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Abstract—Barrington, Straubing and Thérien (1990) conjec-
tured that the Boolean AND function can not be computed
by polynomial size constant depth circuits built from modular
counting gates, i.e., by CC0 circuits. In this work we show that
the AND function can be computed by uniform probabilistic
CC0 circuits that use only O(log n) random bits. This may be
viewed as evidence contrary to the conjecture.

As a consequence of our construction we get that all of ACC0

can be computed by probabilistic CC0 circuits that use only
O(log n) random bits. Thus, if one were able to derandomize
such circuits, we would obtain a collapse of circuit classes giving
ACC0 = CC0. We present a derandomization of probabilistic
CC0 circuits using AND and OR gates to obtain ACC0 =
AND ◦ OR ◦ CC0 = OR ◦ AND ◦ CC0. AND and OR gates of
sublinear fan-in suffice.

Both these results hold for uniform as well as non-uniform
circuit classes. For non-uniform circuits we obtain the stronger
conclusion that ACC0 = rand−ACC0 = rand− CC0 =
rand(log n)−CC0, i.e., probabilistic ACC0 circuits can be
simulated by probabilistic CC0 circuits using only O(log n)
random bits.

As an application of our results we obtain a characterization
of ACC0 by constant width planar nondeterministic branch-
ing programs, improving a previous characterization for the
quasipolynomial size setting.

I. INTRODUCTION

Bounded depth circuits are a natural computational model
introduced in early 80’s as a restriction of general Boolean
circuits. Despite the almost 30 years of study we still do not
know the model quite well. The celebrated results of Furst,
Saxe and Sipser [22] also proven independently by Ajtai [1]
show that the PARITY (MOD2) function cannot be computed
by polynomial size constant depth circuits consisting of
AND and OR gates of unbounded fan-in — AC0 circuits.
This result was further improved by Yao and Håstad [29],
[48] to show that exponential size is necessary to compute
PARITY by AC0 circuits. Razborov [37] and Smolensky
[39] extended this result to show that exponential size is
necessary to compute MODq by constant depth circuits
consisting of AND, OR and MODp gates of unbounded fan-
in — ACC0 circuits — if p is a prime co-prime with q.
Since then our understanding did not expand much further
as far as lower bounds are concerned. Indeed, we cannot
rule out that all functions in NP are computable by depth 3

circuits consisting of MOD6 gates with the number of gates
being linear in the input size. Such a possibility seems highly
implausible, though.

In fact, Barrington, Straubing and Thérien [13] conjec-
tured that even the Boolean AND function cannot be com-
puted by polynomial size bounded depth circuits consisting
entirely of MODq gates — CC0 circuits. This seems to be
a natural conjecture dual to the fact that MODq cannot be
efficiently computed by AND and OR. The conjecture is
indeed true when q = pk is a prime power [13]: any constant
depth circuit consisting of only MODq gates, q = pk, is
equivalent to a constant degree polynomial over Zp and
therefore cannot compute the AND function at all regardless
of its size. On the other hand, when q is not a prime
power exponentially large CC0 circuits can compute any
Boolean function [13]. Improving on results of Barrington
[10] and Smolensky [40], Thérien [44] shows that CC0

circuits computing AND require at least Ω(n) gates at the
bottom level. To date no better lower bound on the number
of gates has been obtained for CC0 circuits computing any
explicit function.

In this paper we show that probabilistic CC0 circuits can
compute AND. These circuits can be constructed to use only
O(log n) random bits. As a consequence, the entire class
ACC0 can be computed by probabilistic CC0 circuits using
only O(log n) random bits. We suggest that this fact may
be viewed as evidence that AND can in fact be computed
by small CC0 circuits.

