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Abstrakt: Cachováńı (také známo jako stránkováńı) je klasický problém modelu-
j́ıćı obsluhu dvouúrovňových pamět’ových systémů. Obecné cachováńı je varianta
se stránkami r̊uzných velikost́ı a cen. V práci se zabýváme zpřesněńım charakter-
izace výpočetńı složitosti obecného cachováńı v offline př́ıpadě.

Nedávno bylo dokázáno, že obecné cachováńı v offline př́ıpadě je silně NP-těžké,
ovšem v d̊ukazu byly zapotřeb́ı instance cachováńı se stránkami větš́ımi nežli
polovina velikosti cache. Náš hlavńı výsledek se vyrovnává s t́ımto problémem:
Dokazujeme, že obecné cachováńı je silně těžké již tehdy, když jsou velikosti
stránek omezeny na {1, 2, 3}. Ve strukturálńı části práce pak představujeme
nový jednodušš́ı d̊ukaz úplné charakterizace work functions pomoćı struktury
layers v př́ıpadě klasického cachováńı, d̊ukaz je následně rozš́ı̌ren na cachováńı
s proměnlivou velikost́ı cache. Na základě těchto výsledk̊u jsme zkonstruovali dva
algoritmy pro speciálńı př́ıpady obecného cachováńı.
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Abstract: Caching (also known as paging) is a classical problem concerning page
replacement policies in two-level memory systems. General caching is its variant
with pages of different sizes and fault costs. We aim at a better characterization
of the computational complexity of general caching in the offline version.

General caching in the offline version was recently shown to be strongly NP-
hard, but the proof needed instances of caching with pages larger than half of
the cache size. The primary result of this work addresses this problem as we
prove: General caching is strongly NP-hard even when page sizes are limited to
{1, 2, 3}. In the structural part of this work, a new simpler proof for the full
characterization of work functions by layers for classical caching is given and
then extended to caching with variable cache size. We invent two algorithms for
restricted instances of general caching building on results around caching with
variable cache size.
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Introduction

Caching (also known as uniform caching or paging) is a classical problem in the
area of online algorithms and has been studied since 1960s. It models a two-
level memory system: There is the fast memory of size k (the cache) and a slow
but large main memory where all data reside. The problem instance comprises
a sequence of requests, each demanding a page from the main memory. No cost
is incurred if the requested page is present in the cache (a cache hit). If the
requested page is not present in the cache (a cache fault), the page must be
loaded at the fault cost of one; some page must be evicted to free space for the
new one when there are already k pages in the cache. The natural objective is to
evict pages in such a way that the total fault cost is minimized.

In 1990s, with the advent of World Wide Web, a generalized variant called
file caching or simply general caching was studied [15, 23]. In this setting, each
page p has its size(p) and cost(p). It costs cost(p) to load this page into the
cache and the page occupies size(p) units of memory there. Uniform caching
is the special case satisfying size(p) = cost(p) = 1 for every page p. Other
important cases of this general model are

• the cost model (weighted caching): size(p) = 1 for every page p;

• the bit model : cost(p) = size(p) for every page p;

• the fault model : cost(p) = 1 for every page p.

Caching, as described so far, requires the service to load the requested page
when a fault occurs, which is known as caching under the forced policy. Allowing
the service to pay the fault cost without actually loading the requested page to
the cache gives another useful and studied variant of caching, the optional policy.

Offline version. The whole request sequence is known in advance in the offline
version. In this case, uniform caching is solvable in polynomial time with a natural
algorithm known as Belady’s rule [8]. Caching in the cost model is a special case
of the k-server problem and is also solvable in polynomial time [11]. In late 1990s,
the questions about the complexity status of general caching were raised. This is
the summary of the situation in the end of 1990s:

“ The hardness results for caching problems are very inconclusive. The
NP-hardness result for the Bit model uses a reduction from parti-
tion, which has pseudopolynomial algorithms. Thus a similar algo-
rithm may well exist for the Bit model. We do not know whether
computing the optimum in the Fault model is NP-hard.

— Concluding remark of Albers et al. [3] ”
There was no improvement until a breakthrough in 2010 when Chrobak et

al. [13] showed that general caching is strongly NP-hard, already in the case of
the fault model as well as in the case of the bit model. General caching is usually
studied under the assumption that the largest page size is very small in compar-
ison with the total cache size, as is for example the case of the aforementioned
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article by Albers et al. [3]. Instances of caching with pages larger than half of the
cache size (so called obstacles) are required in the proof given by Chrobak et al.
Therefore, this hardness result is in fact still quite inconclusive.

Contributions I. We give a novel proof of strong NP-hardness for general
caching which gives the first hardness result restricted to small pages: General
caching is strongly NP-hard even in the case when the page sizes are limited to
{1, 2, 3}, for both the fault model and the bit model, and under both the forced
policy and the optional policy.

The proof of the result for general costs (and sizes {1, 2, 3}) is rather simple,
in particular significantly simpler than the one given by Chrobak et al. [13]. The
reductions for the result in the fault and bit models are significantly more involved
and require a non-trivial potential-function-like argument. This part is covered
in Chapter 1. We note that the aforementioned simpler proof (working only for
general caching, not for the bit model or the fault model) was invented by the
advisor prof. Sgall without the contribution of the primary author.

Online version. In the online version, a caching algorithm has to serve each of
the requests before receiving the future requests. It is impossible to always pro-
duce an optimal sevice in this version. To measure the performance of an online
algorithm, we consider the competitive analysis. A deterministic algorithm A is
said to be c-competitive if there is a constant b such for each request sequence ρ

A(ρ) ≤ cOPT(ρ) + b,

where A(ρ) denotes the cost of the service produced by the algorithm A and
OPT(ρ) the optimum service cost for the sequence ρ. In the case of a randomized
algorithm, the expected value of the service cost is used instead of A(ρ). The
competitive ratio of an algorithm is the smallest c such that the algorithm is
c-competitive.

It has been proven that no deterministic algorithm for uniform caching can be
better than k-competitive (k is the cache size) [22]. Natural algorithms like LRU
and FIFO match this bound. A k-competitive algorithm for general caching
called LandLord with the competitive ratio k was given by Young [23].

We restrict the first part of the discussion about randomized algorithms to
uniform caching. Fiat et al. [14] proved a lower bound of Hk (the kth harmonic
number) on the competitive ratio, designed a simple marking algorithm Mark
and proved that this algorithm is 2Hk-competitive. The competitive ratio of
Mark was later determined to be 2Hk − 1 by Achlioptas et al. [1].

The first Hk-competitive randomized algorithm for uniform caching was given
by McGeoch and Sleator [19] and was named Partition. The memory require-
ments of Partition cannot be bounded by a function of k. Achlioptas et al. [1]
addressed this problem and invented an algorithm Equitable using O(k2 log k)
memory. This was later improved to O(k) by Bein et al. [7] with a modifica-
tion of Equitable called Equitable2. Negoescu et al. proposed a modifica-
tion of Partition, the algorithm Partition2, which needs to remember only
O(k/ log k) pages except for the pages in the cache.

The running time of Equitable is O(k2) per request. The fastest known
Hk-competitive algorithm is OnlineMin proposed by Negoescu et al. [20, 10]
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with the running time O(log k) per request (or O(log k/ log log k) depending on
the implementation and computational model).

The first randomized algorithms beyond uniform caching were invented by
Irani [15] who gave O(log2 k)-competitive algorithms for caching in the bit model
and caching in the fault model. This was later improved by Bansal et al. [4, 5]:
They gaveO(log k)-competitive algorithms for each of the cost, bit and fault mod-
els and an O(log2 k)-competitive algorithm for general caching; these algorithms
are based on rounding the solution of a linear program. Adamaszek et al. [2]
invented a better rounding method which made them able to give an O(log k)-
competitive algorithm for general caching. As far as lower bounds are concerned,
Chrobak et al. [12] proved a lower bound on the competitive ratio of 1 + e−1/2 for
caching in the cost model with k = 2. Because 1 + e−1/2 ≈ 1.6065 > 1.5 = H2,
a Hk-competitive algorithm (as in the case of uniform caching) is not possible for
general caching.

Contributions II. The algorithm Partition uses a dynamically changing par-
tition of the request sequence which enables the online algorithm to keep track
about possible moves of the optimal algorithm. Koutsoupias and Papadimitri-
ou [17] extended this result and showed that a similar structure may be used
to fully (and efficiently) characterize the whole work function associated with
the request sequence; this structure is now usually called layers. All the algo-
rithms Equitable, Equitable2 and OnlineMin are based on this structure.
The original proof (and the only one we are aware of in the literature) uses the
quasi-convexity lemma. We provide a new simpler and more direct proof. An in-
troduction into work functions and layers as well as the new proof are given in
Chapter 2.

Caching with variable cache size. Allowing the cache size to change over
time is a natural generalization of caching. To give an example, the best known
approximation for general caching is an 4-approximation given by Bar-Noy et
al. [6]. Their approximation works for this case of variable cache size as well. The
topic of caching with variable cache size was pioneered by Peserico [21].

Contributions III. In Chapter 3, we show how to generalize our new proof
from the previous chapter and derive the full characterization of work functions
through layers for uniform caching with variable cache size. As a consequence, we
show that layers and Belady’s rule work for the optional policy as well because
the optional policy may be easily simulated using variable cache size.

Solvable instances of caching. Despite the NP-hardness of general caching,
it is still possible to solve some restricted instances in polynomial time. To do that,
we define two parameters characterizing the instance. We call a page normal, if
both its size and fault cost are one, and abnormal otherwise. For an instance
of caching we define the parameter η to be the number of requests on abnormal
pages. The second parameter κ is defined to be the difference between the cache
size and the size of the smallest abnormal page.

