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3 The Tutte polynomial

Let A be an additive Abelian group of order k. The number of nowhere-zeroA-flows of a planar graphG, F (G; k),
is under duality equal to the number of nowhere-zero A-tensions of G∗, F ∗(G; k). (This was discussed in the
chapter on flows and tensions, Cor. 15 and Prop. 17.) For a planar graph we have F ∗(G; k) = F (G∗; k). By the
correspondence between nowhere-zero tensions and proper vertex colourings we have P (G; k) = kc(G)F ∗(G; k).

Upon switching deletion and contraction, the deletion-contraction recurrence satisfied by F (G; k) is that
satisfied by F ∗(G; k). We shall see further examples of how deletion and contraction are dual operations. We
also have seen (Theorem 18 in the chapter on the chromatic polynomial) that |P (G;−1)| = |F ∗(G;−1)| is
equal to the number of acyclic orientations of G, and dually |F (G;−1)| is equal to the number of totally cyclic
orientations of G. Indeed, a totally cyclic orientation is an orientation containing no directed cocircuit, which
is dual to an acyclic orientation (containing no directed circuit).

Not everything that can be computed recursively by deletion-contraction can be found as an evaluation of
the chromatic or flow polynomial, however. The number of spanning forests of a connected graph G (subsets
F ⊆ E that contain no circuit of G), and the number of spanning subgraphs of G with c(G) components (subsets
F whose complement E \ F contains no cocircuit of G), are both quantities satisfying a deletion-contraction
rule (see end of the chapter on the chromatic polynomial). But it is clear that neither of these graph invariants
can be calculated from the chromatic and flow polynomials alone (why?).

In this chapter we shall see how the number of spanning forests and a wide range of other graph invariants
can also be obtained by evaluations of a bivariate polynomial that includes the chromatic polynomial and
flow polynomial as specializations. Moreover this bivariate polynomial is “universal” for deletion-contraction
invariants.

3.1 Defining the Tutte polynomial

Recall that the rank of G is defined by r(G) = |V (G)| − c(G) and is the dimension of the cutset space of G
(Z2-tensions of G). The nullity of G is defined by n(G) = |E(G)|− r(G) and is the dimension of the cycle space
of G (Z2-flows of G).

It will be convenient to call an edge ordinary when it is neither a bridge nor a loop.

Consider the following recursive definition of a graph invariant T (G;x, y) in two independent variables x
and y. If G has no edges then T (G;x, y) = 1, otherwise, for any e ∈ E(G),

T (G;x, y) =











T (G/e;x, y) + T (G\e;x, y) e ordinary,

xT (G/e;x, y) e a bridge,

yT (G\e;x, y) e a loop.

(1)

By induction this defines a bivariate polynomial T (G;x, y), called the Tutte polynomial of G, all of whose
coefficients are non-negative integers. See Figure 1 for a couple of small examples illustrating how the Tutte
polynomial can be computed recursively, in a similar way to the chromatic polynomial in the previous chapter,
except without the complication of needing to keep track of signs.
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It is not immediately clear that it does not matter which order the edges are chosen to calculate T (G;x, y)
recursively using (1). (For the chromatic polynomial the situation was different: we had a well-defined graph
polynomial and we proved it satisfied a deletion-contraction recurrence.)

Proposition 1. If e1 and e2 are distinct edges of G then the outcome of first applying the recurrence (1) with
edge e1 and then with edge e2 is the same as with the reverse order, when first taking e2 and then e1.

Proof. (Sketch) First observe that if e1 and e2 are parallel then the statement is clearly true (swapping e1 and
e2 is an automorphism of G). When e1 and e2 are not parallel, the type of edge e2 in G (whether it is a bridge,
loop, or ordinary) is preserved in G/e1 and in G\e1. For each of the possible combinations of edge types for e1
and e2, one verifies that swapping the order of e1 and e2 gives the same outcome in the two-level computation
tree going from G to G with edges e1 and e2 deleted or contracted. For example, if both edges are ordinary
then the truth of the statement amounts to the fact that G/e1\e2 ∼= G\e2/e1 and similarly for the other three
combinations of deletion and contraction.

The recurrence (1) can be restated as follows. If G consists of k bridges and ℓ loops then T (G;x, y) = xkyℓ,
otherwise T (G;x, y) = T (G/e;x, y) + T (G\e;x, y) for an ordinary edge e of G.
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Figure 1: Using deletion-contraction to compute the Tutte polynomial of K3 and its dual K∗
3 .

Question 1 For any given n ≥ 1, calculate the Tutte polynomial of the cycle Cn.

A graph G is 2-connected if and only if has no cut-vertex. A graph is 2-connected if and only if its cycle
matroid is connected (not the direct sum of two smaller matroids). A loop on a single vertex (C1) and a single
bridge (K2) are both 2-connected. For the case of many loops on a single vertex (where one might still consider
the vertex not to be a cut-vertex) we refer to the cycle matroid, which is the direct sum of its constituent loops:
so this graph is not 2-connected when there is more than one loop.

A block of G is a maximal 2-connected induced subgraph of G. If G is not 2-connected then it can be
written in the form G = G1 ∪G2 where |V (G1)∩V (G2)| ≤ 1. The intersection graph of the blocks of a loopless
connected graph is a tree. In particular, if G is loopless and connected and has at least two blocks then there
are at least two endblocks of G which are blocks containing only one cut-vertex of G.

Proposition 2. The Tutte polynomial of G is multiplicative over the connected components of G and over
the blocks of G: if G = G1 ∪ G2 where G1 and G2 share at most one vertex then T (G1 ∪ G2;x, y) =
T (G1;x, y)T (G2;x, y).
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Proof. The statement is true when each edge is either a bridge or a loop, since in this case T (G;x, y) = xkyℓ,
where k is the number of bridges and ℓ the number of loops. We argue by induction on the number of ordinary
edges of G. Let G = G1 ∪ G2 where |V (G1) ∩ V (G2)| = 1. The endpoints of any edge e must belong to the
same block of G; if e is a bridge or loop then it forms its own block. Suppose G = G1 ∪G2 where G1 is a block
of G containing an ordinary edge e. Deleting or contracting e can only decrease the number of ordinary edges
of G and since e is ordinary we have, writing T (G;x, y) = T (G),

T (G) = T (G/e) + T (G\e)
= T (G1/e ∪G2) + T (G1\e ∪G2)

= [T (G1/e) + T (G1\e)]T (G2)

= T (G1)T (G2),

where to obtain the third line we applied the inductive hypothesis.