Obviously, if our probabilistic CC0 circuits could be
derandomized we would obtain a family of CC0 circuits
computing the AND function. However, we do not know
how to do this. (Here by derandomization of probabilistic
CC0 circuits we mean finding deterministic CC0 circuits
computing the same functions, or more generally, by de-
randomization of probabilistic CC0 circuits to a complexity
class C we mean showing that the functions computed by the
probabilistic CC0 circuits are from the class C.) Indeed, we
observe as a consequence to our results that derandomizing
probabilistic CC0 circuits to CC0 circuits is in fact equiva-
lent to constructing CC0 circuits for the AND function. This
leaves us with the following two exciting possibilities: Either
we have a collapse of circuit classes giving ACC0 = CC0,



or the conjecture of Barrington, Straubing and Thérien is
true and CC0 constitutes an intriguing computational model
that cannot be derandomized.

Using the technique of Ajtai and Ben-Or [4], and Allender
and Hertrampf [6] we can derandomize probabilistic CC0

circuits to the (possibly) larger class of AND ◦ OR ◦ CC0

circuits — circuits consisting of a single AND gate at the
top fed by OR gates that in turn take as inputs the output of
CC0 circuits. AND and OR gates of sublinear fan-in suffice
for this. Hence, arbitrarily complex ACC0 circuits can be
converted into such AND ◦OR ◦CC0 circuits. This is rather
intriguing when one considers the fact that there is a proper
hierarchy of functions computed by AC0 circuits of different
depths. Thus, it is evident that there must be a considerable
computational power hidden in MODq gates.

A final application of this derandomization and charac-
terization of ACC0 is to provide the missing piece of a
complete characterization of the classes AC0, ACC0 and
NC1 in terms of constant width nondeterministic branching
programs under geometric restrictions. This line of research
originates with the surprising result due to Barrington [14]
that constant width polynomial size branching programs as
well as Boolean circuits compute exactly NC1. His proof
proceeds by showing that the word problem over the group
S5 of permutations on 5 elements is complete for NC1.
Barrington and Thérien [17] extended this to a complete
algebraic characterization of the classes AC0, ACC0 and
NC1 showing that word problems over different classes of
finite monoids are complete for them; AC0 corresponds
to the class of aperiodic monoids, ACC0 to the class
of solvable monoids, and NC1 to all finite monoids. A
geometric characterization of the classes AC0, ACC0 and
NC1 in terms of constant width circuits was obtained by
Barrington et al. and Hansen. Namely, AC0 is precisely the
class of functions computed by constant width upward planar
circuits of polynomial size [16], and ACC0 is precisely
the class of functions computed by constant width planar
circuits of polynomial size [25] . Turning to the model
of branching programs, Barrington et al. [15] and Vinay
[45] gave a characterization of AC0 by constant width up-
ward planar nondeterministic branching programs. Recently
Hansen [27] gave a characterization of ACC0 by constant
width planar nondeterministic branching programs, but only
in the quasipolynomial size setting — it was left as an open
question whether such a characterization could be obtained
in the polynomial size setting. We can now answer this in
the affirmative.

The techniques that we use to obtain our results are
not new. They rest mainly on the approximation method
introduced by Razborov [37] and its extensions. As such
one may expect that further ideas will be needed in order
to derandomize CC0 circuits. We do feel however that our
results shed new light on the power of such circuits. Our
understanding of CC0 circuits is still very limited. Despite

that fact, it is now well established that counting modulo a
composite number can have surprising computational power
[11], [26]. Indeed, our current understanding of this power
has been sufficient to exploit it in exciting constructions
such as set systems with restricted intersections and Ramsey
graphs [24] as well as the recent 3-query locally decodable
codes [21].

A. Boolean circuits

For a function f : {0, 1}∗ → {0, 1} and an integer n, fn
denotes f restricted to the inputs of size n. We say that f
is in AC0 if there is a family of circuits {Cn}n≥1 such that
the circuit Cn is of size polynomial in n and constant depth,
it consists of negation gates and unbounded fan-in AND and
OR gates, and it computes fn. We call such a circuit family
AC0 circuits. Similarly, for fixed integer m > 1, we say
that f is in CC0[m] if there is a family of constant depth,
polynomial size circuits consisting of negation gates and
MODm gates computing f . We call such circuits CC0[m]
circuits. A MODm gate is a gate that evaluates to one on
an input x ∈ {0, 1}n iff the number of ones in x is not
divisible by m. The class CC0 of functions is defined by
CC0 =

⋃
m>1 CC0[m]. Finally, f is in ACC0 if for some

fixed m, f is computable by a family of circuits of constant
depth and polynomial size consisting of negation gates and
unbounded fan-in AND,OR and MODm gates.