5



Contributions IV. In the final chapter, we reap the harvest of understanding
uniform caching with variable cache size and give two algorithms for general
caching with the time complexity bounded by a function of the total number of
requests n and the parameters η and κ. We show that general caching is solvable
in time O(2η · n log n), i.e., it is polynomially solvable when the total number of
requests on abnormal pages is bounded by O(log n). The second algorithm solves
general caching in time nO(κ), i.e., general caching is solvable in polynomial time
if there is a constant c such that each page is either normal or has size at least
k − c.

6



1. Strong NP-hardness

In this chapter we prove the following: General caching is strongly NP-hard even
in the case when the page sizes are limited to {1, 2, 3}, both for the fault model
and the bit model, and under both the forced policy and the optional policy.

The main part of our work – a polynomial-time reduction from independent
set to caching in the fault model under the optional policy with page sizes re-
stricted to {1, 2, 3} is explained in Subchapter 1.1 and its validity is proven in
Subchapter 1.2. In Subchapter 1.3, we show how to modify the reduction so
it works for the bit model as well. In Subchapter 1.4, we show how to obtain
the hardness results also for the forced policy. Finally, we give a self-contained
presentation of the simple proof of strong NP-hardness for general costs (in fact,
only two different and polynomial costs are needed) in Subchapter 1.5.

1.1 Reduction

The decision problem IndependentSet is well-known to be NP-complete. By
3Caching(forced) and 3Caching(optional) we denote the decision versions
of caching under each policy with page sizes restricted to {1, 2, 3}.

Problem: IndependentSet
Instance: A graph G and a number K.
Question: Is there an independent set of cardinality K in G?

Problem: 3Caching(policy)
Instance: A universe of pages, a sequence of page requests, num-

bers k and L. For each page p it holds size(p) ∈
{1, 2, 3}.

Question: Is there a service under the policy policy of the re-
quest sequence using the cache of size k with a total
fault cost of at most L?

We define 3Caching(fault,policy) to be the problem 3Caching(policy)
with the additional requirement that page costs adhere to the fault model. The
problem 3Caching(bit,policy) is defined analogously.

In this subchapter, we describe a polynomial-time reduction from Indepen-
dentSet to 3Caching(fault,optional). Informally, a set of pages of size
two and three is associated with each edge and a page of size one is associated
with each vertex. Each vertex-page is requested only twice while there are many
requests on pages associated with edges. The request sequence is designed in such
a way that the number of vertex-pages that are cached between the two requests
in the optimal service is equal to the the size of the maximum independent set.

We now show the request sequence of caching corresponding to the graph
given in IndependentSet with a parameter H. In the next subchapter, we
prove that it is possible to set a proper value of H and a proper fault cost limit L
such that the reduction becomes a valid polynomial-time reduction.

Reduction 1.1. Let G = (V,E) be the instance of IndependentSet. The
graph G has n vertices and m edges and there is an arbitrary fixed order of edges
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e1, . . . , em. Let H be a parameter bounded by a polynomial function of n.

A corresponding instance IG of 3Caching(fault,optional) is an instance
with the cache size k = 2mH + 1 and the total of 6mH +n pages. The structure
of the pages and the requests sequence is described below.

Pages. For each vertex v, we have a vertex-page pv of size one. For each edge e,
there are 6H edge-pages associated with it that are divided into H groups. The
ith group consists of six pages āei , α

e
i , a

e
i , b

e
i , β

e
i , b̄

e
i where pages αei and βei have size

three and the remaining four pages have size two.

For a fixed edge e, let āe-pages be all pages āei for i = 1, . . . , H. Let also
ā-pages be all āe-pages for e = e1, . . . , em. The remaining collections of pages
(αe-pages, α-pages, . . . ) are defined in a similar fashion.

Request sequence. The request sequence of IG is organized in phases and
blocks. There is one phase for each vertex v ∈ V , we call such a phase the v-
phase. There are exactly two requests on each vertex-page pv, one just before the
beginning of the v-phase and one just after the end of the v-phase; these requests
do not belong to any phase. The order of phases is arbitrary. In each v-phase,
there are 2H adjacent blocks associated with every edge e incident with v; the
blocks for different incident edges are ordered arbitrarily. In addition, there is one
initial block I before all phases and one final block F after all phases. Altogether,
there are d = 4mH + 2 blocks.

Let e = {u, v} be an edge, let us assume that the u-phase precedes the v-phase.
The blocks associated with e in the u-phase are denoted by Be

1,1, B
e
1,2, . . . , B

e
i,1,

Be
i,2, . . . , B

e
H,1, B

e
H,2, in this order, and the blocks in the v-phase are denoted by

Be
1,3, B

e
1,4, . . . , B

e
i,3, B

e
i,4, . . . , B

e
H,3, B

e
H,4, in this order. An example is given in

Figure 1.1.

Be1
1,1B

e1
1,2B

e1
2,1B

e1
2,2

u-phase

I Be2
1,1B

e2
1,2B

e2
2,1B

e2
2,2

v-phase

Be1
1,3B

e1
1,4B

e1
2,3B

e1
2,4

w-phase

Be2
1,3B

e2
1,4B

e2
2,3B

e2
2,4 F

pvpu pw

Figure 1.1: An example of phases, blocks and requests on vertex-pages for a graph
with three vertices u, v, w and two edges e1 = {u,w}, e2 = {v, w} when H = 2

Even though each block is associated with some fixed edge, it contains one or
more requests to the associated pages for every edge e. In each block, we process
the edges in the order e1, . . . , em that was fixed above. Pages associated with the
edge e are requested in two rounds. In each round, we process groups 1, . . . , H
in this order. When processing the ith group of the edge e, we request one or
more pages of this group, depending on the block we are in. Table 1.1 determines
which pages are requested.

Reduction 1.1 is now complete. An example of requests on edge-pages asso-
ciated with one edge e is depicted in Figure 1.2. Notice that the order of the
pages associated with e is the same in all blocks; more precisely, in each block
the requests on the pages associated with e form a subsequence of

āe1 α
e
1 a

e
1 . . . ā

e
i α

e
i a

e
i . . . ā

e
H α

e
H a

e
H be1 β

e
1 b̄

e
1 . . . b

e
i β

e
i b̄

e
i . . . b

e
H β

e
H b̄

e
H . (1.1)
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Table 1.1: Requests associated with an edge e

Block First round • Second round

before Be
i,1 āei •

Be
i,1 āei , α

e
i

• bei

Be
i,2 αei , a

e
i

• bei

between Be
i,2 and Be

i,3 aei • bei

Be
i,3 aei • bei , β

e
i

Be
i,4 aei • βei , b̄

e
i

after Be
i,4

• b̄ei

āe1

Be
1,1B

e
1,2 Be

1,3B
e
1,4Be

2,1B
e
2,2B

e
3,1B

e
3,2 Be

2,3B
e
2,4B

e
3,3B

e
3,4

αe
1

ae1
āe2
αe
2

ae2
āe3
αe
3

ae3
be1
βe
1

b̄e1
be2

βe
2

b̄e2
be3
βe
3

b̄e3

Figure 1.2: Requests on all pages associated with the edge e when H = 3. Each
column represents some block(s). The labelled columns represent the blocks in the
heading, the first column represents every block before Be

1,1, the middle column
represents every block between Be

3,2 and Be
1,3, and the last column represents every

block after Be
3,4. The requests in one column are ordered from top to bottom.
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Preliminaries for the proof. Instead of minimizing the service cost, we max-
imize the savings compared to the service which does not use the cache at all.
This is clearly equivalent when considering the decision versions of the problems.

Without loss of generality, we assume that any page is brought into the cache
only immediately before some request to that page and removed from the cache
only after some (possibly different) request to that page; furthermore, the cache
is empty at the beginning and at the end. That is, a page may be in the cache
only between two consecutive requests to this page, and either it is in the cache
for the whole interval or not at all.

Each page of size three is requested only twice in two consecutive blocks, and
these blocks are distinct for all pages of size three. Thus, a service of edge-pages
is valid if and only if at each time, at most mH edge-pages are in the cache. It is
convenient to think of the cache as of mH slots for edge-pages.

As each vertex-page is requested twice, the savings on the n vertex-pages are
at most n. Furthermore, a vertex-page can be cached if and only if during the
phase it never happens that at the same time all slots for edge-pages are full and
a page of size three is cached.

Let SB denote the set of all edge-pages cached at the beginning of the block B
and let SeB be the set of pages in SB associated with the edge e. We use sB = |SB|
and seB = |SeB| for the sizes of the sets. Each edge-page is requested only in
a contiguous segment of blocks, once in each block. It follows that the total
savings on edge-pages are equal to

∑
B sB where the sum is over all blocks. In

particular, the maximal possible savings on the edge-pages are (d− 1)mH, using
the fact that SI is empty. We shall show that the maximum savings are (d −
1)mH +K where K is the size of the maximum independent set in G.

Almost-fault model. To understand the reduction, we consider what happens
if we relax the requirements of the fault model and set the cost of each vertex-page
to 1/(n+ 1) instead of 1 as required by the fault model.

In this scenario, the total savings on vertex-pages are n/(n + 1) < 1 which
is less than savings incurred by one edge-page. Therefore, edge-pages must be
served optimally in the optimal service of the whole request sequence.

In this case, the reduction works already for H = 1. This leads to a quite
short proof of the strong NP-hardness for general caching and we give this proof
in Subchapter 1.5. Here, we show just the main ideas that are important also for
the design of our caching instance in the fault and bit models.

We first prove that for each edge e and each block B 6= I we have seB = 1 (see
Subchapter 1.5). Using this we show below that for each edge e, at least one of
the pages αe1 and βe1 is cached between its two requests. This implies that the set
of all vertices v such that pv is cached between its two requests is independent.