The converse to Proposition 2 also holds, although its proof is bit more involved:

Theorem 3. [39] If G is a loopless 2-connected graph then T (G;x, y) is irreducible in Z[x, y].

The factors of the Tutte polynomial of G therefore correspond precisely to the blocks of G.

An open ear decomposition of a graph G = (V,E) is a partition of the edges of G into a sequence of simple
paths P0, P1, . . . , Ps such that P0 is a single edge, each endpoint of Pi, 1 ≤ i ≤ s, is contained in some Pj ,
j < i, and the internal vertices of Pi are not vertices of any other Pj , j < i. The Pi are called the ears of the
decomposition. A graph has an open ear decomposition if and only if it is 2-connected [55]. The length s of an
open ear decomposition of G equals its nullity, i. e., s = |E| − |V |+ 1.

Question 2 The last ear P in an open ear decomposition of G is an induced path. Let
G\P denote the minor of G obtained by deleting all the edges in P , and G/P the minor
obtained by successively contracting all the edges in P (in any order).

(i) Prove that if P has k edges then

T (G;x, y) = (xk−1 + · · ·+ x+ 1)T (G\P ;x, y) + T (G/P ;x, y).

(When k = 1 this is the defining deletion-contraction formula for an ordinary edge.)

(ii) Calculate the Tutte polynomial of the graph formed by identifying the endpoints
of each of three paths on a, b and c vertices (a theta graph). In particular, write
down the polynomials T (K2,3;x, y) and T (K−

4 ;x, y), where K−
4 is K4 minus an

edge.

(iii) Calculate T (K4;x, y).

Here are some basic properties of the coefficients of T (G;x, y):

Proposition 4. For a graph G with Tutte polynomial T (G;x, y) =
∑

ti,j(G)xiyj,

(i) t0,0(G) = 0 if |E(G)| > 0;

(ii) if G has no loops then t1,0(G) 6= 0 if and only if G is 2-connected;

(iii) xk divides T (G;x, y) if and only if G has at least k bridges, and yℓ divides T (G;x, y) if and only if G has
at least ℓ loops;

(iv) given G has k bridges and ℓ loops, if i ≥ r(G) or j ≥ n(G) then ti,j(G) = 0 except when i = r(G) and
j = ℓ, or i = k and j = n(G), where we have tr(G),ℓ(G) = 1 = tk,n(G)(G).
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Proof. For (ii), we use the property that if G is 2-connected, then at least one of G/e and G\e is also 2-connected.
A basis for induction is that T (K2;x, y) = x. Given a loopless graph G, if e is not parallel to another edge then
both G/e and G\e have no loops, and the equation t1,0(G) = t1,0(G/e) + t1,0(G\e) provides the inductive step.
If e is parallel to another edge then G/e has a loop and t1,0(G) = t1,0(G\e); by deleting all but one edge in a
parallel class we can thus assume G is simple. For the converse, if G is not 2-connected then by Proposition 2
its Tutte polynomial is the product of at least two polynomial factors, each corresponding to a block of G; by
what we have just proved t1,0(B) = 1 for each such block B, and this implies t1,0(G) = 0.

For (iv), we shall use induction on the number of ordinary edges to prove that ti,j(G) = 0 when i ≥ r(G) or
j ≥ n(G), except for tr(G),ℓ(G) = 1 = tk,n(G)(G). The base case is when G has no ordinary edges, consisting of
k bridges and ℓ loops. Here r(G) = k and n(G) = ℓ, and tk,ℓ(G) = 1, while ti,j(G) = 0 for all other values of
i, j. Hence the statement is true in this case.

Consider the recurrence formula ti,j(G) = ti,j(G/e)+ ti,j(G\e) for an ordinary edge e. We have by inductive
hypothesis that ti,j(G/e) = 0 for i ≥ r(G/e) = r(G)− 1 except tr(G)−1,ℓ(G/e) = 1, and for j ≥ n(G/e) = n(G)
except tk,n(G)(G/e) = 1. This gives ti,j(G) = 0 for j ≥ n(G) except tk,n(G)(G) = 1.

Also ti,j(G\e) = 0 for i ≥ r(G\e) = r(G) except tr(G),ℓ(G\e) = 1, and for j ≥ n(G\e) = n(G) − 1 except
tk,n(G)−1(G/e) = 1. This gives tr(G),ℓ(G) = 0 for i ≥ r(G) except tr(G),ℓ(G) = 1.

If G is a bridgeless loopless 2-connected graph and H is a minor of G having at least one edge then
ti,j(H) ≤ ti,j(G) (proved by Brylawski [18, Corollary 6.9] in the more general context of matroids). When G is
not 2-connected and H is a minor of G, the coefficients of T (H ;x, y) are not necessarily dominated by those of
T (G;x, y): for an example, take G to be a tree on at least two edges and H any proper minor.

3.2 Evaluations of the Tutte polynomial

We have met quite a few examples of graph invariants that satisfy a deletion-contraction recurrence, such as the
chromatic polynomial, the flow polynomial, and the number of acyclic orientations. For the number of acyclic
orientations, which we denoted by Q(G) in the proof of Theorem 18 in the chapter on the chromatic polynomial,
we derived the recurrence Q(G) = Q(G\e) +Q(G/e). Together with the fact that Q(K2) = 2 and Q(C1) = 0
this implies that in fact the number of acyclic orientations is equal to T (G; 2, 0), which satisfies precisely the
same recurrence and boundary conditions on loops and bridges.

Question 3

The number of spanning trees, spanning forests and connected spanning subgraphs are
each equal to an evaluation of the Tutte polynomial. At which points?

