
INTRO TO APPROXIMATION, CLASS 4
greed and SAT

Exercise one Consider Scheduling with dependencies: we schedule jobs of di�erent
lengths on m computers (m is a part of the input), but we also have a dependence graph on the jobs,
and we can schedule a job only when all its dependencies are completed.

1. Prove the following lower bound on the optimum:
�OPT ≥ length of any chain in the input. A chain is a sequence of jobs where each one depends
on the previous one. Its length is then the total processing time of all the jobs in the chain.�

2. Design a greedy 2-approximation algorithm for this problem.

Exercise two Consider the classic NP-hard Knapsack problem, where we have n ob-
jects a1, . . . , an, each object has a weight wi and cost ci, and our bag has a weight limit of B.

1. Explain why �naive greedy algorithm�, i.e. �we put the most expensive item (that �ts) into the
knapsack and continue the same way� is a bad one.

2. OK, let us try the following: �we sort the items according to their density (ratio price/size), go
through them in decreasing order and insert only those that �t in the knapsack.�
Spoiler alert: this algorithm also fails. Show an input where it does.

3. Finally, design a 2-approximation algorithm for this problem. This algorithm does not need to
be greedy.
Hint: When you iterate over the items based on the density, at some point it may happen that
P does not �t with the items you have already selected into the knapsack. What should you
do then?

Exercise three You may recall Max Sat from the last exercise session, where we formu-
lated a randomized approximation algorithm for it. This algorithm was e�ective for clauses of length 2
or more, but when there were too many clauses of type (xi) or (¬xj), it was only a 1/2-approximation.

Let us prove that we can assume that the input is a little bit nicer:

1. Prove the following: Suppose we have a c-approximation algorithm for a subset of Max Sat

� it only works on inputs which contain no negative mono-clauses like (¬xi). Then we can
transform it into a c-approximation algorithm for Max Sat on all inputs.

2. Prove that the same holds for Weighted Max Sat, where each clause has weight wi and we
maximize the weighted sum of satis�ed clauses, i.e. max

∑
i wiCi.

Exercise four We have learned from the previous exercise that it su�ces to deal with
Max Sat on inputs that contain no negative mono-clauses like (¬xi). We should use this fact to
choose a better probability p, which we use in the randomized algorithm for setting a variable to 1:

1. Prove that if all variables xi are randomly set to be true with probability p > 1
2
, then the

probability of satisfying a clause is at least min(p, 1− p2).
2. Choose a good p and �nish the analysis of the suggested randomized algorithm for Max Sat.