For a contradiction, let us assume that for some edge e, neither of the pages αe1
and βe1 is cached between its two requests. Because pages αe1 and βe1 are forbidden,
there is be1 in SBe1,2 and ae1 in SBe1,3 . Somewhere between these two blocks Be

1,2 and
Be

1,3, we must switch from caching be1 to caching ae1. However, this is impossible,
because the order of requests implies that we would have to cache both be1 and
ae1 at some moment (see Figure 1.3). However, there is no place in the cache for
such an operation, as se

′
B = 1 for every e′ and B 6= I.

In the fault model, the corresponding claim seB = H does not hold. Instead,
we prove that the value of seB cannot change much during the service and when
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āe1

Be
1,1B

e
1,2 Be

1,3B
e
1,4

αe
1

ae1
be1
βe
1

b̄e1

Figure 1.3: Pages associated with one edge when H = 1

we use H large enough, we still get a working reduction.

1.2 Proof of Correctness

In this subchapter, we show that the reduction described in the previous subchap-
ter is indeed a reduction from IndependentSet set to 3Caching(fault,op-
tional). We prove that there is an independent set of cardinality K in G if and
only if there is a service of the caching instance IG with the total savings of at
least (d − 1)mH + K. First the easy direction, which holds for any value of the
parameter H.

Lemma 1.2. Let G be a graph and IG the corresponding caching instance from
Reduction 1.1. Suppose that there is an independent set W of cardinality K in G.
Then there exists a service of IG with the total savings of at least (d−1)mH+K.

Proof. For any edge e, denote e = {u, v} so that the u-phase precedes the v-phase.
If u ∈ W , we keep all āe-pages, be-pages, βe-pages and b̄e-pages in the cache from
the first to the last request on each page, but we do not cache ae-pages and
αe-pages at any time. Otherwise, we cache all āe-pages, αe-pages, ae-pages and
b̄e-pages, but do not cache be-pages and βe-pages at any time. Figure 1.4 shows
these two cases for the first group of pages. In both cases, at each time at most
one page associated with each group of each edge is in the cache and the savings
on those pages are (d− 1)mH. We know that the pages fit in the cache because
of the observations made in Subchapter 1.1.

For any v ∈ W , we cache pv between its two requests. To check that this is
a valid service, observe that if v ∈ W , then during the corresponding phase no
page of size three is cached. Thus, the page pv always fits in the cache together
with at most mH pages of size two.

We prove the converse in a sequence of lemmata. In Subchapter 1.3, we will
show how to reuse the proof for the bit model. To be able to do that, we list
explicitly all the assumptions about the caching instance that are used in the
following proofs.

Properties 1.3. Let TG be an instance of general caching which corresponds to
a graph G = (V,E) with n vertices, m edges e1, . . . , em, the same cache size and
the same universe of pages as in Reduction 1.1. The request sequence is again
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āe1

Be
1,1B

e
1,2 Be

1,3B
e
1,4

αe
1

ae1
be1
βe
1

b̄e1

āe1

Be
1,1B

e
1,2 Be

1,3B
e
1,4

αe
1

ae1
be1
βe
1

b̄e1

Figure 1.4: The two ways of caching in Lemma 1.2

split into phases, one phase for each vertex. Each phase is again partitioned into
blocks, there is one initial block I before all phases and one final block F after all
phases. There is the total of d blocks.

The instance TG is required to fulfill the following list of properties:

(a) Each vertex page pv is requested exactly twice, right before the v-phase and
right after the v-phase.

(b) The total savings incurred on edge-pages are equal to
∑
sB (summing over

all blocks).

(c) For each edge e, there are exactly H pages associated with e requested in I,
all the āe-pages, and exactly H pages associated with e requested in F , all
the b̄e-pages.

(d) In each block, pages associated with e1 are requested first, then pages asso-
ciated with e2 are requested and so on up to em.

(e) For each block B and each edge e, all requests on ae-pages and b̄e-pages in B
precede all requests on āe-pages and be-pages in B.

(f) Let e = {u, v} be an edge and p an αe-page or βe-page. Let B be the first
block and B the last block where p is requested. Then B and B are either
both in the u-phase or both in the v-phase. Furthermore, no other page of
size three associated with e is requested in B, B, or any block between them.

Lemma 1.4. The instance from Reduction 1.1 satisfies Properties 1.3.

Proof. All properties (a), (b), (c), (d), (f) follow directly from Reduction 1.1 and
the subsequent observations. To prove (e), recall that the pages associated with
an edge e requested in a particular block always follow the ordering (1.1). We
need to verify that when the page aei is requested, no page āej for j ≤ i is requested
and that when the page b̄ei is requested, no āe-page and no page bej for j ≤ i is
requested. This can be seen easily when we explicitly write down the request
sequences for each kind of block, see Table 1.2.

For the following claims, let TG be an instance fulfilling Properties 1.3. We
fix a service of TG with the total savings of at least (d− 1)mH.

Let B be the set of all blocks and B the set of all blocks except for the initial
and final one. For a block B, we denote the block immediately following it by B′.
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Table 1.2: Request sequences on all pages associated with an edge e

Block First round • Second round

before Be
1,1 āe1 . . . ā

e
H
•

Be
i,1

ae1 . . . a
e
i−1 ā

e
i α

e
i ā

e
i+1ā

e
i+2 . . . ā

e
H
•

be1 . . . b
e
i

Be
i,2

ae1 . . . a
e
i−1 α

e
i a

e
i ā

e
i+1ā

e
i+2 . . . ā

e
H
•

be1 . . . b
e
i

between Be
H,2 and

Be
1,3

ae1 . . . a
e
H
• be1 . . . b

e
H

Be
i,3

aei . . . a
e
H
•

b̄e1 . . . b̄
e
i−1 b

e
i β

e
i b

e
i+1b

e
i+2 . . . b

e
H

Be
i,4

aei . . . a
e
H
•

b̄e1 . . . b̄
e
i−1 β

e
i b̄

e
i b

e
i+1b

e
i+2 . . . b

e
H

after Be
H,4

• b̄e1 . . . b̄
e
H

We define two useful values characterizing the service for the block B: δB =
mH − sB (the number of free slots for edge-pages at the start of the service of
the block) and γeB = |seB′ − seB| (the change of the number of slots occupied by
pages associated with e after requests from this block are served).

The first easy lemma says that only a small number of blocks can start with
some free slots in the cache.

Lemma 1.5. When summing over all blocks except for the initial one∑
B∈B\{I}

δB ≤ n.

Proof. Using the property (b) and sI = 0, the savings on edge-pages are∑
B∈B\{I}

sB = (d− 1)mH −
∑

B∈B\{I}

δB.

The total savings are assumed to be at least (d−1)mH. Due to the property (a),
the savings on vertex-pages are at most n. Claim of the lemma follows.

The second lemma states that the number of slots occupied by pages associ-
ated with a given edge does not change much during the whole service.

Lemma 1.6. For each edge e ∈ E,∑
B∈B

γeB ≤ 6n.

Proof. Let us use the notation S≤kB = Se1B ∪ · · · ∪ S
ek
B and s≤kB =

∣∣∣S≤kB ∣∣∣. First, we

shall prove for each k ≤ m ∑
B∈B

∣∣∣s≤kB′ − s≤kB ∣∣∣ ≤ 3n. (1.2)
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Let P denote the set of all blocks B from B satisfying s≤kB′ − s
≤k
B ≥ 0 and let

N denote the set of all the remaining blocks from B.
As a consequence of the property (c), we get s≤kI′ ∈ [kH − δI′ , kH] and s≤kF ∈

[kH − δF , kH]. So we obtain the inequality

s≤kF − s
≤k
I′ ≥ −δF . (1.3)

We claim s≤kB′ − s≤kB ≤ δB for each B ∈ B. We assume for a contradiction
s≤kB′ −s

≤k
B > δB for some block B. We use the property (d). Then after processing

the edge ek in B, the number of edge-pages in the cache is (sB − s≤kB ) + s≤kB′ >
sB+δB = mH. But more thanmH edge-pages in the cache means a contradiction.

The summation over all blocks from P gives us the first bound∑
B∈P

(
s≤kB′ − s

≤k
B

)
≤
∑
B∈P

δB ≤ n. (1.4)

Using the fact P ∪̇ N = B and (1.3), we have∑
B∈P

(
s≤kB′ − s

≤k
B

)
+
∑
B∈N

(
s≤kB′ − s

≤k
B

)
= s≤kF − s

≤k
I′ ≥ −δF ;

together with (1.4), we obtain the second bound

−
∑
B∈N

(
s≤kB′ − s

≤k
B

)
≤
∑
B∈P

(
s≤kB′ − s

≤k
B

)
+ δF ≤ 2n. (1.5)

Combining the bounds (1.4) and (1.5), we prove (1.2)∑
B∈B

∣∣∣s≤kB′ − s≤kB ∣∣∣ =
∑
B∈P

(
s≤kB′ − s

≤k
B

)
−
∑
B∈N

(
s≤kB′ − s

≤k
B

)
≤ n+ 2n = 3n.

For the edge e1, the claim of this lemma is weaker than (1.2) because γe1B =
|se1B′ − s

e1
B |. Proving our lemma for ek when k > 1 is just a matter of using (1.2)

for k − 1 and k together with the formula |x− y| ≤ |x|+ |y|:∑
B∈B

γekB ≤
∑
B∈B

∣∣∣s≤kB′ − s≤kB ∣∣∣+
∑
B∈B

∣∣∣s≤k−1B′ − s≤k−1B

∣∣∣ ≤ 3n+ 3n = 6n

For the rest of the proof, we set H = 6mn+ 3n+ 1. This enables us to show
that the fixed service must cache some of the pages of size three.

Lemma 1.7. For each edge e ∈ E, there is a block B such that some αe-page or
βe-page is in SB and δB = 0.

