
Online Chromatic Number is PSPACE-Complete

Martin Böhm, Pavel Veselý

Computer Science Institute of Charles University, Prague, Czech Republic.

IWOCA 2016, August 17

Online vertex coloring

• Vertices of G are revealed one by one;

• Algorithm sees edges to previously revealed vertices.

• Algorithm must color v immediately after arrival:
• Two adjacent vertices cannot have the same color;
• Algorithm cannot change the color later.

• Goal: Minimize no. of colors.

• Our stronger model: Algorithm gets a copy of G at the
start.

Online vertex coloring

• Vertices of G are revealed one by one;

• Algorithm sees edges to previously revealed vertices.

• Algorithm must color v immediately after arrival:
• Two adjacent vertices cannot have the same color;
• Algorithm cannot change the color later.

• Goal: Minimize no. of colors.

• Our stronger model: Algorithm gets a copy of G at the
start.

Online vertex coloring

• Vertices of G are revealed one by one;

• Algorithm sees edges to previously revealed vertices.

• Algorithm must color v immediately after arrival:
• Two adjacent vertices cannot have the same color;
• Algorithm cannot change the color later.

• Goal: Minimize no. of colors.

• Our stronger model: Algorithm gets a copy of G at the
start.

Online vertex coloring

• Vertices of G are revealed one by one;

• Algorithm sees edges to previously revealed vertices.

• Algorithm must color v immediately after arrival:
• Two adjacent vertices cannot have the same color;
• Algorithm cannot change the color later.

• Goal: Minimize no. of colors.

• Our stronger model: Algorithm gets a copy of G at the
start.

Online vertex coloring

• Vertices of G are revealed one by one;

• Algorithm sees edges to previously revealed vertices.

• Algorithm must color v immediately after arrival:
• Two adjacent vertices cannot have the same color;
• Algorithm cannot change the color later.

• Goal: Minimize no. of colors.

• Our stronger model: Algorithm gets a copy of G at the
start.

An example

An example

An example

An example

An example

An example

An example

An example

Online chromatic number

• χO(G) = minimum number of colors such that a
deterministic online algorithm colors G for any input
permutation of vertices.

• χO(P4) = 3.

• χO is an (offline) graph paratemer – like chrom. number!

History

• Online graph coloring first appears in [Bean ’76].

• Online chromatic number first appears in [Gyárfás, Lehel ’90].

• A copy of a graph at the start – [Halldórsson ’96].

Online chromatic number

• χO(G) = minimum number of colors such that a
deterministic online algorithm colors G for any input
permutation of vertices.

• χO(P4) = 3.

• χO is an (offline) graph paratemer – like chrom. number!

History

• Online graph coloring first appears in [Bean ’76].

• Online chromatic number first appears in [Gyárfás, Lehel ’90].

• A copy of a graph at the start – [Halldórsson ’96].

Online chromatic number

• χO(G) = minimum number of colors such that a
deterministic online algorithm colors G for any input
permutation of vertices.

• χO(P4) = 3.

• χO is an (offline) graph paratemer – like chrom. number!

History

• Online graph coloring first appears in [Bean ’76].

• Online chromatic number first appears in [Gyárfás, Lehel ’90].

• A copy of a graph at the start – [Halldórsson ’96].

Online chromatic number

• χO(G) = minimum number of colors such that a
deterministic online algorithm colors G for any input
permutation of vertices.

• χO(P4) = 3.

• χO is an (offline) graph paratemer – like chrom. number!

History

• Online graph coloring first appears in [Bean ’76].

• Online chromatic number first appears in [Gyárfás, Lehel ’90].

• A copy of a graph at the start – [Halldórsson ’96].

Game view

• Two players: Drawer and Painter

• Both have a copy of G

• Both know a number k

• Drawer (Sketcher) chooses the next vertex for Painter.
• Painter paints a presented vertex with a color

• Drawer wins when Painter uses k + 1 colors

• Otherwise Painter wins

• Painter has a winning strategy ⇔ χO(G) ≤ k

Game view

• Two players: Drawer and Painter

• Both have a copy of G

• Both know a number k
• Drawer (Sketcher) chooses the next vertex for Painter.
• Painter paints a presented vertex with a color

• Drawer wins when Painter uses k + 1 colors

• Otherwise Painter wins

• Painter has a winning strategy ⇔ χO(G) ≤ k

Game view

• Two players: Drawer and Painter

• Both have a copy of G

• Both know a number k
• Drawer (Sketcher) chooses the next vertex for Painter.
• Painter paints a presented vertex with a color

• Drawer wins when Painter uses k + 1 colors

• Otherwise Painter wins

• Painter has a winning strategy ⇔ χO(G) ≤ k

Complexity

Chromatic number : deciding χ(G) ≤ k is NP-hard

• already for k = 3 colors.

