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vertex coloring

Vertices of G are revealed one by one;

Algorithm sees edges to previously revealed vertices.
Algorithm must color v immediately after arrival:

e Two adjacent vertices cannot have the same color;
e Algorithm cannot change the color later.

Goal: Minimize no. of colors.

Our stronger model: Algorithm gets a copy of G at the
start.
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Online chromatic number

e x92(G) = minimum number of colors such that a
deterministic online algorithm colors G for any input
permutation of vertices.

e XO(Ps) =3.

e x%isan (offline) graph paratemer — like chrom. number!

History
e Online graph coloring first appears in [Bean '76].
e Online chromatic number first appears in [Gyarfas, Lehel '90].

e A copy of a graph at the start — [Halldérsson '96].
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Game view

Two players: DRAWER and PAINTER

Both have a copy of G
e Both know a number k

e DRAWER (SKETCHER) chooses the next vertex for PAINTER.
e PAINTER paints a presented vertex with a color

DRAWER wins when PAINTER uses k + 1 colors
Otherwise PAINTER wins

PAINTER has a winning strategy < x°(G) < k
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Complexity and our contribution

Chromatic number: deciding x(G) < k is NP-hard

e already for k = 3 colors.

What about x9(G) < k?
e In P for k = 3 [Gyérfas, Kiraly, Lehel '93]

[Kudahl '15]: x9(G) < k in PSPACE and coNP-hard;
e Conjecture: PSPACE-complete

Our contribution: x°(G) < k is PSPACE-complete.
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Starting step: Precoloring

Precoloring: Some vertices precolored and revealed to the
algorithm at the start.
Theorem (Kudahl '15)

It is PSPACE-complete to decide x°(G) < k given that
polynomially many vertices are precolored.
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A PSPACE-Complete Problem

The problem we reduce to: Q3DNF-SAT.
e Input: a fully quantified 3DNF formula.

e Question: Is it satisfiable? <= Is at least one clause
satisfiable?

V:vﬁ:ch:cg: (.fUl VAN X9 A 563) vV (_|£U1 VAN i) VAN $3)

Why is it PSPACE-complete?

1. Q3CNF-SAT is PSPACE-complete (well-known).
2. PSPACE is closed under complement.
3. Q3DNF-SAT is the complement of Q3CNF-SAT.
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Step 1: Precoloring

We precolor a big clique Ko with
|V(Kcor)| = the size of the formula.
Three uses:

1. Identify uncolored vertices to player
PAINTER,;

2. Limit allowed colors on any
uncolored vertex.

3. Assign meaning to colors.

blueorred
setjorunsety
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Step 1: Reduction

Given a Q3-DNF formula

VaidaoVaes: (x1 A g A x3) V (—xy A 29 A x3)

take a polynomially sized K., and add gadgets for each
e variable,
e clause,

e and the entire formula.
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Step 1: Variable gadget

V$13$2v1'32 <$1 N =29 N .733) V (_h’I)l N X9 N\ 333)

1. Universal quantifier: two vertices xq ¢, x1,¢. Only
two allowed colors: sety, unset;.
x1,+ has color set; = x1 set to True.
Requirement: PAINTER cannot distinguish xq ;

from x1 ¢ ... but PAINTER knows it is coloring
the gadget for x;. @

2. Existential quantifier: Triangle x2 ¢, x2 f and x2 p @ @

— third vertex a helper vertex.

Requirement: PAINTER must be able to
distinguish x ; from xo ¢ .. .so all three vertices
have different allowed colors.
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Step 1: Clause gadgets

Vo 3zoVas: (xy A —xo A z3) V (221 A 29 A T3)

Literal vertex: Two allowed colors, depending on the

quantifier. One of the colors always f,. @ @ @

Requirement: If the literal is unsatisfied, literal vertex
must use f,.
Otherwise: uses the other color, f; is available later. @

Clause vertex: Only two allowed colors, one of them
is fs.

Requirement: All three literals satisfied = color £,
available.

Final vertex F corresponding to the evaluation of ¢

e We show: F can be colored < ¢ is satisfiable
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Step 1: Big picture

Vay3zoVes: (1 A —xg A xs) V (mxy A 29 A 23)
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Step 1: Analysis

e |f the formula is not satisfiable, then DRAWER can force
PAINTER to use more than k colors

e DRAWER. presents vertices for variables in the right order
e If the formula is satisfiable, then PAINTER can color the graph
using k colors
e PAINTER can recognize vertices by allowed colors
e With the exception of vertices of a universally quantified
variable
e Right order of vertices = PAINTER uses the satisfiability
e Bad order only helps PAINTER
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Theorem
It is PSPACE-complete to decide whether x°(G) < k.

Step 1:
...with polynomially many precolored vertices (new proof).
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Step 2: Sketch

The big clique K present but uncolored.

Add one node for every “Step 1" vertex.

Single node:

e Nodes arrive early: PAINTER uses nodes for recognition

e Nodes arrive after gadgets: PAINTER saves many colors

Each vertex v from gadgets connected to p; and p» of each node
e If a node identifies v, all of its vertices are adjacent to v
Only O(log n) precolored vertices

e to recognize n nodes using binary encoding.
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Step 3: Sketch

e Remove one precolored vertex after another;
e Graph size multiplies by a constant C;

e Total increase C'°8" — polynomial.

Difference: pi, p2, p3 are now huge cliques.

Idea: Supernode

The rest of the graph is C-times smaller.

Either a significant part of the supernode arrives . ..

e ...or PAINTER can save so many colors the rest can be
colored arbitrarily.



Thank you!
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