Proof. Fix an edge e = ek. For each block B, we define

εB = number of αe-pages and βe-pages in SB.

Observe that due to the property (f), εB is always one or zero. We use
a potential function

ΦB = number of ae-pages and b̄e-pages in SB.
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Because there are only ā-pages in the initial block and only b̄-pages in the
final block (property (c)), we know

ΦI′ = 0 and ΦF ≥ H − δF . (1.6)

Now we bound the increase of the potential function as

ΦB′ − ΦB ≤ δB +
k−1∑
`=1

γe`B + εB. (1.7)

To justify this bound, we fix a block B and look at the cache state after
requests on edges e1, . . . , ek−1 are processed. How many free slots there can be
in the cache? There are initial δB free slots in the beginning of the block B, and
the number of free slots can be further increased when the number of pages in
the cache associated with e1, . . . , ek−1 decreases. This increase can be naturally
bounded by

∑k−1
`=1 γ

e`
B . Therefore, the number of free slots in the cache is at most

δB +
∑k−1

`=1 γ
e`
B .

Because of the property (e), the number of cached ae-pages and b̄e-pages can
only increase by using the free cache space or caching new pages instead of αe-
pages and βe-pages. We already bounded the number of free slots and εB is
a natural bound for the increase gained on αe-pages and βe-pages. Thus, the
bound (1.7) is correct.

Summing (1.7) over all B ∈ B, we have

ΦF − ΦI′ =
∑
B∈B

(ΦB′ − ΦB) ≤
∑
B∈B

(
δB +

k−1∑
`=1

γe`B + εB

)
which we combine with (1.6) into

H − δF ≤
∑
B∈B

(
δB +

k−1∑
`=1

γe`B + εB

)
,

and use Lemmata 1.5 and 1.6 to bound
∑
εB as

∑
B∈B

εB ≥ H − δF −
∑
B∈B

(
δB +

k−1∑
`=1

γe`B

)
≥ H − n− n− (k − 1)6n

≥ H − 6mn− 2n = n+ 1.

As there is at most one page of size three requested in each block (property (f)),
the inequality

∑
εB ≥ n+ 1 implies that there are at least n+ 1 blocks where an

αe-page or a βe-page is cached. At most n blocks have δB non-zero (Lemma 1.5);
we are done.

We are ready to complete the proof of the harder direction.

Lemma 1.8. Suppose that there exists a service of TG with the total savings
of at least (d − 1)mH + K. Then the graph G has an independent set W of
cardinality K.
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Proof. Let W be a set of K vertices such that the corresponding page pv is cached
between its two requests. (There are at least K of them because the maximal
savings on edge-pages are (d− 1)mH.)

Consider an arbitrary edge e = {u, v}. Due to Lemma 1.7, there exists
a block B such that δB = 0 and some αe-page or βe-page is cached in the be-
ginning of the block. This block B is either in the u-phase or in the v-phase,
because of the statement of the property (f). This means that at least one of the
two pages pu and pv is not cached between its two requests, because the cache is
full. As a consequence, the set W is indeed independent.

The value of H was set to 6mn + 3n + 1, therefore Reduction 1.1 is indeed
polynomial. Lemmata 1.2, 1.4 and 1.8 together imply that there is an independent
set of cardinality K in G if and only if there is a service of the instance IG with
the total savings of at least (d− 1)mH +K. We showed that the problem 3Ca-
ching(fault,optional) is indeed strongly NP-hard.

1.3 Bit Model

In this subchapter, we show how to modify the proof for the fault model from
the previous subchapters so that it works as a proof for the bit model as well.

Reduction 1.9. Let G be a graph and IG the corresponding instance of the
problem 3Caching(fault,optional) from Reduction 1.1. Then the modified

instance ĨG is an instance of 3Caching(bit,optional) with the same cache
size and the same set of pages with the same sizes.

The structure of phases and requests on vertex-pages is also preserved. The
blocks from IG are also used, but between each pair of consecutive blocks there are
five new blocks inserted. Let B and B′ be two consecutive blocks. Between B and
B′ we insert five new blocks B(1), . . . , B(5) with the following requests

• B(1): do not request anything;

• B(2): request all pages of size two that are requested both in B and B′;

• B(3): request a page (there is either one or none) of size three that is re-
quested both in B and B′;

• B(4): request all pages of size two that are requested both in B and B′;

• B(5): do not request anything.

See Figure 1.5 for an example. In each new block, the order of chosen requests
is the same as in B (which is the same as in B′, as both follow the same ordering
of edges (1.1)). The new instance has the total of d̃ = d + 5(d − 1) = 6d − 5
blocks. This time we prove that the maximal total savings are (d̃ − 1)mH + K
where K is the cardinality of the maximum independent set in G.

Lemma 1.10. Suppose that the graph G has an independent set W of cardi-
nality K. Then there exists a service of the modified instance ĨG with the total
savings of at least (d̃− 1)mH +K.
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a

B(1)B(2)

β

B B(3)B(4)B(5) B′

a

B′

β

B

Figure 1.5: The modification of the instance for a page a of size two and a page β
of size three

Proof. We consider the service of the original instance IG described in the proof
of Lemma 1.2 and modify it so it becomes a service of the modified instance.

In the new service, vertex-pages are served the same way as in the original
service. The savings on vertex-pages are thus again K.

For each pair of consecutive blocks B and B′, each page kept in the cache
between B and B′ in the original service is kept in the cache in the new service for
the whole time between B and B′ (it spans over seven blocks now). For a page of
size two, savings of two are incurred three times. For a page of size three, savings
of three are incurred twice. On each page in the new service we save six instead
of one. Therefore, the total savings on edge-pages are 6(d− 1)mH = (d̃− 1)mH.

The total savings are (d̃− 1)mH +K.

Lemma 1.11. Suppose that there exists a service of the modified instance ĨG with
the total savings of at least (d̃−1)mH+K. Then the graph G has an independent
set W of cardinality K.

Proof. This lemma is the same as Lemma 1.8. We just need to verify that the
modified instance fulfills Properties 1.3.

To prove that the property (b) is preserved, we observe that each two consec-
utive requests on a page of size two are separated by exactly one block where the
page is not requested. Consequently, when there are savings of two on a request
on the page of size two, we assign savings of one to the block where the savings
were incurred and savings of one to the previous block. Similarly, each pair of
consecutive requests on a page of size three is separated by exactly two blocks
where the page is not requested. When there are savings of three on a request on
the page of size three, we assign savings of one to the block where the savings were
incurred and savings of one to each of the two previous blocks. As a consequence,
the total savings gained on edge-pages may indeed be computed as

∑
sB.

The property (a) is preserved because the requests on vertex-pages are the
same in both instances. The property (c) is preserved because the initial and
final blocks are the same in both instances.

Each sequence of requests in a block of the modified instance ĨG is either
the same or a subsequence of the sequence in a block in the original instance.
Therefore, the properties (d), (e) and (f) are preserved as well.

Lemmata 1.10 and 1.11 imply that we have a valid polynomial-time reduction
and so the problem 3Caching(bit,optional) is strongly NP-hard.

1.4 Forced Policy

Theorem 1.12. Both the problem 3Caching(fault,forced) and the problem
3Caching(bit,forced) are strongly NP-hard.
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Proof. For both the fault model and the bit model, we show a polynomial-time re-
duction from caching with optional policy to the corresponding variant of caching
with the forced policy. Let us have an instance of caching with the optional pol-
icy with the cache size k and the request sequence ρ = r1 . . . rn; let M be the
maximal size of a page in ρ (in our previous reductions, M = 3).

We create an instance of caching with the forced policy. The cache size is
k′ = k + M . The request sequence is ρ′ = r1q1r2q2 . . . rnqn where q1, . . . , qn are
requests to n different pages that do not appear in ρ and have size M . The costs
of the new pages are one in the fault model and M in the bit model.

We claim that there is a service of the optional instance with savings S if and
only if there is a service of the forced instance with savings S.
⇒ We serve the requests on original pages the same way as in the optional

instance. The cache is larger by M which is the size of the largest page. Thus,
pages that were not loaded into the cache because of the optional policy fit in
there; we can load them and immediately evict them. New pages fit into the
cache as well and we also load them and immediately evict them. This way we
have the same savings as in the optional instance.
⇐ We construct a service for the optional instance: For each i, when serving

ri we consider the evictions done when serving ri and qi of the forced instance. If
a page requested before ri is evicted, we evict it as well. If a page requested by
ri is evicted, we do not cache it at all. Because the page requested by qi has size
M , the original pages occupy at most k slots in the cache when qi is served. This
way we obtain a service of the optional instance with the same savings.

Using the strong NP-hardness of the problems 3Caching(fault,optional)
and 3Caching(bit,optional) proven in Subchapters 1.1 and 1.2 and the ob-
servation that the reduction preserves the maximal size of a page, we obtain
the strong NP-hardness of the problems 3Caching(fault,forced) and 3Ca-
ching(bit,forced).

1.5 Simple Proof

In this subchapter, we present a simple variant of the proof for the almost-fault
model with two distinct costs. This completes the sketch of the proof presented
at the end of Subchapter 1.1. We present it with a complete description of the
simplified reduction, so that it can be read independently of the rest of the thesis.
This subchapter can therefore serve as a short proof of the hardness of general
caching.

Theorem 1.13. General caching is strongly NP-hard, even in the case when
page sizes are limited to {1, 2, 3} and there are only two distinct fault costs.

We prove the theorem for the optional policy. It is easy to obtain the theorem
also for the forced policy the same way as in the proof of Theorem 1.12.