We also consider functions computable by probabilis-
tic circuits. For circuits of type C we say that f is in
rand(r(n))−C if f is computable by a family of circuits
{Cn}n≥1 of type C where each circuit Cn takes in addition
to its actual input of size n also O(r(n)) many random
bits and for each input x ∈ {0, 1}n it outputs fn(x) with
probability ≥ 2/3 where the probability is taken over the
random bits. By rand−C we denote

⋃
k>0 rand(nk)−C.

We will consider uniform as well as non-uniform circuits.
We say that a circuit family {Cn} is uniform if the con-
nectivity language of the circuit family is computable in
linear space and polynomial time in the size of gate indices.
One could call this DPLOGTIME-uniformity whereas the
usual DLOGTIME-uniformity [12], [38] corresponds to the
case of the connectivity language being computable in linear
time in the size of the gate indices. One may wonder why
we use DPLOGTIME uniformity instead of the more usual
DLOGTIME uniformity. Several of our proofs use walks on
expanders and outcome of the expander walks is essentially
built into the circuit. Hence a procedure that construct the
circuit or decides its connectivity language has to be able
to calculate those outcomes. This can certainly be done in
time polynomial in the length of the expander walks but we
do not know how to do it in linear time. In the last section
we will use the weaker notion of logspace-uniformity.

By the size of a circuit we will understand the number of
wires (see [33].)



II. PROBABILISTIC CONSTRUCTION

We use the technique of Razborov and Smolensky [37],
[39] to show the following lemma:

Lemma 1 (Main Lemma). If p, q ≥ 2 are co-prime
integers, then ORn can be computed with error n− logn by
uniform probabilistic polynomial size constant depth circuits
consisting of MODpq gates.

To prove the lemma we use the following proposition that
appears implicitly in [13] and can be found stated explicitly
in [42] (see also [41, Theorem VIII.3.1]).

Proposition 2 (Barrington, Straubing, Thérien). If p, q ≥
2 are co-prime integers, then ORlogn can be computed by
uniform polynomial size constant depth circuits consisting
of MODpq gates.

Proof: (Main Lemma) Let ` = log2 n. Pick indepen-
dently at random ` sets S1, S2, . . . , S` ∈ {1, . . . , n}. We
claim that for any x ∈ {0, 1}n with probability at least
1 − 1

nlog n the following circuit computes the OR of x
correctly: ∨̀

j=1

MODq{xi; i ∈ Sj} .

Indeed, let x 6= 0n and j be fixed. Clearly, MODq{xi; i ∈
Sj} evaluates to one with probability ≥ 1/2. As S1, . . . , S`
are chosen independently, the probability that for all j,
MODq{xi; i ∈ Sj} evaluates to zero is at most 2−` =
n− logn. For x = 0n the circuit clearly evaluates to zero
always. Since MODq can be computed using MODpq gates
and ORlog2 n can be computed by a depth two tree of
ORlogn gates, using the previous proposition we obtain
a probabilistic distribution of deterministic CC0 circuits
computing ORn of a given input with high probability.
(For each choice of sets S1, . . . , S` we have one CC0

circuit.) To obtain a probabilistic CC0 circuit rather than
the probability distribution of deterministic circuits we use
`×n random bits r1,1, r1,2, . . . , r`,n in addition to the input
x. Bits rj,1, . . . , rj,n determine the characteristic sequence
of set Sj . Thus the computation of the final probabilistic
circuit proceeds according to the following formula:∨̀

j=1

MODq{xi ∧ rj,i; i ∈ {1, . . . , n}} .

Note, for m > 2, a binary OR can be computed by feeding
the two inputs into a MODm gate. A single MODm gate can
also be used to compute NOT. Hence using DeMorgan’s
rule, each binary AND can be computed with four MODpq
gates.

Theorem 3 (Main Theorem). Both uniformly and non-
uniformly we have

ACC0 ⊆ rand− CC0 .

