
Derandomizing from Random Strings

Harry Buhrman∗

CWI and University of Amsterdam, Amsterdam
buhrman@cwi.nl

Lance Fortnow†

Northwestern University
fortnow@northwestern.edu

Michal Koucký‡

Institute of Mathematics, AS CR
koucky@math.cas.cz

Bruno Loff§

CWI, Amsterdam
bruno.loff@gmail.com

September 16, 2010

Abstract

In this paper we show that BPP is truth-table reducible to the set of Kolmogorov
random strings RK . It was previously known that PSPACE, and hence BPP is
Turing-reducible to RK . The earlier proof relied on the adaptivity of the Turing-
reduction to find a Kolmogorov-random string of polynomial length using the set
RK as oracle. Our new non-adaptive result relies on a new fundamental fact about
the set RK , namely each initial segment of the characteristic sequence of RK has
high Kolmogorov complexity. As a partial converse to our claim we show that strings
of very high Kolmogorov-complexity when used as advice are not much more useful
than randomly chosen strings.

1 Introduction

Kolmogorov complexity studies the amount of randomness in a string by looking at the
smallest program that can generate it. The most random strings are those we cannot
compress at all. What if we could know which strings are Kolmogorov-random and
which are not, by making queries to the oracle RK = {x | K(x) ≥ |x|}?
∗Partially supported by an NWO VICI grant.
†Supported in part by NSF grants CCF-0829754 and DMS-0652521.
‡Partially supported by GA ČR 201/07/P276 and P202/10/0854, project No. 1M0021620808 of

MŠMT ČR, Institutional Research Plan No. AV0Z10190503 and grant IAA100190902 of GA AV ČR.
§Supported by FCT grant no. SFRH/BD/43169/2008.

1

Allender et al. [?] showed that this gives us surprising computational power. It was
shown, for instance, that polynomial time adaptive (Turing) access to RK enables one
to do PSPACE-computations, i.e., PSPACE ⊆ PRK . One of the ingredients in the proof
was to show how one may, on input 0n and in polynomial time with adaptive access to
RK , generate a polynomially long Kolmogorov random string. However, a polynomial-
time algorithm with non-adaptive access to RK , on input 0n, can only generate random
strings of length at most O(log n).

In an attempt to characterize PSPACE as the class of sets reducible to RK , Allender,
Buhrman and Koucký [?] noticed that this question depends on the choice of universal
machine used in the definition of the notion of Kolmogorov complexity. They also started
a systematic study of weaker and non-adaptive access to RK . They showed for example
that

P = REC ∩
⋂
U

{A | A≤p
dttRKU }.

This result and the fact that with non-adaptive access to RK in general only logarithmi-
cally small strings can be found seems to suggest that adaptive access to RK is needed
in order to be useful.

Our first result proves this intuition false: We show that polynomial time non-
adaptive access to RK can be used to derandomize any BPP computation. In order to
derandomize a BPP computation one needs a (pseudo)random string of polynomial size.
As mentioned before one can only obtain short, O(log n) sized, random strings from RK .
Instead we show that the characteristic sequence formed by the strings of length c log n,
R=c logn
K , itself a strings of length nc, is complex enough to figure as a hard function in

the hardness versus randomness framework of Impagliazzo and Wigderson [?]. This way
we construct a pseudorandom generator that is strong enough to derandomize BPP.

In particular we show that for every time bound t, there is a constant c such that
RK 6∈ i.o.-DTIME(t)/2n−c. This is in stark contrast with the time-unbounded case
where only n bits of advice are necessary [?]. As a consequence we give an alternative
proof of the existence of an r.e. set A, due to Barzdin [?], such that for all time bounds
t, there exists ct such that Kt(n)(A1:n | n) ≥ n/ct. We simply take for A the complement
of RK . We also show that infinitely-often is required for this tight bound.