The Reduction

The reduction described here will be equivalent to Reduction 1.1 with H = 1 and
the fault cost of each vertex-page set to 1/(n+ 1).
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Suppose we have a graph G = (V,E) with n nodes and m edges. We con-
struct an instance of general caching whose optimal solution encodes a maximum
independent set in G. Fix an arbitrary numbering of edges e1, . . . , em.

The cache size is k = 2m + 1. For each vertex v, we have a vertex-page pv
with size one and cost 1/(n + 1). For each edge e, we have six associated edge-
pages ae, āe, αe, be, b̄e, βe; all have cost one, pages αe, βe have size three and the
remaining pages have size two.

The request sequence is organized in phases and blocks. There is one phase for
each vertex. In each phase, there are two adjacent blocks associated with every
edge e incident with v; the incident edges are processed in an arbitrary order.
In addition, there is one initial block I before all phases and one final block F
after all phases. Altogether, there are d = 4m + 2 blocks. There are four blocks
associated with each edge e; denote them Be

1, B
e
2, B

e
3, B

e
4, in the order as they

appear in the request sequence.
For each v ∈ V , the associated page pv is requested exactly twice, right before

the beginning of the v-phase and right after the end of the v-phase; these requests
do not belong to any phase. An example of the structure of phases and blocks is
given in Figure 1.6.

Be1
1 Be1

2

u-phase

I

pvpu pw

Be2
1 Be2

2

v-phase

Be1
3 Be1

4 Be2
3 Be2

4

w-phase

F

Figure 1.6: An example of phases, blocks and requests on vertex-pages for a graph
with three vertices u, v, w and two edges e1 = {u,w}, e2 = {v, w} when H = 2

Even though each block is associated with some fixed edge, it contains one or
more requests to the associated pages for every edge e. In each block, we process
the edges e1, . . . , em in this order. For each edge e, we make one or more requests
to the associated pages as follows. If the current block is:
• before Be

1: request āe;
• Be

1: request āe, αe, and be;
• Be

2: request αe, ae, and be;
• after Be

2 and before Be
3: request ae and be;

• Be
3: request ae, be, and βe;

• Be
4: request ae, βe, and b̄e;

• after Be
4: request b̄e.

Figure 1.7 shows an example of the requests on edge-pages associated with
one particular edge.

Proof of Correctness

Instead of minimizing the service cost, we maximize the savings compared to
the service which does not use the cache at all. This is clearly equivalent when
considering the decision version of the problem.

Without loss of generality, we assume that any page is brought into the cache
only immediately before a request to that page and removed from the cache only
immediately after a request to that page; furthermore, at the beginning and at
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āe
Be

1 Be
2 Be

3 Be
4

αe

ae

be

βe

b̄e

Figure 1.7: Requests on all pages associated with the edge e. Each column
represents some block(s). The four labelled columns represent the blocks in the
heading, the first column represents every block before Be

1, the middle column
represents every block between Be

3 and Be
4, and the last column represents every

block after Be
4. The requests in one column are ordered from top to bottom.

the end the cache is empty. I.e., a page may be in the cache only between two
consecutive requests to this page, and either it is in the cache for the whole
interval or not at all.

Each page of size three is requested only twice in two consecutive blocks, and
these blocks are distinct for all pages of size three. Thus, a service of edge-pages
is valid if and only if at each time, at most m edge-pages are in the cache. It is
thus convenient to think of the cache as of m slots for edge-pages.

Each vertex-page is requested twice. Thus, the savings on the n vertex-pages
are at most n/(n+1) < 1. Since all edge-pages have cost one, the optimal service
must serve them optimally. Furthermore, a vertex-page can be cached if and only
if during the phase it never happens that at the same time all slots for edge-pages
are full and a page of size three is cached.

Let SB denote the set of all edge-pages cached at the beginning of the block B
and let sB = |SB|. Now observe that each edge-page is requested only in a
contiguous segment of blocks, once in each block. It follows that the total savings
on edge-pages are equal to

∑
B sB where the sum is over all blocks. In particular,

the maximal possible savings on the edge-pages are (d− 1)m, using the fact that
SI is empty.

We prove that there is a service with the total savings of at least (d− 1)m+
K/(n+ 1) if and only if there is an independent set of size K in G. First the easy
direction.

Lemma 1.14. Suppose that G has an independent set W of size K. Then there
exists a service with the total savings of (d− 1)m+K/(n+ 1).

Proof. For any e, denote e = uv so that u precedes v in the ordering of phases.
If u ∈ W , we keep āe, be, b̄e and βe in the cache from the first to the last request
on each page, and we do not cache ae and αe at any time. Otherwise we cache
b̄e, ae, āe and αe, and do not cache be and βe at any time. In both cases, at each
time at most one page associated with e is in the cache and the savings on those
pages is (d− 1)m. See Figure 1.8 for an illustration.

For any v ∈ W , we cache pv between its two requests. To check that this is
a valid service, observe that if v ∈ W , then during the corresponding phase no
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Figure 1.8: The two ways of caching in Lemma 1.14

page of size three is cached. Thus the page pv always fits in the cache together
with at most m pages of size two.

Now we prove the converse in a sequence of claims. Fix a valid service with
savings at least (d− 1)m. For a block B, let B′ denote the following block.

Claim 1.15. For any block B, with the exception of B = I, we have sB = m.

Proof. For each B 6= I we have sB ≤ m. Because sI = 0, the total savings on
edge-pages are

∑
B sB ≤ (d− 1)m. We need an equality.

We now prove that each edge occupies exactly one slot during the service.

Claim 1.16. For any block B 6= I and for any e, SB contains exactly one page
associated with e.

Proof. Let us use the notation S≤kB = Se1B ∪ · · · ∪ S
ek
B and s≤kB =

∣∣∣S≤kB ∣∣∣. First, we

shall prove for each k ≤ m
s≤kB = k. (1.8)

This is true for B = F , as only the m edge-pages b̄e can be cached there, and
by the previous claim all of them are indeed cached. Similarly for B = I ′ (i.e.,
immediately following the initial block).

If (1.8) is not true, then for some k and B 6∈ {I, F} we have s≤kB < s≤kB′ . Then
after processing the edge ek in the block B we have in the cache all the pages in
(SB \ S≤kB ) ∪ S≤kB′ . Their number is (m− s≤kB ) + s≤kB′ > m, a contradiction.

The statement of the claim is an immediate consequence of (1.8).

Claim 1.17. For any edge e, at least one of the pages αe and βe is cached between
its two requests.

Proof. Assume that none of the two pages is cached. It follows from the previous
claim that be ∈ SBe2 , as at this point αe and be are the only pages associated with
e that can be cached. Similarly, ae ∈ SBe4 .

It follows that there exists a block B between Be
1 and Be

4 such that SB contains
the page be and SB′ contains the page ae. However, in B, the page ae is requested
before the page be. Thus at the point between the two requests, the cache contains
two pages associated with e, plus one page associated with every other edge, the
total of m+ 1 pages, a contradiction.
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Now we are ready to complete this direction.

Lemma 1.18. Suppose that there exists a valid service with the total savings of
(d− 1)m+K/(n+ 1). Then G has an independent set W of size K.

Proof. Let W be the set of all v such that pv is cached between its two requests.
The total savings imply that |W | = K.

Now we claim that W is independent. Suppose not, let e = uv be an edge
with u, v ∈ W . Then pu and pv are cached in the corresponding phases. Thus
neither αe nor βe can be cached, since together with other m− 1 requests of size
2 associated with the remaining edges, the cache size needed would be 2m + 2.
However, this contradicts the last claim.

Lemmata 1.14 and 1.18 together show that we constructed a valid polynomial-
time reduction from the problem of independent set to general caching. Therefore,
Theorem 1.13 is proven.
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2. Layers and Work Functions

Only uniform caching under the forced policy is considered in this chapter. When
designing the first Hk-competitive randomized algorithm (the ratio Hk is optimal
with respect to the competitive analysis), McGeoch and Sleator [19] invented
a dynamically changing partition of the request sequence which enables an online
algorithm to keep track of the possible moves of the optimal algorithm. Subse-
quently, Koutsoupias and Papadimitriou [17] extended the result and showed that
such a partition can be used to fully (and efficiently) characterize the associated
work function. These concepts are introduced in the first subchapter.

Koutsoupias and Papadimitriou used quasi-convexity lemma to prove the re-
sult. In the second subchapter, we give a new and simpler proof that layers do
characterize the associated work function. We will show that a direct extension
of this proof to the case with variable cache size is possible in the next chapter.

2.1 Definitions and Basics

Work functions. Work functions originally come from the k-server problem
proposed by Manasse et al. [18]. A metric space is given in this problem and
k servers occupy points from this space. The input sequence consists of requests
on points of the space; if the requested point is not occupied by any of the servers,
the algorithm must move one of the servers there. The service cost is the total
distance travelled by the servers. This problem is equivalent to uniform caching
when the distance between each two points of the metric space is one.

In the aforementioned pioneering work by Manasse et al. [18], the famous k-
server conjecture is postulated: There is a k-competitive deterministic algorithm
for the k-server problem. The conjecture remains unresolved. To stress the im-
portance of work functions, we note that the best known deterministic algorithm
is the Work Function Algorithm and it was proven to be (2k− 1)-competitive by
Koutsoupias and Papadimitriou [16]. The actual competitive ratio is unknown
and it is conjectured that this algorithm is k-competitive.

Before giving the definition of work function, we set up the notation and
conventions. The empty sequence is denoted by (). A set of pages is called
a configuration. If a configuration contains exactly ` pages, then it is called an `-
configuration. For two configurations X and Y , c(X→Y ) is the transition cost of
changing the cache configuration from X to Y . To do that, all pages X \ Y must
be evicted and all pages Y \X must be loaded. Therefore, c(X→Y ) = |Y \X|.
If S is a set of configurations, then c(S→Y ) = minX∈S c(X→Y ).