Proof: Any ACC0 circuit of size O(nk) built out of
NOT,AND,OR and MODq gates can be transformed into
an ACC0 circuit of size O(nk) built out of NOT,OR and
MOD6q gates. As noted in the previous proof, NOT gates can
be replaced by MOD6q gates. Since OR can be computed by
probabilistic CC0 circuits using MOD6 gates it can also be
computed by probabilistic CC0 circuits using MOD6q gates.
By replacing each OR gate in the ACC0 circuit by the prob-
abilistic CC0 circuit consisting of MOD6q gates we obtain
a probabilistic CC0 circuit computing the same function as
the original ACC0 circuit. The success probability of this
circuit will be at least 1−O

(
nk

nlog n

)
≥ 1− n−O(logn).

We note that the simulation can be done efficiently in size.
Using the downward self-reducibility of ORn [5], [32] one
can prove that for any fixed ε > 0, ORn has rand− CC0

circuits of size O(n1+ε). This implies that ACC0 circuits
of size O(nk) can be simulated by rand− CC0 circuits of
size O(nk+ε) for an arbitrary small ε > 0.

The above proof of the main lemma requires polynomially
many random bits. Although we do not know how to deran-
domize these circuits we can at least reduce the required
number of random bits. Allender et al. [7] provide a more
randomness efficient construction of ORn.

Proposition 4 (Allender et al. [7], Lemma 4.4). For each
c ≥ 1, ORn can be computed with error ≤ 1/nc by proba-
bilistic polynomial size constant depth circuits consisting of
MOD2 and ANDO(logn) gates and taking O(log n) random
bits.

The proof of Allender et al. is based on randomness opti-
mal isolation lemma of Chari et al. [20] and random walks
on expanders [31]. We note that the original Valiant-Vazirani
isolation lemma [46] based on pair-wise independent hash
functions together with randomness efficient hash functions
based on convolution could also be used to prove the lemma.
Allender et al. [7] claim that their construction is logspace-
uniform. One can easily verify that it is DPLOGTIME-
uniform and can be generalized to arbitrary MODq gates.
We state the following corollary.

Corollary 5. For all c ≥ 1 and co-prime integers p, q ≥ 2,
ORn can be computed with error ≤ 1/nc by uniform prob-
abilistic polynomial size constant depth circuits consisting
of MODpq gates and taking O(log n) random bits.

Proof: We provide a brief sketch of the proof. The
random bits in the Main lemma were used to select sets
S1, . . . , S`. It turns out that one does not need to use fully
independent random bits but rather one can use somewhat
correlated bits. In particular, one can use Valiant-Vazirani
isolation lemma [46] to select each set Sj , and instead of
using fully independent sets Sj one can use sets S1, . . . , S`
determined by a random walk on an expander. We elaborate
on this little bit more. Denote by k = dlog2 ne. Let Hm

k be a



2-universal family of hash functions from {0, 1}k to {0, 1}m
[19]. The following fact is well known, see e.g. [9].

Claim 6. Let S ⊆ {0, 1}k be a non-empty set and m be an
integer satisfying 2m/8 ≤ |S| ≤ 2m/4. Then

Pr
h∈Hm

k

[|{i ∈ S; h(i) = 0m}| = 1] ≥ 1/16 .

Let H2
k , H

3
k , . . . ,H

k+2
k be 2-universal families

of hash functions. Pick h2
1, h

2
2, . . . , h

2
` ∈ H2

k , . . . ,
hk+2

1 , hk+2
2 , . . . , hk+2

` ∈ Hk+2
k at random and replace each

set Sj in the proof of Main lemma by sets S2
j , . . . , S

k+2
j

defined as Smj = {i ∈ {1, . . . , n}; hmj (i) = 0m}, where i
stands for the k-bit binary representation of i.

For fixed x ∈ {0, 1}n, if the hash functions hmj are picked
independently at random from the respective hash families
then with probability at least 1−

(
15
16

)`
the following circuit

computes the OR of x correctly:∨
j∈{1,...,`}, m∈{2,...,k+2}

MODq{xi; i ∈ Smj } .