What about χO(G) ≤ k?

• In P for k = 3 [Gyárfás, Kiraly, Lehel ’93]

[Kudahl ’15]: χO(G) ≤ k in PSPACE and coNP-hard;

• Conjecture: PSPACE-complete

Our contribution: χO(G) ≤ k is PSPACE-complete.

Complexity

Chromatic number : deciding χ(G) ≤ k is NP-hard

• already for k = 3 colors.

What about χO(G) ≤ k?

• In P for k = 3 [Gyárfás, Kiraly, Lehel ’93]

[Kudahl ’15]: χO(G) ≤ k in PSPACE and coNP-hard;

• Conjecture: PSPACE-complete

Our contribution: χO(G) ≤ k is PSPACE-complete.

Complexity

Chromatic number : deciding χ(G) ≤ k is NP-hard

• already for k = 3 colors.

What about χO(G) ≤ k?

• In P for k = 3 [Gyárfás, Kiraly, Lehel ’93]

[Kudahl ’15]: χO(G) ≤ k in PSPACE and coNP-hard;

• Conjecture: PSPACE-complete

Our contribution: χO(G) ≤ k is PSPACE-complete.

Complexity and our contribution

Chromatic number : deciding χ(G) ≤ k is NP-hard

• already for k = 3 colors.

What about χO(G) ≤ k?

• In P for k = 3 [Gyárfás, Kiraly, Lehel ’93]

[Kudahl ’15]: χO(G) ≤ k in PSPACE and coNP-hard;

• Conjecture: PSPACE-complete

Our contribution: χO(G) ≤ k is PSPACE-complete.

Starting step: Precoloring

Precoloring: Some vertices precolored and revealed to the
algorithm at the start.

Theorem (Kudahl ’15)

It is PSPACE-complete to decide χO(G) ≤ k given that
polynomially many vertices are precolored.

Starting step: Precoloring

Precoloring: Some vertices precolored and revealed to the
algorithm at the start.

Theorem (Kudahl ’15)

It is PSPACE-complete to decide χO(G) ≤ k given that
polynomially many vertices are precolored.

Three steps to the theorem

Theorem
It is PSPACE-complete to decide whether χO(G) ≤ k.

Step 1:
. . . with polynomially many precolored vertices (new proof).

Step 2:
. . . with logarithmically many precolored vertices.

Step 3:
. . . with no precolored vertices.

Three steps to the theorem

Theorem
It is PSPACE-complete to decide whether χO(G) ≤ k.

Step 1:
. . . with polynomially many precolored vertices (new proof).

Step 2:
. . . with logarithmically many precolored vertices.

Step 3:
. . . with no precolored vertices.

Three steps to the theorem

Theorem
It is PSPACE-complete to decide whether χO(G) ≤ k.

Step 1:
. . . with polynomially many precolored vertices (new proof).

Step 2:
. . . with logarithmically many precolored vertices.

Step 3:
. . . with no precolored vertices.

Three steps to the theorem

Theorem
It is PSPACE-complete to decide whether χO(G) ≤ k.

Step 1:
. . . with polynomially many precolored vertices (new proof).

Step 2:
. . . with logarithmically many precolored vertices.

Step 3:
. . . with no precolored vertices.

Three steps to the theorem

Theorem
It is PSPACE-complete to decide whether χO(G) ≤ k.

Step 1:
. . . with polynomially many precolored vertices (new proof).

Step 2:
. . . with logarithmically many precolored vertices.

Step 3:
. . . with no precolored vertices.

A PSPACE-Complete Problem

The problem we reduce to: Q3DNF-SAT.

• Input: a fully quantified 3DNF formula.

