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Abstract

For Fp the field on prime number p > 3 elements, it has been conjectured that
there are just p+3 evaluations of the Tutte polynomial in Fp which are computable
in polynomial time. In this note it is shown that if p 6≡ −1 mod 12 then there are
further polynomial-time computable evaluations.

1 Definitions and introduction

Let G = (V, E) denote a graph, with loops and parallel edges permitted, and
G the collection of all such graphs. The size of a graph G = (V, E) is |E|.
If G has k(G) connected components, then the rank of G, denoted r(E), is
|V | − k(G). The rank r(A) of a subset of edges A ⊆ E is the rank of the
subgraph (V, A).

Let X, Y be commuting indeterminates. The Tutte polynomial T (G; X, Y ) is
a map T : G → Z[X, Y ] defined for all graphs G by

T (G; X, Y ) =
∑
A⊆E

(X − 1)r(E)−r(A)(Y − 1)|A|−r(A). (1)

An evaluation of the Tutte polynomial in a commutative ring R with 1 is a
map T (x, y) : G → Z[x, y] ⊆ R obtained from T by substituting (x, y) ∈ R×R
for the indeterminate pair (X, Y ) in (1).

For all commutative rings R with unity 1 and (x, y) ∈ R×R,

(x− 1)(y − 1) = 1 ⇒ T (G; x, y) = x|E|(x− 1)r(E)−|E|. (2)
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A theorem of [3] determines all the evaluations of the Tutte polynomial in C
which are polynomial-time computable in the size of the graph G. Apart from
those covered by (2) they are at the points

(−1, 0), (0,−1), (1, 1), (−1,−1), (3)

and

(i,−i), (−i, i), (j, j2), (j2, j), (4)

where i =
√
−1 and j = (−1 +

√
−3)/2.

In [7, §7.5] it is shown that all evaluations of the Tutte polynomial in F2 are
polynomial-time computable. All four evaluations in F2 reduce to finding the
parity of evaluations in Z at points in (2) and (3).

Annan [1] proved the following result.

Theorem 1 [1, §3.6] Provided random polynomial time RP is not equal to
NP, the only polynomial-time computable evaluations of the Tutte polynomial
in F3 are at the points (−1, 0), (0,−1), (1, 1), (−1,−1) and (0, 0). �

He conjectured that similarly, for any prime p > 3, the only polynomial-
time computable evaluations of the Tutte polynomial in Fp correspond to the
points covered by (2) and the points (−1, 0), (0,−1), (1, 1), (−1,−1) in Fp×Fp

corresponding to the points (3) in C× C.

However, it will be shown that this conjecture needs to be modified to include
further pairs of points corresponding to (4) when −1 or −3 is a square in Fp.

2 Polynomial-time evaluations of the Tutte polynomial in Fp

Call a point (x, y) ∈ R×R easy if the evaluation T (G; x, y) in R is polynomial-
time computable in the size of G.

For a ring homomorphism π note that π(T (G; x, y)) = T (G; π(x), π(y)). The
easy points (3) in Z × Z and the homomorphism π : Z → R, z 7→ z1, ensure
that (−1, 0), (0,−1), (1, 1), (−1,−1) are easy in any commutative ring R with
unity 1. This observation is made in [1, §3.6] for R = Fp.

The following shows that the points of (4) yield further easy points in Fp for
p ≡ 1 mod 4 or p ≡ 1 mod 3. The Legendre symbol (a/p) is defined to be +1
when a is a non-zero square in Fp and −1 when a is not a square.
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Theorem 2 Let p > 3 be a prime. There are (at least) p+5+(−1/p)+(−3/p)
polynomial-time computable evaluations of the Tutte polynomial in Fp. These
are at the following points in Fp × Fp:

{(x, y) ∈ Fp × Fp : (x− 1)(y − 1) = 1}; (5)

(−1, 0), (0,−1), (1, 1), (−1,−1); (6)

(a,−a), (−a, a), (7)

if p ≡ 1 mod 4 and a2 + 1 = 0 in Fp; and,

(b, b2), (b2, b), (8)

if p ≡ 1 mod 3 and b2 + b + 1 = 0 in Fp.