Next we try to establish whether we can characterize BPP as the class of sets that
non-adaptively reduce to RK . One can view the truth-table reduction to RK as a
computation with advice of Kt(n) complexity Ω(n). We can show that for sets in EXP
and t(n) ∈ 2n

Ω(1)
, polynomial-time computation with polynomial (exponential, resp.)

size advice of Kt(n) complexity n− O(log n) (n− O(log log n), resp.) can be simulated
by bounded error probabilistic machine with almost linear size advice. For paddable
sets that are complete for NP,P#P,PSPACE, or EXP we do not even need the linear
size advice. Hence, advice of high Kt(n) complexity is no better than a truly random
string.

Summarizing our results:

2

• For every computable time bound t there is a constant c (depending on t) such
that RK 6∈ i.o.-DTIME(t)/2n−c.

• The complement of RK is a natural example of an computably enumerable set
whose characteristic sequence has high time bounded Kolmorogov complexity for
every n.

• BPP is truth-table reducible to RK .

• A poly- up-to exponential-size advice that has very large Kt(n) complexity can be
replaced by O(n log n) bit advice and true randomness.

• For every c, RK ∈ i.o.-REC/2n−c.

• For some c, RK 6∈ REC/2n−c.

2 Preliminaries

We remind the reader of some of the definitions we use. Let M be a Turing machine.
For any string x ∈ {0, 1}∗, the Kolmogorov complexity of x relative to M is KM (x) =
min{ |p| | p ∈ {0, 1}∗ & M(p) = x}, where |p| denotes the length of string p. It is
well known that for a universal Turing machine U and any other machine M there is a
constant cM such that for all strings x, KU (x) ≤ KM (x) + cM . For the rest of the paper
we will fix some universal Turing machine U and we will measure Kolmogrov complexity
relative to that U . Thus, we will not write the subscript U explicitly.

For a time bound t we define Kt
U (x) = min{ |p| | U(p) = x and U(p) uses at most

t(|x|) steps}. Unlike traditional computational complexity the time bound is a function
of the length of the output of U . Similarly to the generic Kolmogorov complexity there
is an efficient universal Turing machine U such that for any other machine M and time
bounds t and t′, where t ∈ ω(t′ log t′), there exists a constant cM such that for all strings
x, Kt

U (x) ≤ Kt′
M (x) + cM and KU (x) ≤ KM (x) + cM . For the rest of the paper we fix

such a machine U and measure time-bounded Kolmogorov complexity relative to it.
A string x is said to be Kolmogorov-random if K(x) ≥ |x|. The set of Kolmogorov-

random strings is denoted by RK = {x ∈ {0, 1}∗ | K(x) ≥ |x|}. For an integer n and
set A ⊆ {0, 1}∗, A=n = A ∩ {0, 1}n. The following well known claim can be proven by
showing a lower bound on the Kolmogorov complexity of |R=n

K | (see [?]).

Proposition 1. There is a constant d > 0 such that for all n, |R=n
K | ≥ 2n/d.

Similar notation is also used for the time-bounded Kolmogorov complexity for which
the previous proposition is also valid.

We also use computation with advice. We deviate slightly from the usual definition
of computation with advice in the way how we express and measure the running time.
For an advice function α : N→ {0, 1}∗, we say that L ∈ P/α if there is a Turing machine

3

M such that for every x ∈ {0, 1}∗, M(x, α(|x|)) runs in time polynomial in the length
of x and M(x, α(|x|)) accepts iff x ∈ L. We assume that M has random access to its
input so the length of α(n) can grow faster than any polynomial in n. Similarly, we
define EXP/α where we allow the machine M to run in exponential time in length of x
on the input (x, α(|x|)). Furthermore, we are interested not only in Boolean languages
(decision problems) but also in functions, so we naturally extend both definitions also
to computation with advice of functions. Typically we are interested in the amount of
advice that we need for inputs of length n so for f : N → N, C/f is the union of all
C/α for α satisfying |α(n)| ≤ f(n).

