
INTRO TO APPROXIMATION � HW1
TSP and friends

Every task is worth two points. Deadline: 16. 11. 2016 23:59 via email. Please send PDFs only.
High-quality scans (with high-quality handwriting) are acceptable. Do not be afraid to email me if
any task is unclear to you.

Exercise one In the Steiner tree problem we get on input a connected undirected graph
G = (V,E), an edge cost function c : E → R+, and �nally a list of terminals S ⊆ V . A feasible
solution to our problem is any subset of edges E ′ ⊆ E so that the graph G′ = (V,E ′) has all the
terminals in one connected component. We aim to minimize the cost, i.e.

∑
e∈E′ c(e). Your task is to

design a 2-approximation algorithm.

Hint: The graph does not need to satisfy the triangle inequality. First, think about the case when it
does (it should be easy then). To solve the general case, try to use some of the techniques from the
TSP approximation.

Solution. A natural idea is the following: take the graph G, restrict it only to the vertices S, and
�nd a minimum spanning tree. This would be very silly for the general metric (because there, the
prices among S can be high while detours through the rest of G can be cheap) but with triangle
inequality, there is hope that this should be a good approximation.

Having found the MST (S), we need to bound it by OPT somehow. First of all, we note that OPT
is also a tree (as the title hints), but it contains more vertices on G. We will transform it into a tree
T ′ on V (S) and then claim that MST (S) is shorter than T ′.

To do this, we take the DFS-traversal of OPT . In it, every vertex is visited once (but internal vertices
are visited twice). Clearly, the length of such a DFS-traversal is at most 2OPT . Then, we look at
where the vertices of S are in this traversal and use shortcutting to get a path on V (S) � from a vertex
si−1 we go directly to si, instead of through the DFS traversal. Since we only used shortcutting, the
new path is of length at most 2OPT , and, by minimality, MST (S) ≤ 2OPT as well.

As almost all of you guessed correctly, to solve the general problem withou triangle inequality, we
can move to the shortest path metric of the input graph G. When we expand the solution from the
metric case to the non-metric case, we can save some edge cost by making sure the �nal graph G is a
tree � but similarly to the �shortcutting� in TSP, doing this will not a�ect the approximation ratio.

Exercise two Consider the problemMaxSat � given a CNF Boolean formula with clauses
of any size, we need to �nd an assignment that satis�es as many clauses as possible (even if the full
formula is unsatis�able).

We will analyze the following algorithm:

�Try setting all variables to 0 and compute how many clauses we have satis�ed. Then, try setting all
variables to 1 and compute how many clauses we have satis�ed. Take the bigger of the two values
and return it as the approximation.�

1. Thoroughly analyze the approximation ratio of the algorithm; that is, prove that it is an r-
approximation algorithm and also prove that it is not an r′-approximation for any r′ < r.

2. Let us consider any constant-testing algorithm � such an algorithm does the same thing as the
one described above, but instead of two assignments, it tests c pre-selected assignments, where
c is a constant not dependent on the input. (An assignment is any in�nite sequence of 0/1
values, where we assign the �rst value to x1, the second value to x2 and so on, until we run out
of variables.)
What is the tight approximation ratio of any constant-testing algorithm? Again, you need to
�nd a number r2 such that some constant-testing algorithm is an r2-approximation and prove



that no constant-testing algorithm is strictly better than an r2-approximation.

Solution. The �rst subitem was not a problem for most of you; testing all zeroes or all ones leads
to a 1/2-approximation algorithm, and a very easy tight example is a formula (x1) ∧ (¬x2).

The second part was slightly more di�cult and had a tricky bit inside that was unintentional.

First the intended solution: if we take c assignments, we can look at the �rst 2c + 1 values. We will
de�ne a column as the vector of c assignments for some speci�c variable xi that the algorithm will
check. A column is a 0/1 vector of length c.

