Second homework assignment

The numbers in boxes indicate the maximum number of points available for a given exercise.

- 2 1. Let G be a k-connected graph. Let x, y_1, \ldots, y_k be k+1 distinct vertices of G. Show that G contains k internally disjoint paths P_1, \ldots, P_k , where P_i connects x to y_i .
- 2+3 2. Show that for every k there is a bipartite graph with choosability greater than k (2 points). Find such a bipartite graph with at most 4^k vertices (3 additional points).
- 3. Show that in each k-connected graph, each set of k vertices belongs to a common cycle (4 points). For every k, find a k-connected graph with a set of k + 1 vertices that do not belong to a common cycle (2 points).
 - 3 4. Show that every k-tree has a tree-decomposition of width at most k.
 - 2 5. Show that if G is a minor of H, then $tw(G) \le tw(H)$, where $tw(\cdot)$ denotes the treewidth.
 - 3 6. Show that for every graph G with n vertices, $ch(G) + ch(\overline{G}) \le n + 1$. Here \overline{G} denotes the complement of G and $ch(\cdot)$ denotes the choosability. Hint: use induction over n.
 - 3 7. Let G_n be the graph obtained from the complete graph on 2n vertices by removing a set of n disjoint edges (e.g., G_1 is just two isolated vertices, G_2 is the 4-cycle). Show that G_n has choosability n.
 - 1 8. Find a directed graph with no kernel.

3

3

2

- 3 9. Show that every planar bipartite graph is 3-choosable.
 - 10. A family \mathcal{F} of sets is called *pairwise intersecting* if each two sets in \mathcal{F} intersect. Let [n] denote the set $\{1, 2, \ldots, n\}$.
- (a) Let $\mathcal{F}(n,k)$ denote the family of all the k-element subsets of the set [n]. Find a pairwise intersecting family $\mathcal{F} \subset \mathcal{F}(2n,n)$, with $|\mathcal{F}| = \binom{2n-1}{n}$, and with the property that the common intersection of all the sets in \mathcal{F} is empty.
- (b) Let \mathcal{F} be a family of finitely many k-element sets. Show that if each k + 1 sets from \mathcal{F} have nonempty intersection, then all the sets in \mathcal{F} have nonempty intersection (4 points). For every k, find a family \mathcal{F}' of k-element sets, such that each k sets from \mathcal{F}' have nonempty intersection, but the intersection of all the sets in \mathcal{F}' is empty (3 points).
 - (c) Let \mathcal{F} be a pairwise intersecting family whose members are subsets of [n]. Show that if \mathcal{F} contains fewer than 2^{n-1} sets, then there is a set $X \subseteq [n]$ not belonging to \mathcal{F} , such that $\mathcal{F} \cup \{X\}$ is pairwise intersecting.
 - 4 11. Show that a plane triangulation has a proper vertex coloring with three colors if and only if each of its vertices has an even degree.
 - 2 12. Let $T_k(n)$ denote the k-partite Turán graph on n vertices, let $t_k(n)$ be the number of edges of $T_k(n)$. Show that

$$\lim_{n \to \infty} \frac{t_k(n)}{\binom{n}{2}} = \frac{k-1}{k}.$$

- 13. The aim of the following sequence of questions is to show that the regularity lemma is (almost) trivial for sparse graphs.
- (a) Show that for every $\varepsilon > 0$ there is a d > 0 such that every bipartite graph of density at most d is ε -regular.
 - (b) Show that for every $\varepsilon > 0$ there is a d > 0 such that a graph G with n vertices and less than dn^2 edges has at most εn vertices of degree greater than εn .

- 5 (c) Let \mathcal{G} be an infinite family of graphs, with the property that each graph $G \in \mathcal{G}$ with n vertices has at most $\gamma(n)n^2$ edges, for some function γ satisfying $\lim_{n\to\infty}\gamma(n)=0$. Prove that the graphs from \mathcal{G} satisfy the regularity lemma; in other words, prove that for every $\varepsilon > 0$ and m there is an M and an n_0 such that every graph $G \in \mathcal{G}$ with at least n_0 vertices has an ε -regular partition with at least m and at most M parts.
- 2 14. Let $G = (X \cup Y, E)$ be an ε -regular bipartite graph with parts X and Y. Let \overline{G} be the *bipartite complement* of G, i.e., \overline{G} is a bipartite graph with the same parts as G, and for every $x \in X$ and $y \in Y$, the pair $\{x, y\}$ is an edge of \overline{G} if and only if it is not an edge of G. Show that \overline{G} is ε -regular.
- 5 15. (a) Let H be a bipartite graph with v vertices. Show that for every $\varepsilon > 0$ there is a constant K > 0and $n_0 \in \mathbb{N}$ such that every graph with $n \ge n_0$ vertices and at least εn^2 edges has at least Kn^v subgraphs isomorphic to H.
- 3 (b) Show that the statement above would be false if we omitted the assumption that H is bipartite.