Let L be a language and C be a language class. We say that L ∈ i.o.−C if there
exists a language L′ ∈ C such that for infinitely many n, L=n = L′=n. For a Turing
machine M , we say L ∈ i.o.-M/f if there is some advice function α with |α(n)| ≤ f(n)
such that for infinitely many n, L=n = {x ∈ Σn | M(x, α(|x|)) accepts}. The definitions
are similar for functions instead of languages.

We will refer to probabilistic computation with advice. For f : N → N, BPP//f
is the class of sets decidable by a bounded error probabilistic Turing machine with an
advice function α such that |α(n)| ≤ f(n), where the machine is only required to have
a bounded error when given the correct advice.

We say that a set A polynomial-time Turing reduces to a set B, if there is an oracle
machine M that on input x runs in polynomial time and with oracle B decides whether
x ∈ A. If M asks its questions non-adaptively, i.e., each oracle question does not depend
on the answers to the previous oracle questions, we say that A polynomial-time truth-
table reduces to B (A≤p

ttB). Moreover, A≤p
dttB if machine M outputs as its answer

the disjunction of the oracle answers. Similarly, A≤p
cttB for the conjunction of the

answers.

3 High circuit complexity of RK

In this section we prove that the characteristic sequence of RK has high circuit com-
plexity almost everywhere. We will first prove the following lemma.

Lemma 2. For every total Turing machine M there is a constant cM such that RK is
not in i.o.-M/2n−cM .

There is a (non-total) Turing machine M such that RK is in M/n + 1 where the
advice is the number of strings in R=n

K . With this advice, M can find all the non-random
strings of length n, but will not halt if the advice underestimates the number of random
strings.

Proof of Lemma 2. Suppose we have a total Turing machine M , and that, for some
advice α of length k, x ∈ R=n

K ⇐⇒ (x, α) ∈ L(M) for infinitely many lengths n.

4

For strings β of length k, let Rβ = {x ∈ Σn | (x, β) ∈ L(M)}. By Proposition 1, for
some integer d > 0, |Rα| ≥ 2n/d. So we know that if |Rβ| < 2n/d then β 6= α. We call
β good if |Rβ| ≥ 2n/d.

Fix a good β and choose x1, . . . , xm at random. The probability that all the xi are
not in Rβ is at most (1−1/d)m < 2−m/d. There are 2k advice strings β of length k, and
so if we take m = dk, then 2−m/d ≤ 2−k. In that case we can find a sequence x1, . . . , xm
such that every good β will have an xi ∈ Rβ for some i.

We may computably search all such sequences, so let x1, . . . , xm be the lexicograph-
ically least sequence such that each good β has some xi ∈ Rβ. Each xi can be described
by giving n, d, i and programs for M and the search procedure. Let a = n − dlogme
with a self-delimiting description of length at most a/2 + 4. Then for a constant s
depending only on M , each xi can be described by dlogme + a/2 + 4 + 2 log d + s ≤
log k + log d+ 1

2(n− log k − log d) + 6 + 2 log d+ s ≤ 1
2(n+ log k) + 3 log d+ 6 + s bits.

Set cM = 6 log d+ 12 + 2s.
Now we must have k ≥ 2n−cM as otherwise we obtain a contradiction with the fact

that at least one of the xi’s must be random since it is from Rα. 2

In order to get our statement about time bounded advice classes we instantiate
Lemma 2 with universal machines Ut that run for t steps, use the first part of their
advice, in prefix free form, as a code for a machine to simulate and have the second part
of the advice for Ut as the advice for the simulated machine. The following is a direct
consequence of Lemma 2.

Lemma 3. For every computable time bound t and universal advice machine Ut there
is a constant ct such that RK is not in i.o.-Ut/2n−ct.

We are now ready to prove the main theorem from this section.

Theorem 4. For every computable time bound t there is a constant dt such that RK is
not in i.o.-DTIME(t)/2n−dt.