• Question: Is it satisfiable? ⇐⇒ Is at least one clause
satisfiable?

∀x1∃x2∀x3: (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

Why is it PSPACE-complete?

1. Q3CNF-SAT is PSPACE-complete (well-known).

2. PSPACE is closed under complement.

3. Q3DNF-SAT is the complement of Q3CNF-SAT.

A PSPACE-Complete Problem

The problem we reduce to: Q3DNF-SAT.

• Input: a fully quantified 3DNF formula.

• Question: Is it satisfiable? ⇐⇒ Is at least one clause
satisfiable?

∀x1∃x2∀x3: (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

Why is it PSPACE-complete?

1. Q3CNF-SAT is PSPACE-complete (well-known).

2. PSPACE is closed under complement.

3. Q3DNF-SAT is the complement of Q3CNF-SAT.

A PSPACE-Complete Problem

The problem we reduce to: Q3DNF-SAT.

• Input: a fully quantified 3DNF formula.

• Question: Is it satisfiable? ⇐⇒ Is at least one clause
satisfiable?

∀x1∃x2∀x3: (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

Why is it PSPACE-complete?

1. Q3CNF-SAT is PSPACE-complete (well-known).

2. PSPACE is closed under complement.

3. Q3DNF-SAT is the complement of Q3CNF-SAT.

A PSPACE-Complete Problem

The problem we reduce to: Q3DNF-SAT.

• Input: a fully quantified 3DNF formula.

• Question: Is it satisfiable? ⇐⇒ Is at least one clause
satisfiable?

∀x1∃x2∀x3: (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

Why is it PSPACE-complete?

1. Q3CNF-SAT is PSPACE-complete (well-known).

2. PSPACE is closed under complement.

3. Q3DNF-SAT is the complement of Q3CNF-SAT.

Step 1: Precoloring

We precolor a big clique Kcol with
|V (Kcol)| ≈ the size of the formula.

Three uses:

1. Identify uncolored vertices to player
Painter;

2. Limit allowed colors on any
uncolored vertex.

3. Assign meaning to colors.

Step 1: Precoloring

We precolor a big clique Kcol with
|V (Kcol)| ≈ the size of the formula.

Three uses:

1. Identify uncolored vertices to player
Painter;

2. Limit allowed colors on any
uncolored vertex.

3. Assign meaning to colors.

Step 1: Precoloring

We precolor a big clique Kcol with
|V (Kcol)| ≈ the size of the formula.

Three uses:

1. Identify uncolored vertices to player
Painter;

2. Limit allowed colors on any
uncolored vertex.

3. Assign meaning to colors.

blueor red

Step 1: Precoloring

We precolor a big clique Kcol with
|V (Kcol)| ≈ the size of the formula.

Three uses:

1. Identify uncolored vertices to player
Painter;

2. Limit allowed colors on any
uncolored vertex.

3. Assign meaning to colors.
blueor red

set1 orunset1

Step 1: Reduction

Given a Q3-DNF formula

∀x1∃x2∀x3: (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

take a polynomially sized Kcol and add gadgets for each

• variable,

• clause,

• and the entire formula.

Step 1: Reduction

Given a Q3-DNF formula

∀x1∃x2∀x3: (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

take a polynomially sized Kcol and add gadgets for each

• variable,

• clause,

• and the entire formula.

Step 1: Gadget sketch

x1,t x1,f xix3,t x3,fx2,t x2,f

∀x1∃x2∀x3 : (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

l1,1 l1,2 l1,3 l2,1 l2,2 l2,3

x2,h

d1 d2

F

Step 1: Variable gadget

∀x1∃x2∀x3: (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

1. Universal quantifier: two vertices x1,t , x1,f . Only
two allowed colors: set1, unset1.
x1,t has color set1 ⇒ x1 set to True.

Requirement: Painter cannot distinguish x1,t
from x1,f . . . but Painter knows it is coloring
the gadget for x1.

2. Existential quantifier: Triangle x2,t , x2,f and x2,h
– third vertex a helper vertex.

Requirement: Painter must be able to
distinguish x2,t from x2,f . . . so all three vertices
have different allowed colors.

x1,t x1,f

x2,t x2,f

x2,h

Step 1: Variable gadget

∀x1∃x2∀x3: (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

1. Universal quantifier: two vertices x1,t , x1,f . Only
two allowed colors: set1, unset1.
x1,t has color set1 ⇒ x1 set to True.