How about the chromatic polynomial and flow polynomial? We are momentarily halted in our stride by the
fact that the recurrence P (G; z) = P (G\e; z)−P (G/e; z) involves a subtraction, which doees not feature in the
deletion-contraction recurrence for the Tutte polynomial. However, “momentarily” is the operative word. The
following theorem describes the necessary ingredients for other evaluations of the Tutte polynomial. It turns
out the Tutte polynomial is all-embracing of graph invariants satisfying deletion-contraction recurrences of the
form satisfied by the chromatic polynomial.

Theorem 5. “Recipe Theorem” Let G be a minor-closed class of graphs. There is a unique graph invariant
f : G → Z[x, y, α, β, γ] such that f(Kn) = γn for n = 1, 2, . . ., and for every edge e ∈ E

f(G) =











αf(G/e) + βf(G\e) e not a bridge or loop,

xf(G/e) e a bridge,

yf(G\e) e a loop.

(2)

The graph invariant f is equal to the following specialization of the Tutte polynomial:

f(G) = γc(G)αr(G)βn(G)T (G;
x

α
,
y

β
). (3)
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Note. (i) If instead of contracting a bridge we require that f(G) = xf(G\e) when e is a bridge, the Tutte
polynomial is evaluated at the point (γx/α, y/β) instead of (x/α, y/β). In particular, when γ = 1 it does not
matter whether bridges are deleted or contracted.

(ii) If either α or β is zero then we interpret (3) as the result of substituting values of the parameters after
expanding the expression on the right-hand side as a polynomial in Z[α, β, γ, x, y]. Given a graph G with k
bridges and ℓ loops, using Proposition 4 (iv) we see that if α = 0 then f(G) = γc(G)βn(G)−ℓxr(G)yℓ, and if β = 0
then f(G) = γc(G)αr(G)−kxkyn(G). If both α and β are zero then f(G) = 0 if G has an ordinary edge, while
f(G) = γc(G)xkyℓ if E(G) consists of just k bridges and ℓ loops.

Proof. Uniqueness of f(G) follows by induction on the number of edges and application of the recurrence (2).

Formula (3) is certainly true for cocliques Kn. If G consists just of k bridges and ℓ loops and has c connected

components, then f(G) = γcxkyℓ and since r(G) = k and n(G) = ℓ we have T (G; x
α ,

y
β ) =

(

x
α

)k
(

y
β

)ℓ

, so (3)

is satisfied. Let e be an ordinary edge, and note that c(G) = c(G/e) = c(G\e), so that r(G/e) = r(G) − 1,
r(G \ e) = r(G) and n(G/e) = n(G), n(G\e) = n(G) − 1. By induction on the number of ordinary edges,

f(G) = αf(G/e) + βf(G\e)
= α · γc(G)αr(G)−1βn(G)T (G/e;

x

α
,
y

β
) + β · γc(G)αr(G)βn(G)−1T (G\e; x

α
,
y

β
)

= γc(G)αr(G)βn(G)T (G;
x

α
,
y

β
).

A graph invariant satisfying the recurrence (2) is called a generalized Tutte–Grothendieck invariant, or
TG-invariant for short [19]. (Tutte-Grothendieck rings were introduced by Brylaskwi [17] in an early paper
on matroids (or “pregeometries”) as a generalization of Tutte’s ring in graph theory [47] and using a ’con-
struction reminiscent of constructions recently used with great success in the field of algebraic geometry by
A. Grothendieck.’) A TG-invariant is multiplicative over disjoint unions, and if G1 and G2 share just one
vertex then f(G1 ∪ G2) = f(G1)f(G2)/γ. (The archetypal example is the chromatic polynomial.) See [19] for
TG-invariants in graph theory and matroid theory more generally.

Question 4

Suppose the graph invariant f(G) satisfies the recurrence (2). Show that the graph
invariant

(

x− α

βγ

)c(G) (
y − β

α

)|V (G)|

δ|E(G)|f(G),

where δ is an arbitrary constant, satisfies the recurrence f(G) = (y−β)f(G/e)+βf(G\e)
independently of whether e is a bridge, loop, or ordinary. (For example, the chromatic
polynomial is an example of such an invariant, its recurrence P (G; z) = P (G\e; z) −
P (G/e; z) holding for any edge e.)

An example we have already seen for the above question is when f(G) is the number of acyclic orientations
of G. This is a TG-invariant with α = β = γ = 1 and x = 2, y = 0, satisfying f(G) = f(G/e) + f(G\e) when e
is not a loop. The invariant (−1)|V (G)|f(G) satisfies f(G) = f(G \ e)− f(G/e) for all edges e (as we know from
Theorem 18 in the chapter on the chromatic polynomial, it is equal to P (G;−1)).

Proposition 6. The monochrome polynomial,

B(G; k, y) =
∑

f :V (G)→[k]

y#{uv∈E(G):f(u)=f(v)},

is the following specialization of the Tutte polynomial:

B(G; k, y) = kc(G)(y − 1)r(G)T (G;
y − 1 + k

y − 1
, y).
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The chromatic polynomial is given by

P (G; z) = (−1)r(G)zc(G)T (G; 1− z, 0).

Proof. Proposition 17 in the chapter on the chromatic polynomial gives the recurrence formula

B(G; k, y) = (y − 1)B(G/e; k, y) +B(G\e; k, y), (4)

valid for all edges e.

For the chromatic polynomial we have P (G; z) = (z−1)P (G/e; z) when e is a bridge, for we have P (G\e; z) =
zP (G/e; z). A direct argument for P (G \ e; k) = kP (G/e; k) when e = uv is a bridge is as follows. Suppose
G\e = G1 ∪ G2 with u ∈ V (G1) and v ∈ V (G2). Then G/e is obtained from G1 ∪ G2 by identifying the
vertices u and v to make a cut-vertex w. Given a fixed colour ℓ ∈ [k], there are P (G1; k)/k proper colourings
f1 : V (G1) → [k] of G1 with f1(w) = ℓ, and P (G2; k)/k proper colourings f2 : V (G2) → [k] of G2 with
f2(w) = ℓ. Since there are no edges between G1 and G2, there are P (G1; k)P (G2; k)/k

2 proper colourings of
G/e with f(w) = ℓ. This number is independent of ℓ, so there are P (G1; k)P (G2; k)/k proper colourings of
G/e. On the other hand, there are P (G1; k)P (G2; k) proper colourings of G\e. Hence P (G\e; k) = kP (G/e; k)
when e is a bridge of G.