PROOF. For each odd prime p ∈ N there are ideals of norm p in Z[i] if and
only if (−1/p) = +1, or p ≡ 1 mod 4, and in Z[j] if and only if (−3/p) = +1,
or p ≡ 1 mod 3.

Hence, for p ≡ 1 mod 4, there is a prime r + si ∈ Z[i] with norm r2 + s2 = p
and the homomorphism π : Z[i] → Z[i]/(r + si) gives images of the easy
points (i,−i), (−i, i) ∈ Z[i] in the quotient ring. The homomorphic images of
the points (i,−i), (−i, i) do not coincide with the points given by (5) since
(i − 1)(−i − 1) = 2, nor with the points (1, 1), (−1,−1) of (6), since p > 2,
nor with (−1, 0), (0,−1) since ±i are units and cannot be mapped to 0.
The ideal (r+si) is prime in the ring of ideals of Z[i], so the quotient Z[i]/(r+
si) is a field, has p elements, and hence is isomorphic to Fp.

Similarly, for p ≡ 1 mod 3, there is prime r+sj ∈ Z[j] with norm r2−rs+s2 = p
and the homomorphism π : Z[j] → Z[j]/(r + sj) onto a field isomorphic to
Fp has in its domain the easy points (j, j2), (j2, j) ∈ Z[j]. The homomorphic
images of these two points cannot coincide with any points in (5), (6), (7)
since (j − 1)(j2 − 1) = 3 and p > 3. �

When p ∈ Z does not split in the larger ring Z[i] or Z[j] it generates a prime
ideal (p) of norm p2. The quotient ring is then isomorphic with Fp2 . The proof
of Theorem 2 gives the following.

Corollary 3 For odd prime p ≡ −1 mod 4 or p ≡ −1 mod 3, the points listed
in (2), (3), (4) provide p2 + 5− (−1/p)− (−3/p) easy points in Fp2 × Fp2 via
the homomorphism(s) Z[i] → Z[i]/(p) and/or Z[j] → Z[j]/(p). �
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For p ≡ 1 mod 12, p2 +7 easy points in Fp2×Fp2 arise from (2) and evaluation
in the subfield isomorphic to Fp: all 8 points in (6), (7), (8) exist for this p. It
is a small step to deduce the following.

Corollary 4 Let p > 3 be prime and n ≥ 1. If n is odd then there are
pn +5+(−1/p)+(−3/p) polynomial-time computable evaluations of the Tutte
polynomial in Fpn. If n is even then there are pn+7 polynomial-time computable
evaluations of the Tutte polynomial in Fpn.

PROOF. In Fpn × Fpn there are pn − 1 points satisfying (2). Further easy
points correspond to the 6 + (−1/p) + (−3/p) points (6), (7), (8) of Theorem
2, evaluation being in the subfield Fp of Fpn . For n even, Corollary 3 provides
polynomial-time evaluations in the subfield Fp2 for the 2 − (−1/p) − (−3/p)
remaining points. �

There are 2n + 2 easy evaluations in F2n for n ≥ 1. There are no elements of
multiplicative order 4, and for even n, when there are two elements b, b2 of
order 3, the points (b, b2), (b2, b) are such that (b − 1)(b2 − 1) = 3 = 1 in F2n

and so are counted already under (2).

There are 3n + 3 + (−1)n easy evaluations in F3n for n ≥ 1, with no elements
order 3 and, for even n, two elements order 4. The point (−1,−1) is already
counted under (2) since (−1− 1)(−1− 1) = 4 = 1 in F3n .

Interpreting evaluation in Fp as “counting modulo p” it is natural to extend
Theorem 2 from evaluation in Z/pZ to evaluation in Z/mZ for composite m by
use of the Chinese Remainder Theorem. For prime p > 3 there are 1+ (−1/p)
elements of multiplicative order 4 in Z/pnZ and 1 + (−3/p) elements of order
3. In Z/2nZ, −1 is a square only if n = 1 and −3 is a square only if n = 1, 2.
In Z/3nZ, −1 is not a square and −3 is only a square for n = 1. By counting
the number of solutions to a2 ≡ −1 mod m and (2b + 1)2 ≡ −3 mod m the
following is obtained.

