Online Chromatic Number is PSPACE-Complete

Martin Böhm, Pavel Veselý

Computer Science Institute of Charles University, Prague, Czech Republic.

IWOCA 2016, August 17

• Vertices of G are revealed one by one;

- Vertices of G are revealed one by one;
- Algorithm sees edges to previously revealed vertices.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Vertices of G are revealed one by one;
- Algorithm sees edges to previously revealed vertices.
- Algorithm must color v immediately after arrival:
 - Two adjacent vertices cannot have the same color;

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Algorithm cannot change the color later.

- Vertices of G are revealed one by one;
- Algorithm sees edges to previously revealed vertices.
- Algorithm must color v immediately after arrival:
 - Two adjacent vertices cannot have the same color;

- Algorithm cannot change the color later.
- Goal: Minimize no. of colors.

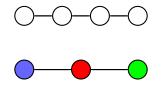
- Vertices of G are revealed one by one;
- Algorithm sees edges to previously revealed vertices.
- Algorithm must color v immediately after arrival:
 - Two adjacent vertices cannot have the same color;
 - Algorithm cannot change the color later.
- Goal: Minimize no. of colors.
- **Our stronger model:** Algorithm gets a copy of *G* at the start.

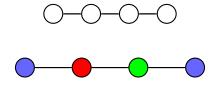
0 - 0 - 0 - 0

 $\bigcirc -\bigcirc -\bigcirc -\bigcirc$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

0 - 0 - 0 - 0





χ^O(G) = minimum number of colors such that a deterministic online algorithm colors G for any input permutation of vertices.

χ^O(G) = minimum number of colors such that a deterministic online algorithm colors G for any input permutation of vertices.

•
$$\chi^{O}(P_4) = 3.$$

 χ^O(G) = minimum number of colors such that a
 deterministic online algorithm colors G for any input
 permutation of vertices.

•
$$\chi^{O}(P_4) = 3.$$

• χ^{O} is an (offline) graph paratemer – like chrom. number!

χ^O(G) = minimum number of colors such that a deterministic online algorithm colors G for any input permutation of vertices.

•
$$\chi^{O}(P_4) = 3.$$

• χ^{O} is an (offline) graph paratemer – like chrom. number!

History

- Online graph coloring first appears in [Bean '76].
- Online chromatic number first appears in [Gyárfás, Lehel '90].

A copy of a graph at the start – [Halldórsson '96].

Game view

 \bullet Two players: Drawer and $\operatorname{Painter}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Both have a copy of G
- Both know a number k

Game view

- Two players: DRAWER and PAINTER
- Both have a copy of G
- Both know a number k
 - DRAWER (SKETCHER) chooses the next vertex for PAINTER.

• PAINTER paints a presented vertex with a color

Game view

- Two players: DRAWER and PAINTER
- Both have a copy of G
- Both know a number k
 - DRAWER (SKETCHER) chooses the next vertex for PAINTER.

- PAINTER paints a presented vertex with a color
- DRAWER wins when PAINTER uses k + 1 colors
- Otherwise PAINTER wins
- PAINTER has a winning strategy $\Leftrightarrow \chi^{\mathcal{O}}(\mathcal{G}) \leq k$

Complexity

Chromatic number: deciding $\chi(G) \leq k$ is NP-hard

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• already for k = 3 colors.

Complexity

Chromatic number: deciding $\chi(G) \leq k$ is NP-hard

• already for k = 3 colors.

What about $\chi^{O}(G) \leq k$?

• In P for k = 3 [Gyárfás, Kiraly, Lehel '93]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Complexity

Chromatic number: deciding $\chi(G) \leq k$ is NP-hard

• already for k = 3 colors.

What about $\chi^{O}(G) \leq k$?