For the monochrome polynomial, when e is a bridge we have B(G\e; k, y) = kB(G/e; k, y), by a similar
argument to the chromatic polynomial, by conditioning on the colour of the cut-vertex w of G/e obtained by
identifying the endpoints of e. Instead of proper colourings, consider colourings with exactly m1 monochrome
edges in G1 and exactly m2 monochrome edges in G2. Then the number of such colourings for G\e (the disjoint
union of G1 and G2) is k times the number for G/e (the gluing of G1 and G2 at a vertex). Collecting together all
colourings for which m1+m2 = m, this implies that the coefficient of ym in B(G\e; k, y) is equal to k times the
corresponding coefficient in B(G/e; k, y). Since this holds for eachm, it follows thatB(G\e; k, y) = kB(G/e; k, y)
when e is a bridge, and so B(G; k, y) = (y − 1 + k)B(G/e) by the recurrence formula (4). When e is a loop
B(G; k, y) = yB(G\e; k, y) since a loop is always monochromatic (or by looking at the recurrence formula (4)
with G/e ∼= G\e when e is a loop).

The result now follows by Theorem 5.

Let’s return to acyclic orientations of G, which we have seen are counted by T (G; 2, 0) = (−1)|V (G)|P (G;−1),
for a surprising result concerning them is waiting in the wings.

Question 5

(i) Show that an acyclic orientation of G has at least one source (all edges outgoing)
and at least one sink (all edges incoming).

(ii) What is the dual statement for totally cyclic orientations? Prove it.

Theorem 7. [Greene and Zaslavsky [26]] Suppose G = (V,E) is a connected graph and u ∈ V . Then the
number of acyclic orientations of G with unique source at u is equal to T (G; 1, 0). In particular, this number is
independent of the choice of u.

Note when G is connected T (G; 1, 0) = P ′(G; 0), the coefficient of z in P (G; z), so Theorem 7 gives another
graph invariant that can be calculated using the chromatic polynomial of G alone.

Proof. Fix a vertex u of G and let Qu(G) denote the number of acyclic orientations with a unique source at u.

Suppose G is connected and with at least one edge. Choose an edge e = uv with one endpoint the source
vertex u. (Since G is connected there has to be at least one edge incident with u.)

If e is the only edge of G, then Qu(G) = 1 when e is a bridge, and Qu(G) = 0 when e is a loop. Suppose
there are other edges.

If e is a loop then Qu(G) = 0.
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If e is a bridge then Qu(G) = Qu(G/e). For consider an acyclic orientation O of G with unique source u.
Then in the component of G\e containing v, the only source of O restricted to this component has to be v,
otherwise there would be a source other than u in O. Therefore, acyclic orientations of G with unique source
at u are in one-to-one correspondence with acyclic orientations of G/e with unique source at u (which in G/e
has been identified with the vertex v).

If e is ordinary then partition acyclic orientations with u as a unique source into two sets: those for which
uv is the only edge directed into v (so deleting uv does not give an acyclic orientation of G\e with a unique
source) and those for which uv is not the only edge directed into v (here deleting uv gives an acyclic orientation
of G\e with unique source at u). The first set is in one-to-one correspondence with acyclic orientations of G/e
with unique source at u (in G/e vertex v is identified with vertex u), while the second set is in one-to-one
correspondence with acyclic orientations of G\e with unique source at u. Hence when e is ordinary we have
Qu(G) = Qu(G/e) +Qu(G\e).

By Proposition 5 it follows that Qu(G) = T (G; 1, 0).

Question 6

Formulate and prove the dual version of Theorem 7.

3.3 Subgraph expansion

As we have already alluded to, a way to circumvent the need to prove that the deletion-contraction recurrence (1)
gives a well-defined polynomial T (G;x, y) for a graph G, independent of the order in which the edges are chosen,
is to exhibit such a polynomial that can be verified to satisfy the recurrence. We begin this section by doing
precisely this. First a recap of some notation.

Let G = (V,E) be a graph and A ⊆ E. Identify A with the spanning subgraph GA = (V,A). The rank of
A is defined by rG(A) = |V (G)| − c(GA) (this is the matroid rank function on the cycle matroid of G). The
nullity of A is defined by nG(A) = |A| − rG(A). Thus rG(E) = r(G) and nG(E) = n(G) in the notation already
introduced for the rank and nullity of the graph G. When context makes it clear what graph G is, we drop the
subscript and write r(A) for rG(A) and n(A) for nG(A).

It is easy to see that 0 ≤ r(A) ≤ |A| with r(A) = 0 if and only if A is empty or a set of loops, and r(A) = |A|
if and only if GA is a forest (set of bridges). Also, A ⊆ B implies r(A) ≤ r(B) and r(A) = r(E) if and only if
c(GA) = c(G).

Proposition 8. The Tutte polynomial of a graph G = (V,E) has subgraph expansion

T (G;x, y) =
∑

A⊆E

(x− 1)r(E)−r(A)(y − 1)n(A). (5)

Proof. Set

R(G;u, v) =
∑

A⊆E

ur(E)−r(A)v|A|−r(A),

(the Whitney rank-nullity generating function for G). We wish to prove that T (G;x, y) = R(G;x − 1, y − 1)
and shall do this by verifying that R(G;u, v) satisfies the TG-invariant recurrence formula: (i) R(G;u, v) = 1 if
E = ∅, (ii) R(G;u, v) = (u + 1)R(G\e;u, v) when e is a bridge, (iii) R(G;u, v) = (v + 1)R(G\e;u, v) when e is
a loop, and (iv) R(G;u, v) = R(G/e;u, v) +R(G\e;u, v) when e is ordinary.

When E = ∅ we have R(G;u, v) = 1.

If e 6∈ A then
rG(A) = rG\e(A). (6)

If e ∈ A then

rG\e(A\e) =
{

rG(A)− 1 if e is a bridge,

rG(A) if e is a loop,
(7)
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and
rG/e(A\e) = rG(A) − 1 if e is ordinary or a bridge. (8)

Suppose e is a bridge. Then by (6) and (7),

R(G;u, v) =
∑

A⊆E\e
urG(E)−rG(A)v|A|−rG(A) +

∑

e∈A⊆E

urG(E)−r(A)v|A|−rG(A)

= u
∑

A⊆E\e
urG\e(E\e)−rG\e(A)v|A|−rG\e(A)

+
∑

B=A\e
urG\e(E\e)+1−(rG\e(B)+1)v|B|+1−(rG\e(B)+1)

= (u+ 1)R(G\e;u, v).