Proof. Suppose the theorem is false, that is there is a time bound t such that for every d
there is a machine Md that runs in time t such that Rk ∈ i.o.-Md/2n−d. Set t′ = t log2 t
and let ct′ be the constant that comes out of Lemma 3 when instantiated with time
bound t′. Set d = ct′ + 1 and let the code of machine Md from the (false) assumption
have size e. So we have that Rk ∈ i.o.-Md/2n−d. This in turn implies that RK ∈
i.o.-Ut′/2n−d + e+ 2 log e, which implies that RK ∈ i.o.-Ut′/2n−ct′ a contradiction with
Lemma 3. The last step is true because the universal machine running for at most
t′ = t log2 t steps, can simulate Md, which runs in time t.

2

As an immediate corollary we get an alternative, more natural candidate for Barzdin’s
computably enumerable set that has high resource bounded Kolomorov complexity,
namely the set of compressible strings.

5

Corollary 5. For every computable time bound t there is a constant c such that Kt(Rk(1 :
n) | n) ≥ n/c

Barzdin [?] also showed that this lower bound is optimal. That is the dependence of
c on the time bound t is needed for the characteristic sequence of every r.e. set. Hence
the dependence on t is also necessary in our Theorem 4. Indeed it can be shown that:

Theorem 6. (a) For every c, there is a time bound t with RK ∈ i.o.-DTIME(t)/2n−c.

(b) There exists some c such that, for every time bound t, RK 6∈ DTIME(t)/2n−c.

Theorem 6 gives us an interesting contrast.

Corollary 7. The following hold:

(a) For every c, RK ∈ i.o.-REC/2n−c.

(b) For some c, RK 6∈ REC/2n−c. The constant c depends only on the universal machine
defining RK .

Proof of Theorem 6. (a) Let H denote the binary entropy function, and choose 0 < α <
1/2, such that H(α) < 2−c. Let σ = lim infn→∞ |R=n

K |/2n, and set σ̃ to the dyadic
rational written with the first 1 + log(1/α) bits of σ. Note σ̃ is independent of n and
can be hardwired into our machine.

Then, on input 0n, we can (1) enumerate σ̃2n many non-random strings of length
n, and (2) assume that some given advice tells us, among the strings which we did not
enumerate, which are in RK . Since for sufficiently large n, we can always find a fraction
of σ̃ non-random strings of length n, this algorithm halts almost everywhere. And
because, for infinitely many n,

∣∣σ̃2n − |R=n
K |
∣∣ < α2n, after (1) we are left with at most

α2n non-random strings still to be enumerated. Since log
∑

k≤α2n
(
2n

k

)
≤ H(α)2n ≤ 2n−c

(cf. [?, p.283]), then 2n−c many bits of advice will be able to point out exactly these
strings.
(b) Fix d such that |R=n

K | > n/d for all n.
Let M1,M2,M3, . . . enumerate all Turing machines, and let ` be the length of a

program which:

1. given an input i of size n− `− 1,

2. will work with M = Mn, and, as in the proof of Lemma 2, assuming M is total,

3. will find the lexicographically least sequence of n-bit strings x1, . . . , xm, with m =
2n−`−1, such that for any good advice β of length 2n−c, with c = log d + ` + 1,
there is some xj such that M(xj , β) = 1; and finally

4. outputs xi.

6

The values in the program are allowed to depend on ` by the use of Kleene’s fixed point
theorem. Then notice that if Mn is total, regardless of which advice β, of length 2n−c,
it is given, there will always be some n-bit string xj which is not random (it is described
using `+ logm < n bits), and for which Mn(xj , β) = 1. So Mn does not decide RK . 2

We can also obtain a variant of Theorem 4 for the time-bounded Kolmogorov com-
plexity.

Lemma 8. There exists a constant c such that for any time bounds t and t′, if t ∈
ω(22n+c

t′(n) log t′(n)) then for every Turing machine M running in time t′ there is a
constant cM such that RKt is not in i.o.-M/2n−cM .