• In P for k = 3 [Gyárfás, Kiraly, Lehel '93]

[Kudahl '15]: $\chi^{O}(G) \leq k$ in PSPACE and coNP-hard;

• Conjecture: PSPACE-complete

Complexity and our contribution

Chromatic number: deciding $\chi(G) \leq k$ is NP-hard

• already for k = 3 colors.

What about $\chi^{O}(G) \leq k$?

• In P for k = 3 [Gyárfás, Kiraly, Lehel '93]

[Kudahl '15]: $\chi^{O}(G) \leq k$ in PSPACE and coNP-hard;

Conjecture: PSPACE-complete

Our contribution: $\chi^{O}(G) \leq k$ is PSPACE-complete.

Starting step: Precoloring

Precoloring: Some vertices precolored and revealed to the algorithm at the start.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Precoloring: Some vertices precolored and revealed to the algorithm at the start.

Theorem (Kudahl '15)

It is PSPACE-complete to decide $\chi^O(G) \le k$ given that polynomially many vertices are precolored.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem *It is PSPACE-complete to decide whether* $\chi^{O}(G) \leq k$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

It is PSPACE-complete to decide whether $\chi^{O}(G) \leq k$.

Step 1:

... with polynomially many precolored vertices (new proof).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

It is PSPACE-complete to decide whether $\chi^{O}(G) \leq k$.

Step 1:

... with polynomially many precolored vertices (new proof).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Step 2:

... with logarithmically many precolored vertices.

Theorem

It is PSPACE-complete to decide whether $\chi^{O}(G) \leq k$.

Step 1:

... with polynomially many precolored vertices (new proof).

Step 2:

... with logarithmically many precolored vertices.

Step 3:

... with no precolored vertices.

Theorem

It is PSPACE-complete to decide whether $\chi^{O}(G) \leq k$.

Step 1:

... with polynomially many precolored vertices (new proof).

Step 2:

... with logarithmically many precolored vertices.

Step 3:

... with no precolored vertices.

The problem we reduce to: Q3DNF-SAT.

- Input: a fully quantified 3DNF formula.
- Question: Is it satisfiable? \iff Is at least one clause satisfiable?

$$\forall x_1 \exists x_2 \forall x_3 : (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3)$$

Why is it PSPACE-complete?

The problem we reduce to: Q3DNF-SAT.

- Input: a fully quantified 3DNF formula.
- Question: Is it satisfiable? \iff Is at least one clause satisfiable?

$$\forall x_1 \exists x_2 \forall x_3 : (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3)$$

Why is it PSPACE-complete?

1. Q3CNF-SAT is PSPACE-complete (well-known).

The problem we reduce to: Q3DNF-SAT.

- Input: a fully quantified 3DNF formula.
- Question: Is it satisfiable? \iff Is at least one clause satisfiable?

$$\forall x_1 \exists x_2 \forall x_3 : (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3)$$

Why is it PSPACE-complete?

- 1. Q3CNF-SAT is PSPACE-complete (well-known).
- 2. PSPACE is closed under complement.

The problem we reduce to: Q3DNF-SAT.

- Input: a fully quantified 3DNF formula.
- Question: Is it satisfiable? \iff Is at least one clause satisfiable?

$$\forall x_1 \exists x_2 \forall x_3 : (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3)$$

Why is it PSPACE-complete?

- 1. Q3CNF-SAT is PSPACE-complete (well-known).
- 2. PSPACE is closed under complement.
- 3. Q3DNF-SAT is the complement of Q3CNF-SAT.

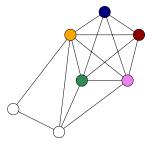
We precolor a big clique K_{col} with $|V(K_{col})| \approx$ the size of the formula.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

We precolor a big clique K_{col} with $|V(K_{col})| \approx$ the size of the formula.

Three uses:

1. Identify uncolored vertices to player PAINTER;

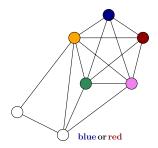


▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

We precolor a big clique K_{col} with $|V(K_{col})| \approx$ the size of the formula.