Without loss of generality, we can assume that there are always exactly k pages
in the cache in the beginning as we can put new pages there that are never
requested instead of leaving some free space in the cache. We can also assume
that pages are only evicted when necessary. Therefore, we can safely restrict
ourselves to k-configurations. We write P for the universe of all pages, C =

(P
k

)
for the set of all k-configurations and C0 for the initial cache k-configuration.

Definition 2.1 (Work function). Let σ be a request sequence. The work function
associated with σ is a function ωσ : C → N0. For a k-configuration C, ωσ(C)
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determines the minimum cost of a service of the sequence σ ending in the config-
uration C.

Another page replacements are allowed after the last request is served and
therefore work function is also defined for configurations not containing the last
requested page.

“ Intuitively, the importance of work functions stems from the almost
obvious fact that they encapsulate all the useful information about
the past; what an on-line algorithm needs to remember is ωσ, not
σ, because any other algorithm can be transformed to one with this
property without deteriorating its competitiveness.

— Koutsoupias and Papadimitriou [16] ”
We use minω as a shortcut for minX∈C ω(X). Instead of X ∪{p} and X \ {p}

we write X + p and X − p. We will be using the following fact about work
functions. The proof is simple and may be found in the literature, e.g. [16].

Fact 2.2. The work function may be computed recurrently as

ω()(C) = c(C0→C);

ωσp(C) =

{
ωσ(C) if p ∈ C,
1 + min

x∈C
ωσ(C + p− x) otherwise.

Layers. Koutsoupias and Papadimitriou [17] proved that the work function
is coned-up from the set of minimal configurations, i.e. for each C ∈ C there
is X ∈ C such that ωσ(X) = minωσ and ωσ(C) = minωσ + c(X → C). They
also proved that the set of minimal configurations can be represented by a specific
structure; when designing the algorithm Equitable, Achlioptas et al. [1] changed
the notation for this structure and called it layers. We use a slight modification of
layers used by Negoescu et al. [20, 10] where the order of layer sets is inversed and
there is an additional layer L0. This simplifies, in our opinion, the analysis. We
stress that this characterization does not hold for the general k-server problem.

Definition 2.3 (Layer representation). Let the sets of pages L0, . . . , L` be nonemp-
ty and pairwise disjoint. We say that the set of `-configurations S is represented
by layers L0, . . . , L`, if for each `-configuration X it holds

X ∈ S ⇔ (∀i ∈ {0, . . . , `− 1}) |X ∩ L≤i| ≤ i,

where L≤i is
⋃i
j=0 Lj. As a shortcut we use S = (L0 | . . . | L`).

The following lemma on computing the transition cost from a set of layers to
a given set of pages is simple, but we are not aware of any similar result.

Lemma 2.4. Let the set of `-configurations S be represented by layers L0, . . . , L`.
For a configuration P the transition cost from the set S may be computed as

c(S→P ) =
`−1

max
i=0
{|P ∩ L≤i| − i} .

Moreover, for each p ∈ P ∩ L≥1 there is a configuration X ∈ S such that
p ∈ X and c(X→P ) = c(S→P ).
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Proof. Let us write m for max`−1i=0 {|P ∩ L≤i| − i}. It is easy to see that c(S →
P ) ≥ m, because each `-configuration X ∈ S fulfills |X ∩ L≤i| − i ≤ 0 for each i
due to Definition 2.3.

We construct a configuration X = {p1, . . . , p`} ∈ S such that c(X→P ) = m.
For each j = 1, . . . , ` −m we pick pj as the page from L≥j ∩ P \ {p1, . . . , pj−1}
with the lowest layer number. If such a selection is possible, then clearly it holds
(∀i)|{p1, . . . , p`−m} ∩ L≤i| ≤ i and it is possible to choose p`−m+1, . . . , p` such that
X ∈ S. Then clearly c(X→P ) ≤ m and we are done.

It remains to prove that the selection process for p1, . . . , p`−m is valid. It is
enough to show for each j ≤ `−m the inequality

|L≥j ∩ P | ≥ (`−m)− (j − 1).

Because |P | = `, it holds |L≥j ∩ P | = ` − |L≤j−1 ∩ P |. We obtain inequality
`−|L≤j−1 ∩ P | ≥ (`−m)−(j−1), after a simplification |L≤j−1 ∩ P |−(j−1) ≤ m
which holds because of the very definition of m.

To prove the second part of the lemma, we observe that if a page p ∈ P ∩L≥1
is not in X, then the configuration Y = X + p − p` is the desired configuration
fulfilling Y ∈ S, c(Y →P ) = c(S→P ) and p ∈ Y .

2.2 New Proof

The structure of the proof is as follows: We begin with “guessing” the right set of
configurations on which the work function attains its minimum, then show how
this set is representable by layers. Finally, we show that these configurations are
indeed minimal and moreover that they cone-up the whole work function.

Definition 2.5 (The set of minimal configurations). For a request sequence σ,
the set Mσ is defined recurrently as follows.

M() = {C0};

Mσp =

{
{C | C ∈Mσ ∧ p ∈ C} if (∃C ∈Mσ)p ∈ C,
{C + p− x | C ∈Mσ ∧ x ∈ C} otherwise.

Lemma 2.6 (Updating layers). Let us denote C0 = {p1, . . . , pk}, then

M() = (P \ C0 | {p1} | . . . | {pk}) .

Let us assume Mσ = (L0 | . . . | Lk) and p ∈ Li, then

Mσp =

{
(L0 | . . . | Li−2 | Li−1 ∪ Li − p | Li+1 | . . . | Lk | {p}) if i > 0,
(L0 − p | . . . | Lk−2 | Lk−1 ∪ Lk | {p}) if i = 0.

Proof. We consider the case of an empty sequence first. By Definition 2.5 we have
M() = {C0} and layers (P \ C0 | {p1} | . . . | {pk}) represent a single configuration
{p1, . . . , pk} = C0.

Assume Mσ = (L0 | . . . | Lk) and p ∈ Li. We first consider the case i > 0.
We shall show that the layers

(L′0 | . . . | L′k) = (L0 | . . . | Li−2 | Li−1 ∪ Li − p | Li+1 | . . . | Lk | {p})
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represent exactly those configurations represented by (L0 | . . . | Lk) that contain
p. This becomes clear when we explicitly write what L′≤j looks like,

L′≤j =

{
L≤j if j ∈ {0, . . . , i− 1},
L≤j+1 − p if j ∈ {i, . . . , k − 1}.

In the case of i = 0, we shall show that the updated layer representation

(L′0 | . . . | L′k) = (L0 | . . . | Lk−2 | Lk−1 ∪ Lk | {p})

represents exactly those configurations that are created from configurations rep-
resented by (L0 | . . . | Lk) by exchanging one page for p. This again becomes clear
when we explicitly write what L′≤j looks like,

L′≤j =

{
L≤j − p if j ∈ {0, . . . , k − 2},
L≤k − p if j = k − 1.

Theorem 2.7. Let σ be a request sequence. Then the corresponding work function
ωσ may be computed for each configuration C ∈ C as

ωσ(C) = minωσ + c(Mσ→C).

Proof. We prove the theorem by induction on the request sequence.
The base case of an empty request sequence is clear, because we have M() =

{C0} and ω()(C) = c(C0→C) for every configuration C.
Let us assume that the theorem holds for the request sequence σ and prove

the theorem for the sequence σp. We denote the layers representing Mσ by
(L0 | . . . | Lk). We shall show for every configuration C ∈ C that ωσp(C) =
minωσp + c(Mσp→C).

Case 1: If p ∈ C, then due to Fact 2.2, we have ωσp(C) = ωσ(C) and it remains
to prove

minωσp + c(Mσp→C) = minωσ + c(Mσ→C). (2.1)

Case 1a: If p ∈ L≥1, then there is a configuration D ∈ Mσ such that p ∈ D
and c(D→C) = c(Mσ→C) due to Lemma 2.4. For this configuration ωσp(D) =
ωσ(D) = minωσ + c(D→Mσ) = minωσ and therefore minωσp = minωσ as the
work function is non-decreasing. And finally c(Mσp→C) = c(Mσ→C) because
D ∈Mσp (Definition 2.5) andMσp ⊆Mσ. The summation of minωσp = minωσ
and c(Mσp→C) = c(Mσ→C) gives (2.1).

Case 1b: If p ∈ L0, then minωσp = minωσ + 1 as there is no configuration
containing p in Mσ. Because Mσp is the set of all configurations created by
exchanging one page with p in a configuration from Mσ, we obtain

c(Mσp→C) = c(Mσ→C)− 1.

Summing the two results we again obtain (2.1).
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Case 2: If p /∈ C, we use Fact 2.2 to get

ωσp(C) = 1 + min
x∈C

ωσ(C + p− x) = 1 + min
x∈C

ωσp(C + p− x).

Because p ∈ C + p− x and we already solved Case 1, we get

ωσp(C) = 1 + minωσp + min
x∈C

c(Mσp→C + p− x).

Because each configuration in Mσp contains p and p /∈ C, we have

min
x∈C

c(Mσp→C + p− x) = c(Mσp→C)− 1.

Therefore, ωσp(C) = minωσp + c(Mσp→C).
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3. Variable Cache Size and
Layers

Allowing the cache size to vary over time is a natural generalization of caching.
To give an example, the best known approximation result for general caching
in the offline version is a 4-approximation due to Bar-Noy et al. [6] and this
approximation implicitly works for caching with variable cache size as well. The
world of uniform caching (under the fault policy) with variable cache size was
pioneered by Peserico [21].

We introduce the concept of caching with variable cache size in the first sub-
chapter and we give an extension of layers to the case with variable cache size in
the second subchapter. In the third subchapter, an extension of layers to caching
under the optional policy through simulating the optional policy by changing the
cache size.