Requirement: Painter cannot distinguish x1,t
from x1,f

. . . but Painter knows it is coloring
the gadget for x1.

2. Existential quantifier: Triangle x2,t , x2,f and x2,h
– third vertex a helper vertex.
Requirement: Painter must be able to
distinguish x2,t from x2,f . . . so all three vertices
have different allowed colors.

x1,t x1,f

x2,t x2,f

x2,h

Step 1: Variable gadget

∀x1∃x2∀x3: (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

1. Universal quantifier: two vertices x1,t , x1,f . Only
two allowed colors: set1, unset1.
x1,t has color set1 ⇒ x1 set to True.

Requirement: Painter cannot distinguish x1,t
from x1,f . . . but Painter knows it is coloring
the gadget for x1.

2. Existential quantifier: Triangle x2,t , x2,f and x2,h
– third vertex a helper vertex.
Requirement: Painter must be able to
distinguish x2,t from x2,f . . . so all three vertices
have different allowed colors.

x1,t x1,f

x2,t x2,f

x2,h

Step 1: Variable gadget

∀x1∃x2∀x3: (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

1. Universal quantifier: two vertices x1,t , x1,f . Only
two allowed colors: set1, unset1.
x1,t has color set1 ⇒ x1 set to True.

Requirement: Painter cannot distinguish x1,t
from x1,f . . . but Painter knows it is coloring
the gadget for x1.

2. Existential quantifier: Triangle x2,t , x2,f and x2,h
– third vertex a helper vertex.

Requirement: Painter must be able to
distinguish x2,t from x2,f . . . so all three vertices
have different allowed colors.

x1,t x1,f

x2,t x2,f

x2,h

Step 1: Variable gadget

∀x1∃x2∀x3: (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

1. Universal quantifier: two vertices x1,t , x1,f . Only
two allowed colors: set1, unset1.
x1,t has color set1 ⇒ x1 set to True.

Requirement: Painter cannot distinguish x1,t
from x1,f . . . but Painter knows it is coloring
the gadget for x1.

2. Existential quantifier: Triangle x2,t , x2,f and x2,h
– third vertex a helper vertex.
Requirement: Painter must be able to
distinguish x2,t from x2,f

. . . so all three vertices
have different allowed colors.

x1,t x1,f

x2,t x2,f

x2,h

Step 1: Variable gadget

∀x1∃x2∀x3: (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

1. Universal quantifier: two vertices x1,t , x1,f . Only
two allowed colors: set1, unset1.
x1,t has color set1 ⇒ x1 set to True.

Requirement: Painter cannot distinguish x1,t
from x1,f . . . but Painter knows it is coloring
the gadget for x1.

2. Existential quantifier: Triangle x2,t , x2,f and x2,h
– third vertex a helper vertex.
Requirement: Painter must be able to
distinguish x2,t from x2,f . . . so all three vertices
have different allowed colors.

x1,t x1,f

x2,t x2,f

x2,h

Step 1: Clause gadgets

∀x1∃x2∀x3: (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

Literal vertex: Two allowed colors, depending on the
quantifier. One of the colors always fa.

Requirement: If the literal is unsatisfied, literal vertex
must use fa.
Otherwise: uses the other color, fa is available later.

Clause vertex: Only two allowed colors, one of them
is fa.

Requirement: All three literals satisfied ⇒ color fa
available.

Final vertex F corresponding to the evaluation of φ

• We show: F can be colored ⇔ φ is satisfiable

l1,1 l1,2 l1,3

d1

Step 1: Clause gadgets

∀x1∃x2∀x3: (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

Literal vertex: Two allowed colors, depending on the
quantifier. One of the colors always fa.

Requirement: If the literal is unsatisfied, literal vertex
must use fa.
Otherwise: uses the other color, fa is available later.

Clause vertex: Only two allowed colors, one of them
is fa.

Requirement: All three literals satisfied ⇒ color fa
available.

Final vertex F corresponding to the evaluation of φ

• We show: F can be colored ⇔ φ is satisfiable

l1,1 l1,2 l1,3

d1

Step 1: Clause gadgets

∀x1∃x2∀x3: (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

Literal vertex: Two allowed colors, depending on the
quantifier. One of the colors always fa.