Three uses:

- 1. Identify uncolored vertices to player PAINTER;
- 2. Limit allowed colors on any uncolored vertex.

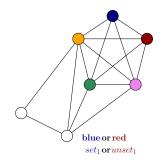


▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

We precolor a big clique K_{col} with $|V(K_{col})| \approx$ the size of the formula.

Three uses:

- 1. Identify uncolored vertices to player PAINTER;
- 2. Limit allowed colors on any uncolored vertex.
- 3. Assign meaning to colors.



Step 1: Reduction

Given a Q3-DNF formula

$$\forall x_1 \exists x_2 \forall x_3 : (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3)$$

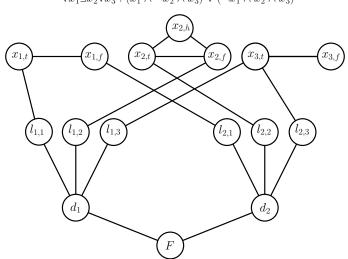
Given a Q3-DNF formula

 $\forall x_1 \exists x_2 \forall x_3 : (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3)$

take a polynomially sized K_{col} and add gadgets for each

- variable,
- clause,
- and the entire formula.

Step 1: Gadget sketch



 $\forall x_1 \exists x_2 \forall x_3 : (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3)$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

$$\forall x_1 \exists x_2 \forall x_3 : (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3)$$

Universal quantifier: two vertices x_{1,t}, x_{1,f}. Only two allowed colors: set₁, unset₁.
 x_{1,t} has color set₁ ⇒ x₁ set to True.

$$\forall x_1 \exists x_2 \forall x_3 : (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3)$$

Universal quantifier: two vertices x_{1,t}, x_{1,f}. Only two allowed colors: set₁, unset₁.
 x_{1,t} has color set₁ ⇒ x₁ set to True.

Requirement: PAINTER cannot distinguish $x_{1,t}$ from $x_{1,f}$

 $\forall x_1 \exists x_2 \forall x_3 : (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3)$

Universal quantifier: two vertices x_{1,t}, x_{1,f}. Only two allowed colors: set₁, unset₁.
 x_{1,t} has color set₁ ⇒ x₁ set to True.

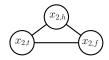
Requirement: PAINTER cannot distinguish $x_{1,t}$ from $x_{1,f}$... but PAINTER knows it is coloring the gadget for x_1 .

 $\forall x_1 \exists x_2 \forall x_3 : (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3)$

Universal quantifier: two vertices x_{1,t}, x_{1,f}. Only two allowed colors: set₁, unset₁.
 x_{1,t} has color set₁ ⇒ x₁ set to True.

Requirement: PAINTER cannot distinguish $x_{1,t}$ from $x_{1,f}$... but PAINTER knows it is coloring the gadget for x_1 .

Existential quantifier: Triangle x_{2,t}, x_{2,f} and x_{2,h}
 third vertex a helper vertex.

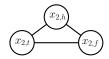


 $\forall x_1 \exists x_2 \forall x_3 : (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3)$

Universal quantifier: two vertices x_{1,t}, x_{1,f}. Only two allowed colors: set₁, unset₁.
 x_{1,t} has color set₁ ⇒ x₁ set to True.

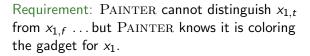
Requirement: PAINTER cannot distinguish $x_{1,t}$ from $x_{1,f}$... but PAINTER knows it is coloring the gadget for x_1 .

2. Existential quantifier: Triangle x_{2,t}, x_{2,f} and x_{2,h} – third vertex a *helper* vertex.
Requirement: PAINTER **must be able** to distinguish x_{2,t} from x_{2,f}

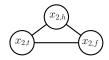


 $\forall x_1 \exists x_2 \forall x_3 : (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3)$

Universal quantifier: two vertices x_{1,t}, x_{1,f}. Only two allowed colors: set₁, unset₁.
 x_{1,t} has color set₁ ⇒ x₁ set to True.