The �rst 2c columns could in theory be pairwise di�erent, but with at least 2c + 1 vectors, we know
that at least two columns are the same. In fact, we can strengthen it and say that if we take all
(in�nitely many) columns, at least one column is repeating in�nitely often.

Since one column repeats in�nitely often, we know that the algorithm, even though it has c assign-
ments, will behave on the column variables (say) x10000, x20000, . . . as if it were the 0/1 tester from
Point 1!

We therefore �rst create a huge clause of all variables (x1 ∨ x2 ∨ . . .∨ xB) and then add positive and
negative mono-clauses as before, i.e. (x10000) ∧ (¬x20000) ∧ . . ..

From this we learn that any c-assignment-testing algorithm is a 1/2-approximation in the limit.

Now, let me elaborate about the unintended trickiness. Some of you claimed the following:

�Taking 2c + 1 columns, we �nd two variables x10000 and x20000 where the algorithm test two zeroes
or two ones much like in Point 1. Therefore, (x10000)∧ (¬x20000) is an input where the algorithm is a
1/2-approximation.�

This seems correct (and it de�nitely uses the correct approach, as we did) but it claims the algorithm
is always a 1/2-approximation, and not only in the limit.

Unfortunately, (x10000)∧ (¬x20000) is not a good input format for the algorithm. You can see why by
noting it has only two variables, but it forces the algorithm to use some very distant assignment for
each of those, ignoring 19998 assignments that the algorithm has in its store.

In fact, if we accepted this form of input as a valid one for formulas, we can even claim the algorithm
does not perform in polynomial time! Indeed, if the input is just the formula (x254), we only need
about 2 × 54 bits for the input, but the algorithm really needs to go through 254 positions in the
assignments to even �nd what value x254 should get.

To patch this problem, we could claim the actual input looks like this:

{x1, x2, x3, . . . , x20000}, (x10000) ∧ (¬x20000).

This is very similar to how we receive graphs on input: �rst the list of vertices, then the structure
(list of edges).

However, doing it like this requires a notion of �variable of degree zero� � a variable that is present
in the formula, but its number of occurences is zero. Plus we would need that (x10000)∧ (¬x20000) is a
formula with 20000 variables, which is a somewhat untraditional view. The most unfortunate thing
about this input format is that it allows formulas of two variables which are impossible in other input
formats.

We should contrast it with the �blackboard� input format for formulas, which is the one we often use
when we draw them on the board: a formula is just given as

(A ∨B) ∧ (C ∨ ¬D)

and we compute the number of variables from the input itself (in this case, it is four). In this format,



it is impossible to create a formula of length 2 where the algorithm would be a 1/2-approximation.
Many of you have noted that � that is why you claimed the 1/2-approximation is only in the limit.

To conclude, we should not say the blackboard format is strictly better than the graph-like input
format. Sometimes the graph-like format may be much more useful, as it doesn't require the algorithm
to compute the number of variables (and it forces one speci�c ordering). However, we have learned
that even such a simple thing as input format can have fairly non-trivial impact on our claims � it
can change a 1/2-approximation algorithm into a 1/2-approximation only in the limit.

Exercise three Given a directed graph ~G with distance function d : ~E → R+, design and
analyze a polynomial-time algorithm for �nding the directed circuit which is shortest on average �

it is a circuit minimizing
∑

~e∈~C
d(~e)

| ~C|
.

Keep in mind that the shortest averaged circuit can often be longer and have more edges than the
shortest circuit overall.

Solution. We use a dynamic program for computing the values dk(x, y), which will be equal to the

length of the shortest k-vertex walk between x and y. Note that we allow vertices and edges to be
repeated in this walk.

To compute d1(x, y) is easy � we just set it to be the distance d(x, y). To compute it for larger
k, we can use the recursion dk(x, y) = minz d

k−1(x, z) + d1(z, y). It looks deceptively simple, but
it actually can be computed this way. (Think for a moment why we cannot solve the Hamiltonian
circuit problem in arbitrary directed graphs using this recursion.)