The case when e is a loop is similarly argued.

When e is ordinary, by (6) and (8),

R(G;u, v) =
∑

A⊆E\e
urG(E)−rG(A)v|A|−rG(A) +

∑

e∈A⊆E

urG(E)−rG(A)v|A|−rG(A)

=
∑

A⊆E\e
urG\e(E\e)−rG\e(A)v|A|−rG\e(A)

+
∑

B=A\e
urG/e(E\e)+1−(rG/e(B)+1)v|B|+1−(rG/e(B)+1)

= R(G\e;u, v) +R(G/e;u, v).

It is common to define the Tutte polynomial by its subgraph expansion (5), having over the deletion–
contraction formulation (1) the advantage of being unambiguously well-defined. On the other hand, it is
not apparent from (5) that the coefficients of the Tutte polynomial are non-negative integers, and often it is
easier to derive a combinatorial interpretation for an evaluation of the Tutte polynomial by using the deletion–
contraction recurrence. Nonetheless, it is easy to read off some evaluations of the Tutte polynomial from its
subgraph expansion.

Question 7 Let G = (V,E) be a connected graph. Using the subgraph expansion for
T (G;x, y) show the following:

(i) T (G; 1, 1) = #spanning trees, T (G; 2, 1) = #spanning forests,
T (G; 1, 2) = #connected spanning subgraphs, and T (G; 2, 2) = 2|E| =
#spanning subgraphs.

(ii) If (x− 1)(y − 1) = 1 then T (G;x, y) = (x− 1)r(E)y|E|.

(iii) The generating function for spanning forests of G by number of connected com-
ponents is given by

xT (G;x+ 1, 1) =
∑

A⊆E

n(A)=0

xc(GA).

(iv) The generating function for connected spanning subgraphs of G by size is given by

y|V |−1T (G; 1, y + 1) =
∑

A⊆E

c(GA)=c(G)

y|A|.
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Along the hyperbola (x− 1)(y − 1) = z we have, for graph G = (V,E),

T (G;x, y) = (y − 1)−|V |
∑

A⊆E

(

z

y − 1

)c(GA)−c(G)

(y − 1)|A|+c(GA)

= (y − 1)−r(G)z−c(G)
∑

A⊆E

zc(GA)(y − 1)|A|.

When y = 0 this is the subgraph expansion for the chromatic polynomial that we obtained earlier by inclusion–
exclusion. The polynomial

∑

A⊆E zc(GA)w|A| is the partition function for the Fortuin–Kasteleyn random cluster
model in statistical physics (the normalizing constant for a probability space on subgraphs of G, the probability
of GA = (V,A) depending on both |A| and c(A)). This model generalizes the k-state Potts model, which is the
case z = k ∈ Z+, and whose partition function we have already met in the form of the monochrome polynomial
B(G; k, y).

3.4 Coefficients and the spanning tree expansion

A graph invariant is called a Tutte invariant if it can be found as some function of the coefficients of T (G;x, y).
Thus the property of having at least one edge is a Tutte invariant since t0,0(G) = 0 if and only if G has an
edge. In fact |E| is itself a Tutte invariant since T (G; 2, 2) = 2|E|. Also r(G) = max{i : ti,j(G) 6= 0} and
n(G) = max{j : ti,j(G) 6= 0} are Tutte invariants. For another example, from Proposition 4 (ii), a graph G is
2-connected if and only if t1,0(G) 6= 0.

Examples of graph invariants that are not Tutte invariants include the degree sequence of G and whether
G is planar. A tree on n vertices has Tutte polynomial xn−1, and for n ≥ 3 there are two trees on n vertices
with different degree sequences. Less trivially, there are non-2-isomorphic graphs G and G′ which have different
degree sequences. Likewise, there is a planar graph G and non-planar graph G′ with T (G;x, y) = T (G′;x, y).
(See [40, Appendix] for examples.)

In this section we shall give Tutte’s 1954 inductive proof that, for a connected graph G, the coefficients
ti,j(G) count a certain subset of the spanning trees of G. The interpretation of ti,j(G) when G is not connected
follows as an easy consequence of multiplicativity of T (G;x, y) over disjoint unions. A subgraph GA = (V,A)
has r(A) = r(E) and n(A) = 0 if and only if GA is a maximal spanning forest, in the sense that no edge can be
added to GA without creating a cycle, i.e., GA consists of a spanning tree of each connected component of G.

Let G = (V,E) be a connected graph and T a spanning tree of G. Then

(i) for each e ∈ E \ T there is a unique circuit in G contained in T ∪ {e}, which we shall denote by CT,e, and

(ii) for each e ∈ T there is a unique bond contained in E \ T ∪ {e}, which we shall denote by BT,e.

Put a linear order < on E. Say E = {e1, e2, . . . , em}, where e1 < e2 < · · · < em.

Definition 9. Given a spanning tree T of a connected graph G with an ordering of its edges, an edge e ∈ T
is internally active with respect to T if e is the least edge in BT,e. An edge e ∈ E \ T is externally active with
respect to T if e is the least edge in CT,e. A spanning tree T has internal activity i and external activity j when
there are precisely i internally active edges with respect to T and j externally active edges with respect to T .

Tutte was led to his spanning tree expansion of the Tutte polynomial of a connected graph by observing that
in the recursive definition of T (G;x, y), if one applies deletion and contraction to edges of E in reverse order
em, em−1, . . . , e2, e1, the result will be an expression for T (G;x, y) as a sum in which each summand is obtained
by contracting the elements in some spanning tree T of G and deleting the elements of E \ T . Moreover, in
the process of obtaining this summand the edges contracted as bridges will be precisely the internally active
edges with respect to T , and the elements of E deleted as loops will be precisely the externally active edges
with respect to T .