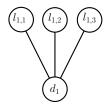


2. Existential quantifier: Triangle x_{2,t}, x_{2,f} and x_{2,h} – third vertex a *helper* vertex.
Requirement: PAINTER **must be able** to distinguish x_{2,t} from x_{2,f} ... so all three vertices have different allowed colors.



$$\forall x_1 \exists x_2 \forall x_3 : (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3)$$

Literal vertex: Two allowed colors, depending on the quantifier. One of the colors always f_a .



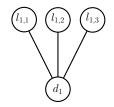
▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 $\forall x_1 \exists x_2 \forall x_3 : (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3)$

Literal vertex: Two allowed colors, depending on the quantifier. One of the colors always f_a .

Requirement: If the literal is unsatisfied, literal vertex must use f_a .

Otherwise: uses the other color, f_a is available later.



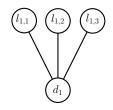
 $\forall x_1 \exists x_2 \forall x_3 : (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3)$

Literal vertex: Two allowed colors, depending on the quantifier. One of the colors always f_a .

Requirement: If the literal is unsatisfied, literal vertex must use f_a .

Otherwise: uses the other color, f_a is available later.

Clause vertex: Only two allowed colors, one of them is f_a .



 $\forall x_1 \exists x_2 \forall x_3 : (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3)$

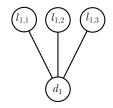
Literal vertex: Two allowed colors, depending on the quantifier. One of the colors always f_a .

Requirement: If the literal is unsatisfied, literal vertex must use f_a .

Otherwise: uses the other color, f_a is available later.

Clause vertex: Only two allowed colors, one of them is f_a .

Requirement: All three literals satisfied \Rightarrow color f_a available.



 $\forall x_1 \exists x_2 \forall x_3 : (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3)$

Literal vertex: Two allowed colors, depending on the quantifier. One of the colors always f_a .

Requirement: If the literal is unsatisfied, literal vertex must use f_a .

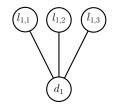
Otherwise: uses the other color, f_a is available later.

Clause vertex: Only two allowed colors, one of them is f_a .

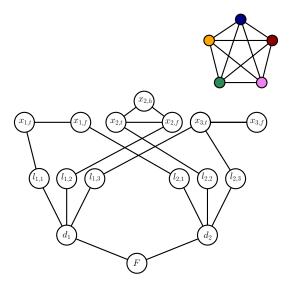
Requirement: All three literals satisfied \Rightarrow color f_a available.

Final vertex F corresponding to the evaluation of ϕ

• We show: F can be colored $\Leftrightarrow \phi$ is satisfiable

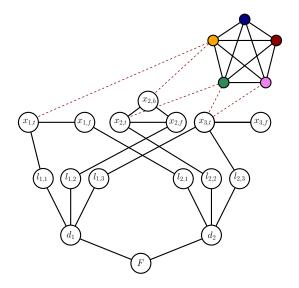


Step 1: Big picture



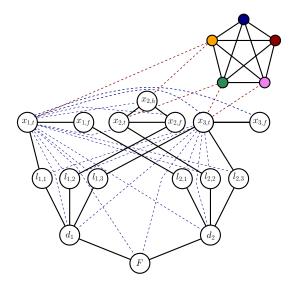
Step 1: Big picture

 $\forall x_1 \exists x_2 \forall x_3 : (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3)$



Step 1: Big picture

 $\forall x_1 \exists x_2 \forall x_3 : (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3)$



• If the formula is not satisfiable, then DRAWER can force PAINTER to use more than k colors

- If the formula is not satisfiable, then DRAWER can force PAINTER to use more than *k* colors
 - DRAWER presents vertices for variables in the right order