Alright, so what if we �nd some minimum dk(x, x)/k and the walk minimizing dk(x, x) is not actually
a circuit? Here comes the trick: if a walk attains the minimum average value but it is not a circuit,

then it contains a shorter circuit that attains at most the same average value.

This follows from the fact that if the closed walk W can be split into two closed walks A and B
(which it always can if it is not a circuit itself), then E[W ] = E[A]+E[B] by linearity of expectation.

Therefore, our polynomial-time algorithm computes the table dk(x, x) and then �nds the minimum
value in it, going from smaller k to larger. The �rst occurence of the minimum value is exactly the
value of the smallest circuit. To �nd the circuit itself is done by the standard dynamic programming
argument.

Exercise four Assume there is a polynomial-time algorithm for �nding the shortest aver-
aged circuit (see above).

Consider the following algorithm for asymmetric TSP on n elements with the asymmetric function
d : {1, . . . , n} × {1, . . . , n} → R+ which satis�es the triangle inequality:

1. We �nd a directed circuit ~C in the metric which minimizes
∑

~e∈~C
d(~e)

| ~C|
.

2. We add all the edges ~E(~C) to the solution.

3. We remove all vertices of ~C except one. We continue recursively until only one vertex remains.
4. We use shortcutting on the Eulerian walk and return a directed Hamiltonian circuit.

Prove that the previous algorithm is an O(log n)-approximation for asymmetric TSP.

Solution.

First of all, because of our problem setting, we know that OPT (the optimum solution of the asym-
metric TSP) is a Hamiltonian circuit. Using the triangle inequality (which is necessary!), we can show
that if we remove any vertices from the original graph G and form a graph G′ with a new optimum
Ham. circuit OPT ′, it holds that d(OPT ′) ≤ d(OPT ).

Interestingly, we cannot use a stronger inequality here � for example, it does not hold that d(OPT ′)
n′ ≤

d(OPT )
n

in a general step; while the optimum circuit must get shorter, the optimum average length



can both increase and decrease.

Now, to the algorithm. In the �rst step, we know that d( ~C1)/| ~C1| ≤ d(OPT )/n from the de�nition of
~C1. After deleting the vertices of ~C1 except one, we want to bound d( ~C2)/n2 by some function of OPT ,

where n2 = n−| ~C1|+1. Again, because of our setting, we can use the fact that the remaining (not-yet

deleted) edges in OPT \ V ( ~C1) can be completed into a Hamiltonian circuit OPT ′ on the smaller

graph ~G \ V ( ~C1) by shortcutting. We get that d(OPT ′) ≤ d(OPT ) from the triangle inequality.

As OPT ′ is a valid circuit, the minimal choice of ~C2 gives us that d( ~C2)/| ~C2| ≤ d(OPT ′)/n2 ≤
d(OPT )/n2. The same will hold for ~C3, ~C4 and so on, with n = n1 > n2 > n3 > n4 > nk > 1 being

the sequence of the remaining vertices in the graph ~G, as we remove one circuit after another.

We now proceed to bound d(T ), the total distance of the ATSP tour T of our algorithm. The

�rst circuit was of d( ~C1), which we can express as d( ~C1) = | ~C1| · d(
~C1)

| ~C1|
≤ | ~C1| · d(OPT )

n
. Similarly,

d( ~Ci) ≤ | ~Ci| · d(OPT )
ni

for i ≥ 2. Putting the bounds together, we see our total cost is

d(T ) ≤
k∑

i=1

| ~Ci| ·
d(OPT )

ni

= d(OPT ) ·

(
k∑

i=1

| ~Ci|
ni

)
.

We will be done when we show that the sum on the right is upper bounded by O(log n). This is an
easy exercise in combinatorics, but we include it here for completeness.