Since we allow for error 1/nc, we set ` = O(log n).
The number of random bits one needs for the construction
depends on how many random bits are needed to specify a
single function in any of the 2-universal families. Nisan [36]
gives for every k,m ≥ 1, a 2-universal family Hm

k based
on convolution such that each hash function in Hm

k can be
uniquely determined by k + 2m − 1 bits. Hence, a direct
implementation of the above scheme uses only O(log3 n)
random bits. We need to do somewhat better, though.

One can save a factor of log n by observing that for each
j, h2

j , h
3
j , . . . , h

k+2
j do not have to be independent. Indeed,

hmj for m ∈ {2, . . . , k+1} can be taken to be the projection
of hk+2

j on the first m coordinates of the image. (Projecting
all functions in a 2-universal family of hash functions on the
same set of coordinates gives a family (multi-set) of hash
functions that is again 2-universal.) Thus to fully specify
h2
j , h

3
j , . . . , h

k+2
j we need only 3k+ 3 bits. The last savings

of another log n-factor will be achieved by not taking hk+2
j

for different j’s fully independent but rather, hk+2
j ’s will be

given by steps of a random walk on an expander with the
vertex set Hk+2

k . An analysis similar to the one in the proof
of Theorem 12 shows that for suitably chosen ` = O(log n)
the error in computing OR of a given x will still be bounded
by 1/nc.

The random walk will require log2 |Hk+2
k | = 3k + 3

random bits to specify the starting vertex and O(`) =
O(log n) random bits to specify all the individual steps of
the walk of length `. Thus, O(log n) bits will be needed to
specify all the sets Smj . It remains to explain how will the
probabilistic CC0 circuit compute. The following formula
describes the circuit that takes input x ∈ {0, 1}n and random

bits r ∈ {0, 1}O(logn):∨
j∈{1,...,`}, m∈{2,...,k+2}

MODq{xi ∧Magicr′,h,j,i,0m(r);

i ∈ {1, . . . , n}, h ∈ Hm
k , r

′ ∈ {0, 1}O(logn)}.

The Magicr′,h,j,i,0m(r) predicate is one iff r′ = r, the j-
th step of the random walk given by r′ determines hash
function h, and h(i) ∈ 0m{0, 1}k+2−m. Clearly, given
r′, h, j, i, 0m we can verify in polynomial time in the
length of r′, h, j, i, 0m that the j-th step of the random
walk given by r′ determines hash function h, and h(i) ∈
0m{0, 1}k+2−m. Here we assume that the expander is ex-
plicitly constructible. Thus evaluation of Magicr′,h,j,i,0m(r)
reduces to the problem of checking r = r′ which can be
done by polynomial size CC0 circuits by Proposition 2. Thus
the overall circuit is a CC0 circuit of polynomial size and
can be constructed in DPLOGTIME. (The random walk and
hash function evaluation is thus not performed by the circuit
itself but rather by the procedure constructing the circuit.
The hash function evaluation could easily be done by the
circuit but we do not know how to evaluate the random walk
by a CC0 circuit. This leads to DPLOGTIME-uniformity.)

This provides the following strengthening of the main
theorem.

Theorem 7. Both uniformly and non-uniformly we have

ACC0 ⊆ rand(log n)−CC0 .

We will use later the fact that Corollary 5 allows us to
convert any ACC0 circuit into a rand(log n)−CC0 circuit
which computes the same function with probability of error
bounded by 1/nk, for any fixed k ≥ 1.

Ajtai and Ben-Or [4] show that non-uniformly rand−AC0

is equal to AC0; the same technique applies to ACC0.

Proposition 8 (Ajtai and Ben-Or). Non-uniformly we have

ACC0 = rand−ACC0 .

However, we do not know how to derandomize
rand− CC0 even non-uniformly as we do not know how
to compute AND in CC0 (Catch 22). However, since non-
uniformly rand− CC0 ⊆ rand−ACC0 ⊆ ACC0 we can
non-uniformly reduce the number of random bits in any CC0

circuit to obtain:

Corollary 9. Non-uniformly we have

ACC0 = rand−ACC0 = rand−CC0 = rand(log n)−CC0.