Proof. An inspection of the proof of Lemma 2 reveals that the running time of the search
procedure for x1, . . . , xm can be bounded by 22n+c′

t′(n) for some universal constant
c′ independent of M . Thus by the same argument as in that proof using the same
notation and the properties of time-bounded Kolmogorov complexity, for each xi we
have Kt(xi) ≤ 1

2(n + log k) + 3 log d + 6 + s bits. This would lead to a contradiction
unless k ≥ 2n−cM . 2

Using the same arguments as before we obtain the following corollary.

Corollary 9. There exists a constant c such that for any time bounds t and t′, if t ∈
ω(22n+c

t′(n) log3 t′(n)) then there is a constant dt′ such that RKt is not in i.o.-DTIME(t′)/2n−dt′ .

For example, if we instantiate t = 222n
and t′ = 2n

logn
in the above corollary we get

that RKt is not in i.o.-EXP/2n−dt′ .

4 BPP truth-table reduces to Rk

In this section we investigate what languages are reducible to Rk. We start with the
following theorem which one can prove using nowadays standard derandomization tech-
niques.

Theorem 10. Let α : {0}∗ → {0, 1}∗ be a length-preserving function and δ > 0 be a
constant, such that α(0n) 6∈ i.o.-P/nδ. Then for every A ∈ BPP there exists d > 0 such
that A ∈ P/α(0n

d
).

Proof. α(0n) 6∈ i.o.-P/nδ implies that when α(0n) is interpreted as a truth-table of a
function fα(0n) : {0, 1}logn → {0, 1}, fα(0n) does not have boolean circuits of size nδ/3

for all n large enough. It is known that such a function can be used to build the
Impagliazzo-Wigderson pseudorandom generator [?] which can be used to derandomize
boolean circuits of size nδ

′
for some δ′ > 0 (see [?, ?, ?]). Hence, bounded-error proba-

bilistic computation running in time n` can be derandomized in polynomial time given
access to α(0n

2`/δ′
). 2

7

From Theorem 4 and the above Theorem we obtain the following corollary.

Corollary 11. BPP ≤ptt RK .

Proof. Let α(0n) be the truth-table of RK on strings of length blog nc padded by zeros
to the length of n. By Theorem 4, α(0n) 6∈ i.o.-P/(n/c) for some c > 0. Consider any
A ∈ BPP. By Theorem 10 for some d, A ∈ P/α(0n

d
). The claim follows by noting that

a truth-table reduction to Rk may query the membership of all the strings of length
blog ndc to construct α(0n

d
) and then run the P/α(0n

d
) algorithm for A. 2

A similar argument establishes a variant of the claim for time-bounded Kolmogorov
complexity.

Corollary 12. For any time bound t ∈ Ω(222n
), BPP ≤ptt RKt.

It is interesting to compare this statement with the result of Buhrman and Mayor-
domo [?] that EXP 6⊆ PRKt for t = 2n

2
. Hence, it will be rather difficult to prove the

above corollary for t = 2n
2
.

Our goal would be to show that using RK as a source of randomness is the only way
to make use of it. Ideally we would like to show that any recursive set that is truth-table
reducible to RK must be in BPP. We fall short of such a goal. However we can show
the following claim.

Theorem 13. Let α : {0}∗ → {0, 1}∗ be a length-preserving function and c > 0 be
a constant, such that α(0n) 6∈ i.o.-EXP/n − c log n. Then for every A ∈ EXP if A ∈
P/α(0n

d
) for some d > 0 then A ∈ BPP//O(n log n).

This theorem says that very Kolmogorov-random advice of polynomial size can be
replaced by almost linear size advice and true randomness. It can be proven using
diagonalization that such advice functions exist, and these can be used to derandomize
BPP as we did above.