We �rst split the sum into two parts:(
k∑

i=1

| ~Ci|
ni

)
=

(
k∑

i=1

1

ni

)
+

(
k∑

i=1

| ~Ci| − 1

ni

)

The �rst part is clearly bounded from above by
∑n−1

i=0
1

n−i ≤ log n.

The second part seems to be more di�cult to bound, because it contains | ~Ci| − 1 in the numerator.

Suppose now for a second that | ~C1| = 4 and | ~C2| = 3. This means that n2 = n− 3. In this case, the
initial part of the sum can be written as:

3

n
+

2

n− 3
+ . . . =

1

n
+

1

n
+

1

n
+

1

n− 3
+

1

n− 3
+ . . .

The right-hand side of the last equation is bounded from above by
∑n−1

i=0
1

n−i , which is again at most
log n, and we have our total bound of O(log n).

Bonus exercise

We know from the lecture that the Christo�des algorithm satis�es ALG ≤ 3
2
OPT, where ALG is the

value of the solution for the algorithm and OPT is the value of the minimum/optimum solution.

Let us refresh linear programming by proving that for Christo�des algorithm, it is also true that
ALG ≤ 3

2
OPTLP, where OPTLP is the optimum value of the following linear relaxation:



(P ) : min
∑
e∈E

cexe

∀v ∈ V :
∑
e=vx

xe = 2

∀S ( V, S 6= ∅ :
∑

e∈E(S,V \S)

xe ≥ 2

∀e ∈ E : 0 ≤ xe ≤ 1

The battle plan is as follows:

1. First verify that ALG ≤ 3
2
OPTLP implies the original claim of ALG ≤ 3

2
OPT.

2. Next, prove that for an optimum solution x∗ of the LP (P ) (that is precisely the point of value
OPTLP) it holds that

n−1
n
x∗ is a point inside the spanning tree polytope for the same graph.

3. Finally, use point 2 and �nish the claim that ALG ≤ 3
2
OPTLP.

If you do not remember, the spanning tree polytope is the polytope given by these linear constraints:

∑
e∈E

xe = n− 1

∀S ( V, S 6= ∅ :
∑

e∈E(S,V \S)

xe ≥ 1

∀e ∈ E : xe ≥ 0

The matching polytope looks like this:

∀v ∈ V :
∑
e=vx

xe ≤ 1

∀S ( V, S 6= ∅, |S|odd :
∑

e∈E(S,V \S)

xe ≥ 1

∀e ∈ E : xe ≥ 0

Solution.

1. The �rst point is just the classic inequality OPTLP ≤ OPTILP ; in other words, solution of a
linear program is always better than the integer program.

2. All we need to do is paste n−1
n
x∗ (the optimum fractional solution of the TSP polytope) into

the inequalities of the spanning tree polytope and make sure that it satis�es them.
The equality

∑
e∈E xe = n− 1 is true because the original

∑
e∈E x∗e = n � every feasible point

in the polytope must have sum around the vertices equal to 2, from which we get that the sum
of all edges must be n (same as in a Hamiltonian cycle).
The constraint ∀S ( V, S 6= ∅ :

∑
e∈E(S,V \S) xe ≥ 1 is true because we are changing xe by

n−1
n

� for n = 2 we are multiplying by 1/2, for n = 3 by 2/3, and then by even higher numbers.
In all cases, if the sum was originally, ∀S ( V, S 6= ∅ :

∑
e∈E(S,V \S) x

∗
e ≥ 2, by multiplying all

numbers on the left by 1/2 or more we still get that ∀S ( V, S 6= ∅ :
∑

e∈E(S,V \S) xe ≥ 1.
3. Finally, we use a similar argument to claim that 0.5x∗ is a valid point in the matching poly-

tope. Christo�des' algorithm �nds the minimum spanning tree and then a perfect matching of
minimum cost (on a subgraph), so in total the algorithm �nds a tour of length

MST+MATCH ≤ n− 1

n
· x∗ + 1

2
x∗ ≤ 3

2
OPTLP .