III. DERANDOMIZATION

Our rand− CC0 circuits are allowed to have error ≤
1/3. It is clear that one can uniformly decrease the error
probability to 1/2logk n, for any fixed k ≥ 1, by taking
O(logk n) independent copies of the circuit and outputting



the majority output. Since it suffices to compute approximate
majority of O(logk n) output bits we can use uniform AC0

circuits for computing approximate majority of O(logk n)
bits as provided by Ajtai [2]. These circuits are built out
of ANDlogO(1) n and ORlogO(1) n gates so they can be con-
verted to CC0 circuits by Proposition 2 to obtain uniform
polynomial size rand− CC0 circuits computing the original
function with error probability at most 1/2logk n. Using
the technique of Ajtai and Ben-Or [4] one can then non-
uniformly derandomize rand− CC0 circuits as follows.

Theorem 10. If fn is computable by rand− CC0 circuits
with error ≤ 1/3n then fn is computable by ANDn ◦ORn ◦
CC0 non-uniform circuits.

Proof: To obtain an AND◦OR◦CC0 circuit computing
f correctly on inputs of length n we proceed as follows.
Take OR of n independent copies of the rand− CC0

circuit for f . This yields an OR ◦ rand− CC0 circuit
that computes the function f on one-inputs, i.e., inputs in
f−1(1), correctly with probability ≥ 1− 1

(3n)n . At the same
time the OR ◦ rand− CC0 circuit computes f correctly on
zero-inputs, i.e., inputs in f−1(0), with probability at least
1 − n

3n ≥
2
3 . Taking AND of n independent copies of the

OR ◦ rand− CC0 gives circuit that is correct on one-inputs
with probability at least 1 − n

(3n)n and on zero-inputs with
probability at least 1− 3−n. As on every input of length n,
the error of the resulting AND ◦ OR ◦ rand− CC0 circuit
is smaller than 2−n, there is a certain choice of the random
bits which yields an AND ◦OR ◦CC0 circuit that computes
f correctly on all inputs of length n.

A similar proof establishes that rand− CC0 ⊆ OR ◦
AND ◦CC0. We can thus replace arbitrarily complex ACC0

circuit by MOD gates, n OR gates of fan-in n and a single
AND gate of fan-in n. In fact, one can make the number
of OR gates and the fan-in of the AND and OR gates
slightly sub-linear. This seems to suggest that MOD gates
have sufficient power to compute AND and OR.

These results are similar in spirit to several known results
about depth reduction of constant depth circuits. The differ-
ence is that those results eliminate the AND and OR gates
by means of the depth reduction, while our results utilize
the power of modular counting to do the elimination. A
drawback of the depth reduction results is that they incur an
inherent quasipolynomial increase in the size of the circuit,
which we are able to avoid in our results.

Allender and Hertrampf prove that for a prime p,
quasipolynomial size CC0[p] is equal to quasipolynomial
size AND ◦ OR ◦ MODp ◦ ANDlogO(1) n circuits as well
as OR ◦ AND ◦ MODp ◦ ANDlogO(1) n circuits [6]. Beigel
and Tarui show that quasipolynomial size ACC0 can be
computed by quasipolynomial size circuits consisting of a
gate computing a symmetric function fed by AND gates
of fan-in logO(1) n [18]. Tarui shows that quasipolynomial

size AC0 can be computed by quasipolynomial size depth 3
circuits consisting of an OR gate at the output, fed by n MAJ
gates that are fed by AND gates of fan-in logO(1) n [43] (the
fan-in of the top gate can in fact be slightly sub-linear).

Next we consider uniform derandomization. In [27] a
theorem of Allender and Hertrampf [6] was used to convert
a uniform probabilistic circuit to a deterministic uniform
circuit.

Proposition 11 (Allender and Hertrampf). Let {Cn} be a
uniform family of probabilistic circuits taking r(n) random
bits and computing a family of Boolean functions {fn} with
error probability less than 1/r(n). Then there is a uniform
family of deterministic circuits computing {fn} that consists
of circuits with the top gates being:

OR2r(n)2 ◦ AND2r(n) ◦ ORO(r(n)) ,

that take as their inputs outputs of copies of Cn with random
bits hardwired.