Theorem 10. [Tutte, 1954] Let G be a connected graph with an order on its edges and for each 0 ≤ i ≤
|V | − 1, 0 ≤ j ≤ |E| − |V | + 1 let ti,j(G) denote the number of spanning trees of G of internal activity i and
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external activity j. Then the Tutte polynomial of G is equal to

T (G;x, y) =
∑

ti,j(G)xiyj .

In particular, ti,j(G) is a graph invariant, independent of the ordering of the edges of G.

Proof. We proceed by induction on the number of edges of G.

When there are no edges in G, i.e., G ∼= K1, we have t0,0(G) = 1 and ti,j(G) = 0 for i+ j > 0.

Let G = (V,E), E = {e1 < e2 < . . . < em}, m ≥ 1, and assume the assertion holds for connected graphs
with at most m− 1 edges.

The graphsG/em and G\em are both connected when em is ordinary or a loop, while only G/em is connected
when em is a bridge, but this is fine because we only contract bridges in the recurrence for T (G;x, y). We take
E(G/em) = E(G\em) = {e1 < e2 < · · · < em−1}.

(i) Suppose em is a bridge. Then em is in every spanning tree of G, and a subgraph T is a spanning tree if
and only if em ∈ T and T/em is a spanning tree of G/em. Also, em is internally active in every spanning tree
T of G, since BT,em = {em}, so t0,j(G) = 0 for each j. Clearly, for 1 ≤ k ≤ m − 1 the edge ek is internally
(externally) active in G with respect to T if and only if it is internally (externally) active in G/em with respect
to T/em. Hence ti,j(G) = ti−1,j(G/em) for i ≥ 1. Applying the inductive hypothesis, we obtain

T (G;x, y) =
∑

ti−1,j(G/em)xiyj

= x
∑

ti−1,j(G/em)xi−1yj

= xT (G/em;x, y) = T (G;x, y).

(ii) Suppose em is a loop. Then em is in no spanning tree of G, and a subgraph T of G is a spanning tree of
G if and only if it is a spanning tree of G\em. Also em is externally active with respect to every spanning tree
T of G since CT,em = {em}. For 1 ≤ k ≤ m− 1 the edge ek is internally (externally) active in G with respect
to T if and only if it is internally (externally) active in G\em with respect to the same spanning tree T . Hence
ti,j(G) = ti,j−1(G\em), so

∑

i,j

ti,j(G)xiyj = y
∑

i,j

ti,j−1(G\em)xiyj−1

= yT (G\em;x, y) = T (G;x, y).

(iii) Suppose em is ordinary.

A subset T is a spanning tree of G\em if and only if it is a spanning tree of G not containing em. If T is
a spanning tree of G\em with internal activity i and external activity j then it has the same activities as a
spanning tree of G, since every other edge precedes em and CT,em contains an edge other than em.

Similarly, T is a spanning tree of G/em if and only T ∪ {em} is a spanning tree of G (no cycles in T ∪ {em}
can be created by em that would not already be in T in the contraction G/em). If T is a spanning tree of G/em
with internal activity i and external activity j then it has the same activities as a spanning tree of G, since
every other edge precedes em and BT,em contains an edge other than em since em is not a bridge.

It follows that ti,j(G) = ti,j(G/em) + ti,j(G\em) when em is ordinary, and this makes the induction step go
through for ordinary edges too.

A more constructive proof that ti,j(G) is equal to the number of spanning trees of G of internal activity i
and external activity j was given by Crapo in 1969. See for example [10, ch. 13], and also [11, X.5].

The definition of internal and external activity extends in the obvious way from spanning trees of connected
graphs to maximal spanning forests of graphs more generally.

Corollary 11. Let G be a graph with Tutte polynomial T (G;x, y) =
∑

ti,j(G)xiyj. Then ti,j(G) is equal to the
number of maximal spanning forests of G of internal activity i and external activity j.
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Proposition 12. If |E(G)| > 0 then t0,0(G) = 0. If |E(G)| > 1 then t1,0(G) = t0,1(G).

Proof. If E = {e1, . . . , em} is non-empty with order e1 < · · · < em, then e1 is active with respect to any maximal
spanning forest F , internally if e1 ∈ F , externally if e1 6∈ F . In particular, t0,0(G) = 0.

Note that t1,0(K2) = 1, t0,1(K2) = 0. Asssume m ≥ 2. If G has a least two blocks containing at least one
edge then we can choose an order on E such that e1 and e2 belong to different blocks of G. Then e1 and e2 are
both active with respect to every maximal spanning forest, and so t1,0(G) = 0 = t0,1(G) in this case.

Suppose then thatG is 2-connected. (If there are isolated vertices we can ignore them as the Tutte polynomial
is unaffected by their presence or absence.) Let T be a spanning tree of internal activity 1 and external activity
0.

The edge e1 is active with respect to every spanning tree, and so e1 ∈ T . This implies e2 6∈ T , for otherwise
e2 would also be internally active for T (BT,e2 cannot contain e1, which belongs to T ). So e1 ∈ CT,e2 , otherwise
e2 would be externally active.

The subgraph T ′ = T − {e1} ∪ {e2} is also a spanning tree of G, and has internal activity 0 and external
activity 1 (the edge e1).

Reversing the argument shows that the map T 7→ T ′ is a bijection between trees contributing to t1,0(G)
and trees contributing to t0,1(G): if T ′ is a spanning tree contributing to t0,1(G) then e1 6∈ T ′ but e2 ∈ T , and
interchanging e1 and e2 yields a spanning tree T contributing to t1,0(G).

Question 8 Prove Proposition 12 beginning with the fact that t1,0(G) = 0 if G is not
2-connected and then inductively by deletion-contraction.

The identities of Proposition 12 are the first of a series of identities proved by Brylawski [18]. If |E(G)| > k
then

k
∑

i=0

k−i
∑

j=0

(−1)j
(

k − i

j

)

ti,j(G) = 0.

Thus if |E(G)| > 2 then t2,0(G) − t1,1(G) + t0,2(G) = t1,0(G).