Requirement: If the literal is unsatisfied, literal vertex
must use fa.
Otherwise: uses the other color, fa is available later.

Clause vertex: Only two allowed colors, one of them
is fa.

Requirement: All three literals satisfied ⇒ color fa
available.

Final vertex F corresponding to the evaluation of φ

• We show: F can be colored ⇔ φ is satisfiable

l1,1 l1,2 l1,3

d1

Step 1: Clause gadgets

∀x1∃x2∀x3: (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

Literal vertex: Two allowed colors, depending on the
quantifier. One of the colors always fa.

Requirement: If the literal is unsatisfied, literal vertex
must use fa.
Otherwise: uses the other color, fa is available later.

Clause vertex: Only two allowed colors, one of them
is fa.

Requirement: All three literals satisfied ⇒ color fa
available.

Final vertex F corresponding to the evaluation of φ

• We show: F can be colored ⇔ φ is satisfiable

l1,1 l1,2 l1,3

d1

Step 1: Clause gadgets

∀x1∃x2∀x3: (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

Literal vertex: Two allowed colors, depending on the
quantifier. One of the colors always fa.

Requirement: If the literal is unsatisfied, literal vertex
must use fa.
Otherwise: uses the other color, fa is available later.

Clause vertex: Only two allowed colors, one of them
is fa.

Requirement: All three literals satisfied ⇒ color fa
available.

Final vertex F corresponding to the evaluation of φ

• We show: F can be colored ⇔ φ is satisfiable

l1,1 l1,2 l1,3

d1

Step 1: Big picture

x1,t x1,f xix3,t x3,fx2,t x2,f

∀x1∃x2∀x3: (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

l1,1 l1,2 l1,3 l2,1 l2,2 l2,3

x2,h

d1 d2

F

Step 1: Big picture

x1,t x1,f xix3,t x3,fx2,t x2,f

∀x1∃x2∀x3: (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

l1,1 l1,2 l1,3 l2,1 l2,2 l2,3

x2,h

d1 d2

F

Step 1: Big picture

x1,t x1,f xix3,t x3,fx2,t x2,f

∀x1∃x2∀x3: (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

l1,1 l1,2 l1,3 l2,1 l2,2 l2,3

x2,h

d1 d2

F

Step 1: Analysis

• If the formula is not satisfiable, then Drawer can force
Painter to use more than k colors

• Drawer presents vertices for variables in the right order

• If the formula is satisfiable, then Painter can color the graph
using k colors

• Painter can recognize vertices by allowed colors
• With the exception of vertices of a universally quantified

variable

• Right order of vertices ⇒ Painter uses the satisfiability
• Bad order only helps Painter

Step 1: Analysis

• If the formula is not satisfiable, then Drawer can force
Painter to use more than k colors

• Drawer presents vertices for variables in the right order

• If the formula is satisfiable, then Painter can color the graph
using k colors

• Painter can recognize vertices by allowed colors
• With the exception of vertices of a universally quantified

variable

• Right order of vertices ⇒ Painter uses the satisfiability
• Bad order only helps Painter

Step 1: Analysis

• If the formula is not satisfiable, then Drawer can force
Painter to use more than k colors

• Drawer presents vertices for variables in the right order

• If the formula is satisfiable, then Painter can color the graph
using k colors

• Painter can recognize vertices by allowed colors
• With the exception of vertices of a universally quantified

variable

• Right order of vertices ⇒ Painter uses the satisfiability
• Bad order only helps Painter

Step 1: Analysis

• If the formula is not satisfiable, then Drawer can force
Painter to use more than k colors

• Drawer presents vertices for variables in the right order

• If the formula is satisfiable, then Painter can color the graph
using k colors

• Painter can recognize vertices by allowed colors

• With the exception of vertices of a universally quantified
variable

• Right order of vertices ⇒ Painter uses the satisfiability
• Bad order only helps Painter

Step 1: Analysis

• If the formula is not satisfiable, then Drawer can force
Painter to use more than k colors