This theorem is not suitable for us as the resulting circuit
is of quasi-polynomial size. So we need a more efficient
version of this conversion. Viola [47] considered a simi-
lar question of efficiently converting probabilistic circuits
into deterministic circuits, albeit in a somewhat different
language. His objective was to minimize the running time
needed to calculate the connectivity language of the circuit.
This objective also lead to somewhat quasi-polynomial size
circuits. We use techniques similar to [6] and [47] based
on Lautemann’s proof of BPP ∈ Σ2 [34] to establish the
following claim.

Theorem 12. Let {Cn} be a uniform family of probabilistic
circuits taking r(n) ≥ 1 random bits and computing a family
of Boolean functions {fn} with error probability less than
1/(21r(n)). Then there is a uniform family of deterministic
circuits computing {fn} that consists of circuits with the top
gates being:

OR2O(r(n)) ◦ AND2r(n) ◦ ORO(r(n)) ,

that take as their inputs outputs of copies of Cn with random
bits hardwired.

Proof: We want to uniformly construct OR2O(r(n)) ◦
AND2r(n) ◦ ORO(r(n))-type circuit computing fn. For a
fixed input w ∈ {0, 1}n, let Sw ⊆ {0, 1}r(n) be the
set of random strings for which Cn outputs 1 on input
w. If f(w) = 1 then |Sw| ≥ 2r(n)(1 − 1/21r(n)) and
|Sw| ≤ 2r(n)/21r(n) otherwise. We will build a circuit
that will distinguish these two cases. We use the method of
Lautemann [34]. Lautemann shows that any set A ⊆ {0, 1}m
has the following two properties:

1) For any integer ` > 1, if |A| < 2m/` then
∀x1, . . . , x` ∈ {0, 1}m,

⋃`
i=1(A⊕ xi) ( {0, 1}m.

2) If |A| ≥ 2m−1 then ∃x1, . . . , xm ∈ {0, 1}m such that⋃m
i=1(A⊕ xi) = {0, 1}m.



Here, A ⊕ xi = {y ⊕ xi; y ∈ A}, where the XOR is bit-
wise. The proof is a simple counting argument and we return
to it later. This directly allows one to build OR2O(r(n)2) ◦
AND2r(n) ◦ ORO(r(n))-type circuit computing fn. Namely,
the following circuit computes fn:

∨
x1,...,xr(n)∈{0,1}r(n)

∧
y∈{0,1}r(n)

r(n)∨
i=1

Cn(y ⊕ xi) ,

where Cn(y ⊕ xi) is the circuit Cn with random bits
hardwired to y ⊕ xi. It is straightforward to verify using
Lautemann’s properties that this circuit computes fn on each
input w ∈ {0, 1}n, as the set Sw is of size either larger than
2r(n)/2 or smaller than 2r(n)/21r(n) depending on the value
f(w).

The size of the top-most OR is too large, however as
there are 2r(n)2 choices for x1, . . . , xr(n). Using the standard
method of random walks on expanders we reduce the
number of necessary bits to 2O(r(n)). Margulis and Gaber
and Galil [23], [35] describe a sequence of simple 8-regular
graphs Gn, with Gn having n2 vertices, that are known to
satisfy the following property [3], [8].

Proposition 13 ( [30], Theorems 3.6 and 8.2). Let n, ` > 1
be integers and A ⊆ V (Gn). If |A| ≥ 19

20 |V (Gn)| then
the probability that a simple random walk of length ` on
Gn starting from a vertex chosen uniformly at random from
V (Gn) does not visit some vertex in A is at most

(
19
20

)`
.

Pick Gn with the number of vertices equal to 2m,
where m is an integer. For z ∈ {0, 1}m+3` let
rw(z)0, rw(z)1, . . . , rw(z)` be the sequence of vertices vis-
ited by a walk of length ` on Gn determined by z; the first
m bits of z determine the starting vertex rw(z)0 of the walk,
and each consecutive three bits of z determine the neighbor
of the current vertex that will be the next vertex. We claim
that any set A ⊆ {0, 1}m has the following two properties:

1) For any integer ` > 1, if |A| < 2m/(` + 1) then
∀z ∈ {0, 1}m+3`,

⋃`
i=0(A⊕ rw(z)i) ( {0, 1}m.