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- If the formula is not satisfiable, then DRAWER can force PAINTER to use more than *k* colors
 - $\ensuremath{\mathrm{Drawer}}$ presents vertices for variables in the right order
- If the formula is satisfiable, then PAINTER can color the graph using k colors

- If the formula is not satisfiable, then DRAWER can force PAINTER to use more than k colors
 - DRAWER presents vertices for variables in the right order
- If the formula is satisfiable, then PAINTER can color the graph using k colors

• PAINTER can recognize vertices by allowed colors

- If the formula is not satisfiable, then DRAWER can force PAINTER to use more than *k* colors
 - $\ensuremath{\mathrm{Drawer}}$ presents vertices for variables in the right order
- If the formula is satisfiable, then PAINTER can color the graph using *k* colors
 - $\operatorname{PAINTER}$ can recognize vertices by allowed colors
 - With the exception of vertices of a universally quantified variable

- If the formula is not satisfiable, then DRAWER can force PAINTER to use more than *k* colors
 - DRAWER presents vertices for variables in the right order
- If the formula is satisfiable, then PAINTER can color the graph using k colors
 - PAINTER can recognize vertices by allowed colors
 - With the exception of vertices of a universally quantified variable

- Right order of vertices \Rightarrow PAINTER uses the satisfiability
- Bad order only helps PAINTER

Three steps to the theorem

Theorem

It is PSPACE-complete to decide whether $\chi^{O}(G) \leq k$.

Step 1:

... with polynomially many precolored vertices (new proof).

Step 2:

... with logarithmically many precolored vertices.

Step 3:

... with no precolored vertices.

The big clique K_{col} present but uncolored.

The big clique K_{col} present but uncolored.

Add one *node* for every "Step 1" vertex.

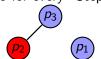
Single node:

- Nodes arrive early: PAINTER uses nodes for recognition
- Nodes arrive after gadgets: PAINTER saves many colors

The big clique K_{col} present but uncolored.

Add one *node* for every "Step 1" vertex.

Single node:



- Nodes arrive early: PAINTER uses nodes for recognition
- Nodes arrive after gadgets: PAINTER saves many colors

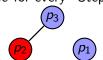
Each vertex v from gadgets connected to p_1 and p_2 of each node

• If a node identifies v, all of its vertices are adjacent to v

The big clique K_{col} present but uncolored.

Add one *node* for every "Step 1" vertex.

Single node:



- Nodes arrive early: PAINTER uses nodes for recognition
- Nodes arrive after gadgets: PAINTER saves many colors

Each vertex v from gadgets connected to p_1 and p_2 of each node

• If a node identifies v, all of its vertices are adjacent to v Only $O(\log n)$ precolored vertices

• to recognize *n* nodes using binary encoding.

Three steps to the theorem

Theorem

It is PSPACE-complete to decide whether $\chi^{O}(G) \leq k$.

Step 1:

... with polynomially many precolored vertices (new proof).

Step 2:

... with logarithmically many precolored vertices.

Step 3:

... with no precolored vertices.

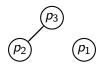
• Remove one precolored vertex after another;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Graph size multiplies by a constant C;
- Total increase $C^{\log n}$ polynomial.

- Remove one precolored vertex after another;
- Graph size multiplies by a constant C;
- Total increase $C^{\log n}$ polynomial.

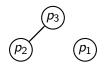
Idea: Supernode



- **Difference:** *p*₁, *p*₂, *p*₃ are now huge cliques.
- The rest of the graph is *C*-times smaller.

- Remove one precolored vertex after another;
- Graph size multiplies by a constant C;
- Total increase $C^{\log n}$ polynomial.

Idea: Supernode



- **Difference:** *p*₁, *p*₂, *p*₃ are now huge cliques.
- The rest of the graph is C-times smaller.
- Either a significant part of the supernode arrives ...
- ... or PAINTER can save so many colors the rest can be colored arbitrarily.

Thank you!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>