3.1 Introduction

We set up a notation to deal with uniform caching with variable cache size. As
in Chapter 2, the universe of pages is denoted by P . We again use c(X→Y ) =
|Y \X| as the cost of the transition from the configuration X to the configura-
tion Y . It is no longer possible to restrict ourselves to k-configurations and there-
fore this time C = 2P . We also use the notation

(
A
≤n

)
= {X | X ⊆ A ∧ |X| ≤ n}.

A request sequence σ is a sequence of requests r1, . . . , rn where either ri = lki
meaning a request on changing the cache size to ki or ri = [pi] meaning a request
on the page pi. We denote the up-to-date cache size by kσ. It is k() = 0, kσ[p] = kσ
and kσlk = k. When a page is requested, the cache size must be greater than
zero.

As mentioned in Introduction, uniform caching is solvable with a natural
algorithm known as Belady’s rule. The proof that Belady’s rule works for the
case with variable cache size as well was given by Peserico [21]. The proof is in
fact implicit as it is enough to notice that classical proofs (such as the one in [9])
do not depend on the assumption that the cache size is constant.

Theorem 3.1 (Belady’s rule for variable cache size). Let ρ = r1, . . . , rn be a re-
quest sequence of uniform caching with variable cache size.

A service with the optimal cost may be constructed using the following rule:
If the eviction of a page is necessary (either a new page is requested and it would
not fit into the cache, or the cache size is decreased), evict the page whose further
request is the furthest in the future.

It is possible to directly implement Belady’s rule in time O(n log n).

Definition 3.2 (Generalized work function). For a request sequence σ the (gen-
eralized) work function is a function ωσ : C → N0 such that ωσ(X) gives the
optimal cost of serving the request sequence while ending in the configuration X.

The cache size limits must be respected during the whole service, but after
serving the last request it is possible to load and evict arbitrary number of pages
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from the cache no matter what the cache size is. This ensures that the work
function is well-defined for all configurations.

We prove the following analogy of Fact 2.2.

Lemma 3.3. The work function may be computed recurrently as

ω()(C) = c(∅→C) = |C|;
ωσlk(C) = min

X∈( C≤k)
(ωσ(X) + c(X→C)) ;

ωσ[p](C) =

 ωσ(C) if |C| ≤ kσ ∧ p ∈ C,
min

X∈( C−p
≤kσ−1)

(ωσ(X + p) + c(X + p→C)) otherwise.

Proof. The case of an empty sequence is clear as there is nothing in the cache in
the beginning and we must move to the desired configuration.

To justify the remaining three equations, we realize that it is always necessary
to end up in some configuration which fits into the cache (and contains p if
necessary) and then, after the service is done, move to the desired configuration.
Because evicting pages is for free, we can safely assume that all pages outside
C + p are evicted before loading the new pages.

3.2 Layers for Variable Cache Size

This time, we do not guess the set of minimal configurations as in Definition 2.5,
but only the set of minimal configurations that are maximal on inclusion; we call
these configurations optimal.

Definition 3.4 (The set of optimal configurations). For a request sequence σ,
the set Oσ and the parameter `σ are defined recurrently as follows,

`() = 0;

O() = {∅};
`σlk = min{k, `σ};

Oσlk =

{
{C | |C| = k ∧ (∃X ∈ Oσ)C ⊆ X} if k < `σ,
Oσ otherwise;

`σ[p] =

{
`σ + 1 if `σ < kσ and (∀C ∈ Oσ)p /∈ C,
`σ otherwise;

Oσ[p] =


{C | C ∈ Oσ ∧ p ∈ C} if (∃C ∈ Oσ)p ∈ C,
{C + p | C ∈ Oσ} else if `σ < kσ,
{C + p− x | C ∈ Oσ ∧ x ∈ C} otherwise.

It is easy to see that each configuration in Oσ contains `σ pages. Now we show
to represent the set of optimal configurations by layers (Definition 2.3).

Lemma 3.5 (Updating layers). Let σ be a request sequence. The set Oσ may
be represented by layers with `σ + 1 layer sets. The corresponding layers may be
computed recurrently as follows.

For the empty sequence, O() is represented by trivial layers, O() = (P) .
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Let us assume Oσ = (L0 | . . . | L`σ) and p ∈ Li, then

Oσlk =

{
(L0 | . . . | L`σ) if `σ ≤ k,
(L0 | . . . | Lk−1 | Lk ∪ · · · ∪ L`σ) otherwise;

Oσ[p] =


(L0 | . . . | Li−2 | Li−1 ∪ Li − p | . . . | L`σ | {p}) if i > 0,
(L0 − p | . . . | L`σ−1 | L`σ | {p}) if i = 0 and `σ[p] = `σ + 1,
(L0 − p | . . . | L`σ−2 | L`σ−1 ∪ L`σ | {p}) if i = 0 and `σ[p] = `σ.

Proof. The case of an empty sequence is clear as (P) represents only the empty
configuration and O() = {∅}.

Assume Oσ = (L0 | . . . | L`σ) and p ∈ Li. We consider the case of a re-
quest on changing the cache size to k. If `σ ≤ k, there is nothing to prove.
If `σ > k, then it is easy to see that a k-configuration C is represented by
(L0 | . . . | Lk−1 | Lk ∪ · · · ∪ L`σ) if and only if it is a subset of a configuration
represented by (L0 | . . . | L`σ).

Now we assume that the next request demands the page p. The cases i > 0
and i = 0∧`σ = kσ are the same as in Lemma 2.6. In the case i > 0∧`σ[p] = `σ+1,
we are supposed to prove that layers(

L′0 | . . . | L′`σ+1

)
= (L0 − p | . . . | L`σ | {p})

represent exactly those configurations that are created from configurations rep-
resented by (L0 | . . . | L`σ) by adding the page p. Because L′`σ+1 = {p}, each
configuration represented by

(
L′0 | . . . | L′`σ+1

)
contains p. For the other `σ pages

P = {p1, . . . , p`σ} different from p, conditions |L≤i ∩ P | ≤ i and
∣∣L′≤i ∩ P ∣∣ ≤ i for

i = 0, . . . , `σ − 1 are equivalent.

Theorem 3.6. Let σ be a request sequence, then the corresponding generalized
work function ωσ may be computed for each configuration C ∈ C as

ωσ(C) = minωσ + c(Oσ→C).

Proof. We prove the theorem by induction on the request sequence.
The base case of an empty request sequence is clear, because we haveO() = {∅}

and ω()(C) = c(∅→C) for every configuration C.
Let us assume that the theorem holds for the request sequence σ and prove

the theorem for the sequence σr. We use the notation O = Oσ, O′ = Oσr,
ω = ωσ, ω′ = ωσr, ` = `σ, `′ = `σr, k = kσ, k′ = kσr. We denote the layers
representing O by (L0 | . . . | Lk). We shall show for every configuration C ∈ C
that ω′(C) = minω′ + c(O′→C).

Case 1: r = lk′
In this case minω = minω′ (ω(∅) = minω due to the induction hypothesis

and ω′(∅) = ω(∅) due to Lemma 3.3). According to Lemma 3.3 it holds

ω′(C) = min
X∈( C

≤k′)
(ω(X) + c(X→C)),

rewriting using the induction hypothesis

ω′(C) = minω + min
X∈( C

≤k′)
(c(O→X) + c(X→C)).
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It remains to prove minX∈( C
≤k′)

(c(O→X) + c(X→C)) = c(O′→C).

We observe

min
X∈( C

≤k′)
(c(O→X) + c(X→C)) = min

Y :|Y |≤k′
Y⊆Z:Z∈O

c(Y →C).

And clearly

min
Y :|Y |≤k′
Y⊆Z:Z∈O

c(Y →C) = c(O′→C).

Case 2: r = [p] and p ∈ C
Case 2a: (∃X ∈ O)p ∈ X
In this case minω = minω′ because ω(X) = minω due to the induction

hypothesis and ω′(X) = ω(X) due to Lemma 3.3. For the same reason, (∀Y ∈
O′)ω′(Y ) = ω(Y ).

Due to Lemma 2.4, there is Y ∈ O such that p ∈ Y ∧ c(O→C) = c(Y →C).
Y ∈ O′ and therefore c(O′→C) = c(O→C). As a consequence ω′(C) ≤ ω(C).
We are done.

Case 2b: p /∈ L≥1 and `σ < kσ
In this case minω′ = minω + 1 as no configuration in Oσ contains p. It is

easy to see c(O′→C) = c(O→C) − 1. In this case also ω(C) = ω′(C) due to
Lemma 3.3.

Case 2c: p /∈ L≥1 and `σ = kσ
Again, minω′ = minω.

If c(O→C) > 1, then ω′(C) = ω(C) and c(O′→C) = c(O→C)− 1.

If c(O→C) = 0, then c(O′→C) = 0 and ω′(C) = ω(C) + 1.

Case 3: r = [p] and p /∈ C
According to Lemma 3.3,

ω′(C) = min
X∈( C−p

≤kσ−1)
(ω(X + p) + c(X + p→C))

= min
X∈( C−p

≤kσ−1)
(ω′(X + p) + c(X + p→C)) .

We make use of having the theorem proven for the case p ∈ C:

ω′(C) = min
X∈( C−p

≤kσ−1)
(minω′ + c(O′→X + p) + c(X + p→C))

= minω′ + min
X∈( C−p

≤kσ−1)
(c(O′→X + p) + c(X + p→C)) .

To finish the proof we observe

min
X∈( C

≤kσ−1)
(c(O′→X + p) + c(X + p→C)) = c(O′→C).
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3.3 Optional Policy

In this subchapter, we show that results around uniform caching under the forced
policy holds in a very similar form also under the optional policy.