Corollary 5 Let 3 < m ∈ N have s ≥ 0 distinct prime factors greater than
3 and let φ(m) denote Euler’s totient function. Denote by e(m) the number
of polynomial-time computable evaluations of the Tutte polynomial in Z/mZ.
Then Theorem 2 yields the following lower bounds on e(m), the number of
easy points in Z/mZ× Z/mZ.

If m 6≡ 0 mod 4 and each of the odd prime factors p > 2 of m satisfy p ≡
1 mod 12, then

e(m) ≥ φ(m) + 4 + 2s+1. (9)
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If m 6≡ 0 mod 4 and each of the odd prime factors p > 2 of m satisfy p ≡
1 mod 4, at least one of which satisfies p ≡ 5 mod 12,

or if m 6≡ 0 mod 8, m 6≡ 0 mod 9 and there are s ≥ 1 distinct prime factors
p > 3 of m each satisfying p ≡ 1 mod 3, at least one of which satisfies p ≡
7 mod 12 if m 6≡ 0 mod 4 and m 6≡ 0 mod 3, then

e(m) ≥ φ(m) + 4 + 2s. (10)

Otherwise,

e(m) ≥ φ(m) + 4. (11)

�

Whether these inequalities for e(m) can be improved to equalities depends
on whether Theorem 2 describes all the easy points in Z/pZ × Z/pZ. This
question is briefly discussed in the following section.

3 Conclusion

For primes p > 3 it remains an open problem to determine if all the polynomial-
time computable evaluations of the Tutte polynomial in Fp have been found.
A revised version of the conjecture made in [1, §3.6] is the following.

Conjecture 6 Let p > 3 be prime. Provided RP 6= NP, any evaluation of
the Tutte polynomial in Fp not listed in Theorem 2 is not computable by a
randomised polynomial-time algorithm.

In [1, §3.7] some partial confirmation for this conjecture is adduced. Annan
shows that evaluating the Tutte polynomial at the following points cannot be
random polynomial time unless RP = NP :

{(1, y) ∈ Fp × Fp : y 6= 1}, (12)

and,

{(x, y) ∈ Fp × Fp : (x− 1)(y − 1) 6= 0, 1, 2; 〈x〉 = F ∗
p or 〈y〉 = F ∗

p }, (13)

where F ∗
p is the multiplicative group of units and 〈z〉 denotes the set generated

multiplicatively by z ∈ Fp.
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Apart from evaluation at the points (14) and (15) below, the author has
verified that the statement of Conjecture 6 is true for all evaluations of the
Tutte polynomial in Fp for 3 < p ≤ 37.

{(x, 1) ∈ Fp × Fp : x 6= 1}; (14)

{(x, y) ∈ Fp × Fp : (x− 1)(y − 1) = 2}. (15)

For p = 5, the points listed in (12) and (13) account for all the points not
shown to be easy by Theorem 2, except for the points in (14). All four points
of (15) are easy for p = 5.

Note that for the restricted problem of evaluating the Tutte polynomial of
planar graphs in Fp, the points of (15) will be easy by a theorem of [5]: eval-
uating the Tutte polynomial of planar graphs at the points {(x, y) ∈ C× C :
(x− 1)(y − 1) = 2} is polynomial time.

Recall also that T (G; 2, 1) counts forests in G and (−1)|E|−r(E)T (G; 0, 1 − p)
counts nowhere-zero p-flows in G when evaluation is in Z. Interpreting evalu-
ation in Fp as counting modulo a prime, the following question in particular
arises from (14).

Problem 7 [1, §3.8] For prime p > 3, is there a randomised polynomial-
time algorithm for counting the number of forests of a graph modulo p? Can
the number of nowhere-zero p-flows modulo p be found in random polynomial
time?
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