The fact that T (G;x, y) has degree r(G) as a polynomial in x and degree n(G) as a polynomial in y is
immediate from the fact that ti,j(G) is the number of maximal spanning forests of internal activity i and
external activity j. Choose the edge order e1 < e2 < · · · < em so that e1, . . . , er(G) are the edges of a maximal
spanning forest: all are internally active, and no edges are externally active when G has no loops. Or, when
choosing the edge order so that e1, . . . , en(G) are the edges in the complement of a maximal spanning forest of
G, the latter having internal activity 0 provided there are no bridges, and external activity n(G).

3.5 A spanning tree partition of subgraphs

In this section we sketch the relationship between the expansion of the Tutte polynomial by internal–external
activities and the subgraph expansion by rank-nullity. In order to do so we rely on many facts given without
proof (for which see e.g. [10, ch. 13]).

Let G = (V,E) be a connected graph with a given order on its edges. For a spanning tree T of G, let T ǫ

denote its set of externally active edges and T ι its set of internally active edges.

The Boolean lattice of subgraphs 2E = {A : A ⊆ E} is partitioned into Boolean intervals [T \ T ι, T ∪ T ǫ] =
{A : T \ T ι ⊆ A ⊆ T ∪ T ǫ} indexed by spanning trees. Given A ⊆ E, we have n(A) = 0 (i.e., r(A) = |A|) if and
only if (V,A) is a forest, and r(A) = r(E) if and only if (V,A) is a connected spanning subgraph. An edge e
is independent of A if r(A ∪ e) = r(A) + 1, otherwise e is dependent, and n(A ∪ e) = n(A) + 1. Use the order
on E to successively add to A the least edges e1, e2, . . . , er(E)−r(A) that are independent of A. This creates a
connected spanning subgraph A ∪ {e1, . . . , er(E)−r(A)} containing A.

Similarly, given A ⊆ E, by removing edges dependent on A we decrease its nullity, and if e1, . . . , en(A) are
chosen to be the least such dependent edges then we obtain a unique subgraph A \ {e1, . . . , en(A)} of nullity
zero, i.e., a spanning forest of G.
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If we first add least independent edges to A to make a connected spanning subgraph, and then remove least
dependent edges of A we obtain a spanning tree T of G. Likewise, if we first remove the least dependent edges
to make a spanning forest and then add the least independent edges we obtain (the same) spanning tree T .

Spanning subgraphs spanning subgraphs
Connected

Spanning forests Spanning trees

r(A) = r(E)

n(A) = 0 |A| = r(A) = r(E)

add least
independent edgesA ⊆ E

re
m

ov
e

le
as

t
de

pe
nd

en
t

ed
ge

s (increase rank)

(d
ec

re
as

e
nu

ll
it

y)

This procedure locates which interval [T \ T ι, T ∪ T ǫ] the subset A belongs to. Call A an internal subgraph
if T has no externally active edges, so A belongs to the interval [T \ T ι, T ]. (Note that A is internal in this
sense if and only if it contains no broken circuit: the least edge removed from a circuit to make a broken circuit
contained in A would contribute to the external activity of the tree T containing A.) Similarly, call A an
external subgraph if it is contained in the interval [T, T ∪ T ǫ] for a spanning tree T with no internally active
edges. (If A is external, then E \A contains no broken bonds.)

From the expansion T (G;x, y) =
∑

i,j ti,j(G)xiyj we see that T (G; 2, 0) is the number of internal subgraphs
(this also follows from Whitney’s Broken Circuit Theorem) and T (G; 0, 2) is the number of external subgraphs.
Moreover, T (G; 1, 0) counts the number of internal trees, and T (G; 0, 1) the number of external trees.

General Connected External

General T (G; 2, 2) = 2|E| T (G; 1, 2) T (G; 0, 2)

Forest T (G; 2, 1) T (G; 1, 1) T (G; 0, 1)

Internal T (G; 2, 0) T (G; 1, 0) T (G; 0, 0) = 0

(We have already seen that T (G; 2, 0) counts acyclic orientations, and for a connected graph T (G; 1, 0) counts
acyclic orientations with unique prescribed source. See e.g. [9, Fig. 20] for an interpretation of T (G;x, y) for
other values of x, y ∈ {0, 1, 2} in terms of orientations of G. In fact, Las Vergnas [35] gives an interpretation for
2i+jti,j(G) in terms of orientations of G and an order on E.)

Given the spanning tree partition 2E =
⋃

T [T \T ι, T ∪ T ǫ] of all subgraphs of G, the subgraph expansion of
the Tutte polynomial may be rewritten as follows:

T (G;x, y) =
∑

A⊆E

(x− 1)r(E)−r(A)(y − 1)n(A)

=
∑

T

∑

A∈[T\T ι,T∪T ǫ]

(x− 1)|A∩T ι|(y − 1)|A∩T ǫ|

=
∑

T

∑

k,ℓ

(|T ι|
k

)

(x− 1)k
(|T ǫ|

ℓ

)

(y − 1)ℓ

=
∑

T

x|T ι|y|T
ǫ|,

which gives Tutte’s spanning tree expansion by internal and external activities.

3.6 Planar graphs

Let G = (V,E, F ) be a connected plane graph, with set of faces F , and let G∗ = (V ∗, E∗, F ∗) be its geometric
dual. To construct G∗, put a vertex in the interior of each face of G, and connect two such vertices of G∗ by
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edges that correspond to common boundary edges between the corresponding faces of G. If there are several
common boundary edges the result is a multiple edge of G∗.

Recall that for a spanning tree T of G, T ǫ denotes its set of externally active edges and T ι its set of internally
active edges.

We identify V ∗ with F , E∗ with E, and F ∗ with V .

Proposition 13. There is a bijection T 7→ T ∗ between spanning trees of G and spanning trees of G∗ which
switches internal and external activities. Specifically, T ∗ = E \ T , and ti,j(G

∗) = tj,i(G).

Proof. The set of edges T ∗ in the dual G∗ corresponding to the set of edges E \ T in G together connect all
the faces of G, since T has no cycles. (A cycle of edges would be required to separate one set of faces from
another, their edges forming a simple closed curve partitioning the plane into inside and outside. If there are
no cycles the plane remains in one piece.) Also, T ∗ does not contain a cycle, for otherwise it would separate
some vertices in G inside the cycle from vertices outside, and this is impossible because T is spanning and its
edges are disjoint from T ∗.