2) If |A| ≥ 19
202m then ∃z ∈ {0, 1}61m such that⋃20m

i=0 (A⊕ rw(z)i) = {0, 1}m.

The first property holds trivially and the second property
holds for the following reason. Let |A| ≥ 19

202m. For
u, v ∈ {0, 1}m, u is not in A ⊕ v iff v 6∈ A ⊕ u.
Hence, for u ∈ {0, 1}m and z ∈ {0, 1}61m, u is not
in
⋃20m
i=0 (A ⊕ rw(z)i) iff rw(z)0, rw(z)1, . . . , rw(z)20m 6∈

A⊕u. For a fixed u ∈ {0, 1}r(n) and random z ∈ {0, 1}61m,
the probability of rw(z)0, rw(z)1, . . . , rw(z)20m 6∈ A⊕u is
at most

(
19
20

)20m
< 2−m by the previous proposition. By

union bound there must by some z ∈ {0, 1}61m, such that
for every u ∈ {0, 1}m, u is in

⋃20m
i=0 (A ⊕ rw(z)i). So the

properties hold. Chose m = r(n) and ` = 20m (we assume
without loss of generality that r(n) is even.) Clearly, the

following circuit computes fn:

∨
z∈{0,1}61r(n)

∧
y∈{0,1}r(n)

20r(n)∨
i=0

Cn(y ⊕ rw(z)i) .

Since the graphs Gn are very simple to describe and the
i-th neighbor of any vertex can be computed in polynomial
time in the length of the description of the vertex, the
connectivity language of this circuit can be computed in
DPLOGTIME.

This together with our Theorem 7 and Proposition 2 yields
the following corollary.

Corollary 14. Both uniformly and non-uniformly we have

ACC0 = AND ◦ OR ◦ CC0 = OR ◦ AND ◦ CC0 .

IV. CONSTANT WIDTH PLANAR BRANCHING PROGRAMS

In this section we will use our results to improve upon
a recent characterization of ACC0 circuits by constant
width planar nondeterministic branching programs [27]. All
results in this section hold in the non-uniform as well as
logspace-uniform setting. The characterization obtained was
the following.

Theorem 15 (Hansen). Constant width quasipolynomial
size planar nondeterministic branching programs compute
exactly quasipolynomial ACC0.

By a constant width quasipolynomial size planar nondeter-
ministic branching program is simply meant a nondetermin-
istic branching program in layered form where every layer
contains a constant number of nodes, having the property
that as a digraph it can be drawn in the plane with no arcs
crossing. For precise definitions we refer the reader to [27],
[28].

The proof of the above characterization involved a number
of steps where all except one could be done in polynomial
size. One direction of the characterization was obtained by
Hansen, Miltersen and Vinay [28].

Proposition 16 (Hansen, Miltersen, Vinay). Every function
computed by constant width polynomial size planar non-
deterministic branching programs is in ACC0.

For the other direction, the following part of the charac-
terization was done in the polynomial size setting [27].

Proposition 17 (Hansen). Any function computed by con-
stant depth AND ◦ OR ◦ CC0 circuits of polynomial size is
also computed by a constant width planar nondeterministic
branching programs of polynomial size.

The final part of Theorem 15 was proved by a quasipoly-
nomial version of our Corollary 14. The proof of this used
ideas similar to parts of the proofs of our results here.
The main cause for the inefficiency leading only to a result
in the quasipolynomial setting was the use of probabilistic



polynomials instead of our use here of more complicated
CC0 circuits.

With the improved result as stated by Corollary 14 we
finally obtain the following characterization of ACC0.

Theorem 18. A function is computable by a constant
width polynomial size planar non-deterministic branching
programs if and only if it is in ACC0.

We thus answer the open question of [27] affirmatively.
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[32] M. Koucký, “Circuit complexity of regular languages,” The-
ory of Computing Systems, to appear.
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