + O(

√
n lnn).

Proof. For every ℓ > 0 and every v ∈ V , Pr[v 6∈ {Yℓ+1, . . . , Yℓ+3n ln n}] < (1 −
1/2n)3n ln n < e−(3/2) ln n = n−3/2. Thus, Pr[∃v ∈ V ; v 6∈ {Yℓ+1, . . . , Yℓ+3n ln n}] <
n ·n−3/2 = 1/

√
n. For each integer k ≥ 0, if we set ℓ = k ·3n lnn then the proba-

bility that Yℓ+1, . . . , Yℓ+3n ln n does not cover whole V is at most 1/
√

n. Thus the
expected k before V is covered is at most 1/(1 − 1/

√
n) = 1 + O(1/

√
n). Hence

the expected cover time of V is bounded by E[t] ≤ 3n lnn + O(
√

n lnn). �

Now, we can prove Theorem 10.

Proof of Theorem 10. Let X0, X1, . . . be a random walk on G. For an integer
i ≥ 0, define Yi = Xi·4d2n2 ln n. Pick u, v ∈ V . For i > 1, let pi be the proba-

bility distribution of Yi conditioned on Yi−1 = v. By Corollary 12,
∥

∥pi − I

n

∥

∥

2

2
≤

(

1 − 1
d2n2

)4d2n2 ln n
< n−4. Hence, all coordinates of the vector (pi − I

n) are in
absolute value smaller than 1/n2. Thus Pr[Yi = u|Yi−1 = v] ≥ 1

n − 1
n2 ≥ 1/2n,

provided that n ≥ 2. Applying Lemma 13 yields the result. �

6 Random Walk Strategy

Consequently to the previous section the following simple strategy for the ran-
dom walk guarantees that an evolving graph will be covered in expected poly-
nomial time:

Definition 14 (Lazy Random Walk) At each step of the walk pick a vertex
v from V (G) uniformly at random and if there is an edge from the current vertex
to the vertex v then we move to v otherwise we stay at the current vertex.

In effect what this strategy does is that it makes the graph n-regular; every
edge adjacent to the current vertex is picked with the probability 1/n and with
the remaining probability we use one of many self-loops. If we have an a priori
upper bound dmax on the maximum degree of the dynamic graph we can achieve
a slightly faster cover time. In that case we can reformulate the strategy as
follows:

At each step of the walk with probability 1 − (d(u)/(dmax + 1)) stay at
the current vertex u and with the remaining probability pick uniformly
at random one of the neighbors v of the current vertex and move to v.

We call this strategy dmax-lazy random walk. (In literature such a walk is
sometimes called max-degree random walk [15].) If the only upper bound on the
maximum degree that we have is n then this strategy becomes the previous one.
We claim the following as an immediate corollary of Theorem 10:

Theorem 15. For any connected evolving graph G with maximum degree dmax

the cover time of the dmax-lazy random walk on G is O(d2
maxn

3 ln2 n).

Indeed these strategies do not even require the dynamic graph to be con-
nected at each step. By Corollary 12 and Lemma 13 as long as the dynamic
graph is connected for polynomial fraction of the time, the cover time of a ran-
dom walk using our strategy will still be polynomial. In that case we can obtain
the following generalization of Theorem 15.

Theorem 16. Let G = G1, G2, . . . be an evolving graph with maximum de-
gree dmax. Let ǫ > 0 be such that for every integer ℓ, at least ǫℓ graphs among
G1, G2, . . . , Gℓ are connected. Then the cover time of the dmax-lazy random walk
on G is O(ǫ−1d2

maxn
3 ln2 n).

The constant in the big-O is a universal constant that is independent of G.

We point out that the strategy can be modified so that the a priori knowledge
of dmax and n is not necessary. First, we can assume that dmax = n. Second, we
can try different estimates for n as follows. We start with the estimate n = 10.
Then we always walk for n5 ln2 n steps as in the n-lazy random walk, where n is
the current estimate, and after that we double our estimate of n. One can show
that this strategy will provide O(n5 ln2 n) expected cover time of the random
walk on a connected evolving graph with n vertices.

7 Conclusions

In this paper we demonstrate that the cover time of the simple random walk on
dynamic graphs is significantly different from the case of static graphs. While
the latter was well known to be polynomial, the former is shown here to be
exponential on some evolving graphs. Moreover, we show that even if the ran-
dom walk takes many steps before the graph evolves the cover time can still be
exponential.