• Drawer presents vertices for variables in the right order

• If the formula is satisfiable, then Painter can color the graph
using k colors

• Painter can recognize vertices by allowed colors
• With the exception of vertices of a universally quantified

variable

• Right order of vertices ⇒ Painter uses the satisfiability
• Bad order only helps Painter

Step 1: Analysis

• If the formula is not satisfiable, then Drawer can force
Painter to use more than k colors

• Drawer presents vertices for variables in the right order

• If the formula is satisfiable, then Painter can color the graph
using k colors

• Painter can recognize vertices by allowed colors
• With the exception of vertices of a universally quantified

variable

• Right order of vertices ⇒ Painter uses the satisfiability
• Bad order only helps Painter

Three steps to the theorem

Theorem
It is PSPACE-complete to decide whether χO(G) ≤ k.

Step 1:
. . . with polynomially many precolored vertices (new proof).

Step 2:
. . . with logarithmically many precolored vertices.

Step 3:
. . . with no precolored vertices.

Step 2: Sketch

The big clique Kcol present but uncolored.

Add one node for every “Step 1” vertex.

Single node:
p3

p2 p1

• Nodes arrive early: Painter uses nodes for recognition

• Nodes arrive after gadgets: Painter saves many colors

Each vertex v from gadgets connected to p1 and p2 of each node

• If a node identifies v , all of its vertices are adjacent to v

Only O(log n) precolored vertices

• to recognize n nodes using binary encoding.

Step 2: Sketch

The big clique Kcol present but uncolored.

Add one node for every “Step 1” vertex.

Single node:
p3

p2 p1

• Nodes arrive early: Painter uses nodes for recognition

• Nodes arrive after gadgets: Painter saves many colors

Each vertex v from gadgets connected to p1 and p2 of each node

• If a node identifies v , all of its vertices are adjacent to v

Only O(log n) precolored vertices

• to recognize n nodes using binary encoding.

Step 2: Sketch

The big clique Kcol present but uncolored.

Add one node for every “Step 1” vertex.

Single node:
p3

p2 p1

• Nodes arrive early: Painter uses nodes for recognition

• Nodes arrive after gadgets: Painter saves many colors

Each vertex v from gadgets connected to p1 and p2 of each node

• If a node identifies v , all of its vertices are adjacent to v

Only O(log n) precolored vertices

• to recognize n nodes using binary encoding.

Step 2: Sketch

The big clique Kcol present but uncolored.

Add one node for every “Step 1” vertex.

Single node:
p3

p2 p1

• Nodes arrive early: Painter uses nodes for recognition

• Nodes arrive after gadgets: Painter saves many colors

Each vertex v from gadgets connected to p1 and p2 of each node

• If a node identifies v , all of its vertices are adjacent to v

Only O(log n) precolored vertices

• to recognize n nodes using binary encoding.

Three steps to the theorem

Theorem
It is PSPACE-complete to decide whether χO(G) ≤ k.

Step 1:
. . . with polynomially many precolored vertices (new proof).

Step 2:
. . . with logarithmically many precolored vertices.

Step 3:
. . . with no precolored vertices.

Step 3: Sketch

• Remove one precolored vertex after another;

• Graph size multiplies by a constant C ;

• Total increase C log n – polynomial.

Idea: Supernode

p3

p2 p1

• Difference: p1, p2, p3 are now huge cliques.

• The rest of the graph is C -times smaller.

• Either a significant part of the supernode arrives . . .

• . . . or Painter can save so many colors the rest can be
colored arbitrarily.

Step 3: Sketch

• Remove one precolored vertex after another;

• Graph size multiplies by a constant C ;

• Total increase C log n – polynomial.

Idea: Supernode

p3

p2 p1

• Difference: p1, p2, p3 are now huge cliques.

• The rest of the graph is C -times smaller.

• Either a significant part of the supernode arrives . . .

• . . . or Painter can save so many colors the rest can be
colored arbitrarily.

Step 3: Sketch

• Remove one precolored vertex after another;

• Graph size multiplies by a constant C ;

• Total increase C log n – polynomial.

Idea: Supernode

p3

p2 p1

• Difference: p1, p2, p3 are now huge cliques.

• The rest of the graph is C -times smaller.

• Either a significant part of the supernode arrives . . .

• . . . or Painter can save so many colors the rest can be
colored arbitrarily.

Thank you!

	Intro