We come short of proving a converse of Corollary 11 in two respects. First, the advice
is supposed to model the initial segment of the characteristic sequence of RK which the
truth-table can access. However, by providing only polynomial size advice we restrict the
hypothetical truth-table reduction to query strings of only logarithmic length. Second,
the randomness that we require from the initial segment is much stronger than what one
can prove and what is in fact true for the initial segment of the characteristic sequence
of RK . One can deal with the first issue as is shown by Theorem 14 but we do not know
how to deal with the second one.

Proof. Let M be a polynomial time Turing machine and A ∈ EXP be a set such that
A(x) = M(x, α(|x|d)). We claim that for all n large enough there is a non-negligible
fraction of advice strings r of size nd that could be used in place of α(nd) more precisely:

Pr
r∈{0,1}nd

[∀x, x ∈ A ⇐⇒ M(x, r) = 1] >
1
ncd

.

8

To prove the claim consider the set G = {r ∈ {0, 1}nd ; ∀x ∈ {0, 1}n, x ∈ A ⇐⇒
M(x, r) = 1}. Clearly, G ∈ EXP and α(0n

d
) ∈ G. If |G=nd | ≤ 2n

d
/ncd then α(0n

d
) can

be computed in exponential time from its index in the set G=nd of length nd − cd log n.
Since α(0n

d
) 6∈ i.o.-EXP/nd − cd log n this cannot happen infinitely often.

Now we present an algorithm which on input x, and using only O(n log n) bits of
advice (in fact O(log n) entries from the truth table of A), will with high probability
produce a string in r ∈ G, and output A(x):

1. Given an input x of length n, and an advice string x1, A(x1), ..., xk, A(xk),

2. sample at most 2ncd strings of length nd until the first string r is found such that
M(xi, r) = A(xi) for all i ∈ {1, . . . , k}.

3. If we find r consistent with the advice then output M(x, r), otherwise output 0.

For all n large enough the probability that the second step does not find r compatible
with the advice is upper-bounded by the probability that we do not sample any string
from G which is at most (1− 1

ncd
)2n

cd
< e−2 < 1/6.

It suffices to show that we can find an advice sequence such that, for at least 4/5-
fraction of the r’s compatible with the advice, M(x, r) = A(x). For given n, we will
find the advice by pruning iteratively the set of bad random strings B = {0, 1}nd \ G.
Let i = 0, 1, . . . , log5/4 4ncd. Set B0 = B. If there is a string x ∈ {0, 1}n such that
for at least 1/5 of r ∈ Bi, M(x, r) 6= A(x), then set xi+1 = x and Bi+1 = Bi ∩ {r ∈
{0, 1}nd | M(xi+1, r) = A(xi+1)}. If there is no such string x then stop and the xi’s
obtained so far will form our advice. Notice, if we stop for some i < log5/4 4ncd then
for all x ∈ {0, 1}n, Prr∈Bi [M(x, r) 6= A(x)] < 1/5. Hence, for any given input, the r
found by the algorithm to be compatible with the advice will give the correct answer
with probability at least 4/5. On the other hand, if we stop building the advice at
k = log5/4 4ncd then |Bk| ≤ 2n

d · (4/5)log5/4 4ncd ≤ |G=nd |/4. Hence, any string r found
by the algorithm to be compatible with the advice x1, A(x1), ..., xk, A(xk) will come from
G with probability at least 4/5. 2

The following theorem can be established by a similar argument. It again relies on
the fact that a polynomially large fraction of all advice strings of length 2n

d
must work

well as an advice. By a pruning procedure similar to the proof of Theorem 13 we can
avoid bad advice. In the BPP algorithm one does not have to explicitly guess the whole
advice but only the part relevant to the pruning advice and to the current input.

Theorem 14. Let α : {0}∗ → {0, 1}∗ be a length preserving function and c > 0 be a

constant. If α(0n) 6∈ i.o.-EXP/n− c log logn then for every A ∈ EXP if A ∈ P/α(02n
d

)
for some d > 0 then A ∈ BPP//O(n log n).