Theorem 3.7. Let σ be a request sequence for uniform caching under the optional
policy with variable cache size. Then the corresponding set of optimal configura-
tions Oσ may be represented by layers.

For σ = (), O() = (P). Assuming Oσ = (L0 | . . . | L`) and p ∈ Li, then

Oσlk =

{
(L0 | . . . | L`) if ` ≤ kσ,
(L0 | . . . | Lk−1 | Lk ∪ · · · ∪ L`) otherwise;

Oσ[p] =


(L0 | . . . | Li−2 | Li−1 ∪ Li − p | . . . | L` | {p}) if i > 0,
(L0 − p | . . . | L`−1 | L` | {p}) if i = 0 and ` < kσ,
(L0 − p | . . . | L`−1 | L` + p) if i = 0 and ` = kσ.

Proof. We show how to mimic the optional policy by the forced policy. Let σ be
the request sequence for the optional policy. We create the sequence σ′ for the
forced policy: We replace each request [p] by three requests l(k+1), [p], lk where
k is the cache size at the time of the request [p].

The proof that a service for each of the request sequences may be transformed
to a service of the other sequence is the same as in Theorem 1.12.

It remains to show that the layers are indeed updated as in the statement of
this theorem. There is nothing to show in the case i > 0. In the case of i = 0, the
request l(k + 1) ensures that after processing the request [p], the page p is put
into the new layer L`+1 = {p}. When processing the request lk, nothing changes
if ` < k, or the the layer L`+1 is united with L` if ` = k.

A simple consequence of such a simulation of the optional policy through
changing the cache size is also the following modification of Belady’s rule for the
optional policy:

Theorem 3.8 (Belady’s rule for the optional policy). Let ρ = r1, . . . , rn be a re-
quest sequence of uniform caching with variable cache size under the optional
policy.

A service with the optimal cost may be constructed using the following rule: If
a page request comes and a fault occurs, add the page into the cache first. If the
number of pages exceeds the cache size, evict the page whose further request is the
furthest in the future. Similarly, if a request on changing the cache size arrives
and the cache size is exceeded, repeatedly evict the page whose furthest request is
the furthest in the future until the pages fit into the cache.
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4. Algorithms for General
Caching

In this chapter, we give two algorithms solving general caching. The time com-
plexity of these algorithms depends on parameters of the caching instance and
the complexity becomes polynomial when the parameters are suitably bound-
ed. Therefore, these algorithms may be considered as polynomial algorithms for
special instances of general caching.

We remind the terminology from Introduction which is crucial for this chapter:
A page is called normal if both its size and fault cost are one; otherwise it is called
abnormal.

4.1 Algorithm 1

The parameter η is equal to the total number of requests on abnormal pages
in the instance of caching. We give an algorithm that is polynomial when the
number of requests on abnormal pages is bounded by a logarithmic function of
the request sequence length.

Theorem 4.1. There is an algorithm for general caching with the running time
O(2η · n log n), this holds for both the forced and the optional policy.

Proof. We consider the service of the abnormal pages first. As in Chapter 1, we
can without loss of generality assume that each page is either evicted right after
processing the request on it (or even never loaded in the case of the optional
policy) or is kept in the cache until another request on it arrives. This means
that the total number of services of the abnormal pages is at most 2η.

When a service of the abnormal pages is fixed, we are able to compute what
is the free cache space that can be used for the normal pages. This means that
the problem essentially boils down to caching with variable cache size. Due to
Theorem 3.1 (the forced policy) and Theorem 3.8 (the optional policy), it is
solvable using Belady’s rule and, as was mentioned in the previous chapter, it
can be implemented with running time O(n log n). For the total of at most 2η

services we obtain the time complexity O(2η · n log n).

4.2 Algorithm 2

The parameter κ is defined to be the difference between the cache size and the
size of the smallest abnormal page. We give an algorithm which is effective when
each page is either normal or very large.

Theorem 4.2. There is an algorithm for general caching with the running time
nO(κ), this holds for both the forced and the optional policy.

Proof. We distinguish two cases. If κ ≥ k/2, then the total cache size is ≤ 2κ. In
this case it is possible to solve the problem with a simple dynamic programming
in time nO(κ) as there are at most nO(κ) cache configurations.
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Now we proceed to the case κ < k/2. In this case, only one abnormal page fits
into the cache and we use the more intuitive name large pages for the abnormal
pages. To simplify the analysis, we add one additional request rn+1 on a new
page of size k and fault cost 0 at the end of the request sequence.

As in the proof of Theorem 4.1, we again assume without loss of generality that
each large page is either evicted right after the request (or not even loaded into
the cache) or it remains in the cache until the next request on this page. And we
also again use the fact that when the service of large pages is fixed, the problem
becomes caching with variable cache size. We describe the algorithm for the
optional policy first, then we explain the small modifications for the forced policy.
We use Theorem 3.7 stating that the work function of caching with variable cache
size may be characterized by layers in the case of the optional policy.

For each request ri on a large page we wish to compute the set Dri of all pairs
(L, c) such that layers L represent a work function corresponding to a sequence
of caching with variable cache size which is gained by fixing a service of large
pages from r1, . . . , ri, which loads the page requested by ri into the cache, and
then updating layers with variable cache size according to Theorem 3.7. The cost
c is the sum of the minimum of the work function and the cost of the fixed service
of the large pages. There might me more ways of reaching a work function
represented by layers L; it is naturally enough to consider the one with the
minimum value of c.

We show how to compute all the sets Dr using dynamic programming. Let ri
be a request on a large page P and assume that for each preceding request rj on
a large page, the set Drj is already computed.

We distinguish two kinds of services of all the previous requests and treat them
separately. In the first kind, the page P is already present in the cache when the
request ri arrives. Let rj be the previous request on the page P . To compute the
part of Dri corresponding to this kind of services, we consider each (L, c) ∈ Drj .
The service of large pages among ri+1, . . . , rj−1 is determined – these large pages
are not even loaded into the cache and so we add to c the total fault cost of pages
of all these requests. As far as requests on normal pages among ri+1, . . . , rj−1 are
concerned, we update the layers and add to c the increase in the minimum of the
work function (the cache size remains set to k − size(P ) for the whole time).

In the second kind of services we need to deal with, the page P is not present
in the cache when ri arrives and must be loaded right now. We must consider all
possibilities which was the last large page present in the cache before ri arrived.
It can also be the case that ri is the fist large page that was ever loaded into the
cache. In this case, we begin with the trivial layers (P) which are the layers with
the only layer L0 containing all pages from the universe, raise the cache size to
k, process all requests r1, . . . , ri−1 as in the previous case and decrease the cache
size to k − size(P ). Finally, we add to c the cost cost(P ).

Let us fix a request rj on a large page Q preceding ri (j < i). To cover all
services which have the page Q as the last page in the cache before ri and Q is
lastly evicted after rj, we consider each (L, c) ∈ Drj and we update L by setting
the cache size to k, processing all requests rj+1, . . . , ri−1 as in the previous cases
and decreasing the cache size to k− size(P ). Finally, we add to c the increase in
the minimum of the work function and cost(P ).

This finishes the description of the computation of all Dr. We can without

36



loss of generality assume that in each optimal service the page rn+1 is loaded into
the cache, because it does not cost anything. In the set Drn+1 , there is only one
element in the form ((P) , c) as the page requested by rn+1 fills the entire cache
and this c does naturally determine the optimum cost of a service for the caching
instance.

Let us bound the time complexity of the algorithm. The size of each set Dr is
at most nκ+1 as there are always at most κ+ 1 layers (we use the simplest bound
considering all assignments of pages into those κ + 1 layers). The transitions
between various layer representations according to the rules from Theorem 3.7
are clearly computable in polynomial time and the complexity nO(κ) follows.

It remains to explain how the algorithm looks like under the forced policy;
this case is in fact a bit simpler. This time we update the layers according to
Lemma 3.5 and Theorem 3.6. As the pages must be always loaded in the cache,
it is enough to consider the previous request on a large page and distinguish two
cases: Either the previous requested page remains in the cache (this can happen
only when both requests demand the very same page), or the page is evicted after
the previous request.
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Conclusion

We list the set of open questions following the results presented in this work.
In the first chapter, we proved that general caching restricted to pages of sizes

{1, 2, 3} is strongly NP-hard, even in the case of the bit model and fault model.
Complexity status of general caching with page sizes restricted to {1, 2} remains
an interesting open problem.

Question 1. Is general caching also (strongly) NP-hard when page sizes are
limited to {1, 2}? Can caching with page sizes {1, 2} be solved in polynomial
time, at least in the bit or fault model?

In Chapters 2 and 3, the structure of layers on which Hk-competitive algo-
rithms for uniform caching are based was discussed. The only known O(log k)-
competitive algorithms beyond uniform caching are based on rounding the solu-
tion of a linear program. It is still open whether there is a combinatorial algorithm
for the problem.

Question 2. Is there a randomized O(log k)-competitive algorithm for general
caching (or at least for one of the cost, bit or fault model) which is combinatorial,
for example similar to the algorithms for uniform caching?

The first algorithm given in the fourth chapter shows that caching is solvable
in polynomial time if the number of requests on abnormal pages is logarithmic.
The natural question arrives whether it is also solvable when there is only a bound
on the total number of different abnormal pages, not on the number of requests
on them.

Question 3. Is general caching solvable in polynomial time if the total number
of different requested abnormal pages is bounded by O(log n) or a constant?

The second given algorithm is polynomial when there is a constant c such that
each abnormal page has size at least k − c. In the proof for the case c < k/2, it
is very useful that only one abnormal page fits into the cache. Therefore, we ask
whether this property is sufficient for obtaining a polynomial algorithm.

Question 4. Is general caching solvable in polynomial time if each abnormal page
has size strictly greater than half of the cache, at least in the bit or fault model?
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