We prove that in order to accelerate the cover time one can use a lazy random
walk and reduce the cover time to polynomial. This approach has been used
previously on static graphs in order to sample nodes uniformly at random, but
contrary to our situation, it can be shown that it cannot accelerate the cover
time for static graphs.

To summarize, the main results presented here provide theoretical justifica-
tion to the wide use of random-walk-techniques in dynamic networks. Neverthe-
less, one must pay careful attention to the network dynamics when choosing the
implementation of the random walk.

Acknowledgements Part of this work was done while Michal Koucký was
visiting Ben Gurion University. Michal Koucký was supported in part by grant
GA ČR 201/07/P276, project No. 1M0021620808 of MŠMT ČR and Institutional
Research Plan No. AV0Z10190503.

References

1. Alanyali, M., Saligrama, V., and Sava, O. A random-walk model for dis-
tributed computation in energy-limited network. In In Proc. of 1st Workshop on
Information Theory and its Application (San Diego, 2006).

2. Aldous, D., and Fill, J. Reversible Markov Chains and
Random Walks on Graphs. 1999. Unpublished. http://stat-
www.berkeley.edu/users/aldous/RWG/book.html.

3. Aleliunas, R., Karp, R. M., Lipton, R. J., Lovász, L., and Rackoff, C.

Random walks, universal traversal sequences, and the complexity of maze prob-
lems. In 20th Annual Symposium on Foundations of Computer Science (San Juan,
Puerto Rico, 1979). IEEE, New York, 1979, pp. 218–223.

4. Alon, N., Avin, C., Koucký, M., Kozma, G., Lotker, Z., and Tuttle, M. R.

Many random walks are faster than one. In 20th ACM Symposium on Parallelism
in Algorithms and Architectures, to appear. (2008).

5. Avin, C., and Brito, C. Efficient and robust query processing in dynamic en-
vironments using random walk techniques. In Proc. of the Third International
Symposium on Information Processing in Sensor Networks (2004), pp. 277–286.

6. Avin, C., Koucký, M., and Lotker, Z. How to explore a fast-changing world.
Tech. Rep. pre-116, Institute of Mathematics of the Academy of Sciences of the
Czech Republic, 2007. http://www.math.cas.cz/preprint/pre-116.pdf.

7. Cooper, C., and Frieze, A. Crawling on simple models of web graphs. Internet
Mathematics 1 (2003), 57–90.

8. Feige, U. A tight lower bound on the cover time for random walks on graphs.
Random Structures and Algorithms 6, 4 (1995), 433–438.

9. Feige, U. A tight upper bound on the cover time for random walks on graphs.
Random Structures and Algorithms 6, 1 (1995), 51–54.

10. Ferreira, A. Building a reference combinatorial model for manets. Network,
IEEE 18, 5 (2004), 24–29.

11. Ferreira, A., Goldman, A., and Monteiro, J. On the evaluation of shortest
journeys in dynamic networks. In Sixth IEEE International Symposium on Network
Computing and Applications (NCA 2007) (2007), pp. 3–10.

12. Gkantsidis, C., Mihail, M., and Saberi, A. Random walks in peer-to-peer
networks. INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE
Computer and Communications Societies 1 (2004), –130.

13. Henzinger, M., Heydon, A., Mitzenmacher, M., and Najork, M. Measuring
index quality using random walks on the Web. WWW8 / Computer Networks 31,
11-16 (1999), 1291–1303.

14. Jarry, A., and Lotker, Z. Connectivity in evolving graph with geometric prop-
erties. In DIALM-POMC ’04: Proceedings of the 2004 Joint Workshop on Foun-
dations of Mobile Computing (New York, NY, USA, 2004), ACM Press, pp. 24–30.

15. Jerrum, M., and Sinclair, A. Approximating the permanent. SIAM Journal
on Computing 18, 6 (1989), 1149–1178.

16. Kempe, D., Dobra, A., and Gehrke, J. Gossip-based computation of aggregate
information. In Proc. of the 44th Annual IEEE Symposium on Foundations of
Computer Science (2003), pp. 482–491.

17. Lovász, L. Random walks on graphs: A survey. In Combinatorics, Paul Erdos
is eighty, Vol. 2 (Keszthely, 1993), vol. 2 of Bolyai Soc. Math. Stud. János Bolyai
Math. Soc., Budapest, 1996, pp. 353–397.

18. Sadagopan, N., Krishnamachari, B., and Helmy, A. Active query forwarding
in sensor networks (acquire). Journal of Ad Hoc Networks 3, 1 (January 2005),
91–113.