9

We show next that if the set A has some suitable properties we can dispense with
the linear advice all together and replace it with only random bits. Thus for example if
SAT ∈ P/α(0n) for some computationally hard advice α(0n) then SAT ∈ BPP.

Theorem 15. Let α : {0}∗ → {0, 1}∗ be a length preserving function and c > 0 be a
constant such that α(0n) 6∈ i.o.-EXP/n− c log n. Let A be paddable and polynomial-time
many-one-complete for a class C ∈ {NP,P#P,PSPACE,EXP}. If A ∈ P/α(0n

d
) for

some d > 0 then A ∈ BPP (and hence C ⊆ BPP).

To prove the theorem we will need the notion of instance checkers. We use the
definition of Trevisan and Vadhan [?].

Definition 16. An instance checker C for a boolean function f is a polynomial-time
probabilistic oracle machine whose output is in {0, 1, fail} such that

• for all inputs x, Pr[Cf (x) = f(x)] = 1, and

• for all inputs x, and all oracles f ′, Pr[Cf
′
(x) 6∈ {f(x), fail}] ≤ 1/4.

It is immediate that by linearly many repetitions and taking the majority answer
one can reduce the error of an instance checker to 2−n. Vadhan and Trevisan also state
the following claim:

Theorem 17 ([?],[?, ?]). Every problem that is complete for EXP, PSPACE or P#P has
an instance checker. Moreover, there are EXP-complete problems, PSPACE-complete
problems, and P#P-complete problems for which the instance checker C only makes
oracle queries of length exactly `(n) on inputs of length n for some polynomial `(n).

However, it is not known whether NP has instance checkers.

Proof. Proof of Theorem 15 To prove the claim for P#P-, PSPACE- and EXP-complete
problems we use the instance checkers. We use the same notation as in the proof of
Theorem 13, i.e., M is a Turing machine such that A(x) = M(x, α(|x|d)) and the set
of good advice is G. We know from the previous proof that |G=nd | ≥ 2n

d
/ncd because

α(0n) 6∈ i.o.-EXP/n− c log n.
Let C be the instance checker for A which on input of length n asks oracle queries

of length only `(n) and makes error on a wrong oracle at most 2−n. The following
algorithm is a bounded error polynomial time algorithm for A:

1. On input x of length n, repeat 2ncd times

(a) Pick a random string r of length (`(n))d.

(b) Run the instance checker C on input x and answer each of his oracle queries
y by M(y, r).

10

(c) If C outputs fail continue with another iteration otherwise output the output
of C.

2. Output 0.

Clearly, if we sample r ∈ G then the instance checker will provide a correct answer
and we stop. The algorithm can produce a wrong answer either if the instance checker
always fails (so we never sample r ∈ G during the iterations) or if the instance checker
gives a wrong answer. Probability of not sampling good r is at most 1/6. The probability
of getting a wrong answer from the instance checker in any of the iterations is at most
2ncd/2n. Thus the algorithm provides the correct answer with probability at least 2/3.

To prove the claim for NP-complete languages we show it for the canonical example
of SAT. The following algorithm solves SAT correctly with probability at least 5/6:

1. On input φ of length n, repeat 2ncd times

(a) Pick a random string r of length nd.

(b) If M(φ, r) = 1 then use the self-reducibility of SAT to find a presumably
satisfying assignment a of φ while asking queries ψ of size n and answering
them according to M(ψ, r). If the assignment a indeed satisfies φ then output
1 otherwise continue with another iteration.

2. Output 0.

Clearly, if φ is satisfiable we will answer 1 with probability at least 5/6. If φ is not
satisfiable we will always answer 0. 2

5 Open Problems

We have shown that the set RK cannot be compressed using a computable algorithm
and used this fact to reduce BPP non-adaptively to RK . We conjecture that every
computable set that non-adaptively reduces in polynomial-time to RK sits in BPP and
have shown a number of partial results in that direction.

The classification of languages that polynomial-time adaptively reduce to RK also
remains open. Can we characterize PSPACE this way?

11