This shows that T ∗ is a spanning tree of G∗.

Recall that CT,e denotes the unique circuit contained in T ∪ {e} and BT,e the unique cocircuit (bond)
contained in T \ {e}. Given an edge e ∈ T we have BT,e = CT∗,e (why?). Dually, given an edge e ∈ E \ T we
have CT,e = BT∗,e. Consequently T ι = (T ∗)ǫ and T ǫ = (T ∗)ι, from which it follows that ti,j(G

∗) = tj,i(G).

Corollary 14. If G is a connected planar graph with dual G∗ then T (G∗;x, y) = T (G; y, x).

Note that a bridge in G is a loop in G∗, a loop in G is a bridge in G∗, and that deleting (contracting) an edge
in G corresponds to contracting (deleting) an edge in G∗. In other words, (G/e)∗ ∼= G∗\e and (G\e)∗ ∼= G∗/e.
From these properties, that T (G∗;x, y) = T (G; y, x) also follows from the deletion-contraction recurrence for
the Tutte polynomial.

More generally, a subgraph of G on edges A ⊆ E has no circuits (i.e., is a forest) if and only if the subgraph
in the dual G∗ on edges E \A is connected. If there is a cycle in A then its edges form the boundary of a simple
closed curve in the plane, inside which lies at least one vertex of G∗ (corresponding to a face enclosed by the
cycle) and outside of which lies another vertex of G∗. Likewise, the edges of A form a connected subgraph of
G if and only if the edges of E \ A form a forest of G∗: any cycle in G∗ has to cross an edge of a connected
subgraph A.

In the terminology of the Section 3.5, an edge e ∈ E \ A is independent of A in G if and only if it is a
dependent edge of E \ A in G∗. (And the dual statement holds: an edge e ∈ A is a dependent edge of G if
and only if it is an independent edge of E \ A.) The maximum number k of edges e1, . . . , ek such that ei is
independent of A ∪ {e1, . . . , ei−1} for each 1 ≤ i ≤ k is equal to rG(E)− rG(A), which is therefore equal to the
maximum number k of edges e1, . . . , ek so that ei is dependent on E \ (A ∪ {e1, . . . , ei}) for each 1 ≤ i ≤ k.

Question 9

(i) Prove that the rank and nullity functions of a planar graph and its dual are related
by rG∗(A) = nG(E) − nG(E \ A) = |A| − rG(E) + rG(E \ A), and nG∗ (A) =
rG(E)− rG(E \A) = |A| − nG(E) + nG(E \A).

(ii) Deduce that T (G∗;x, y) = T (G; y, x) by using the subgraph expansion of the
Tutte polyomial.

The Tutte polynomial of a planar graph can be expressed in terms of topological properties of its medial
graph, as we shall shortly describe. This is the starting point for the fruitful cross-fertilization of graph theory
and knot theory - for a 4-regular plane graph can be read as the shadow of a knot in 3-dimensional space.

First we refresh the memory conerning medial graphs. To form the medial graph m(G) of a connected plane
graph G that has at least one edge first place a vertex ve into the interior of each edge e of G. Then, for each
face F of G, join ve and vf by an edge lying in F if and only if the edges e and f are consecutive on the
boundary of F . The medial graph m(G) is 4-regular, as each face creates two adjacencies for each edge on its
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boundary. The faces of m(G) divide naturally into two types: those that contain vertices of G (vertex-faces),
and those corresponding to faces of G (face-faces). Vertex-faces will be coloured black and face-faces coloured
white. See Figure 2.

b

b b
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bc

bc

bc bc
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⊗ ⊗

⊗

b b

b

b

⊗
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Figure 2: On the left, K4 and its medial graph, with faces containing vertices of G shaded black. A white, black
or crossing transition at each vertex of m(K4) together determine a set of closed Eulerian walks partitioning
the edge set. The example on the right illustrates a white-black Eulerian partition of m(K4) into two cycles,
with associated subgraphs of K4 (edges where there are black transitions) and its plane dual K∗

4 (edges where
there are white transitions).

If G∗ is the planar dual of G then m(G∗) ∼= m(G) (if e 7→ e∗ is the duality mapping between edges of G and
edges of G∗ then e and f are consecutive edges of a face in G if and only if e∗ and f∗ are consecutive edges in
a face of G∗).

The plane graph G is the black face graph of m(G), i.e., the graph whose vertices are the black faces of m(G)
and whose edges join two black faces of m(G) that share a vertex. The plane graph G∗ is the white face graph
of m(G).

Forming the black face graph is inverse to the medial construction. A 4-regular connected plane graph H
has bipartite dual graph so we can always 2-colour the faces of H properly with colours black and white, making
the exterior face white. If G(H) is the black face graph of H then m(G(H)) = G.

A walk in a graph is an alternating sequence of vertices and edges that starts and finishes with the a vertex,
with the property that consecutive vertices are the endopints of an edge joining them. A walk is closed if its
first and last elements are equal, and Eulerian if it uses each edge at most once.

We are going to look in more detail at the Eulerian walks determined by a transition system. Cyclically
rotating the sequence of vertices and edge in a closed Eulerian walk yields another closed Eulerian walk. Up to
equivalence this determines an oriented Eulerian cycle. If we count two Eulerian walks to be equivalent if they
are the same up to both rotation and reversal of the sequence of vertices of edges then we have determined an
Eulerian cycle. (Note that an Eulerian cycle need not be a circuit as it may pass through a vertex more than
once.)

The case of loops is a little awkward, and to accommodate them properly when considering Eulerian cycles
it is safest to resort to the use of half-edges and to define walks as appropriate types of sequences of half-edges.
For us it suffices to remark that a loop can be traversed in two ways, which gives rise to two non-equivalent
Eulerian cycles that use it, except when the cycle is just the loop by itself, when it counts just as one cycle.
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An Eulerian partition of an Eulerian graph is a collection of Eulerian cycles such that each edge belongs to
exactly one cycle. An Eulerian tour is an Eulerian cycle spanning all the vertices (an Eulerian partition with
just one cycle).

A matching of the four edges incident with a vertex of m(G) into two pairs {e1, f1} and {e2, f2} is called a
transition, and when all vertices have transitions we speak of a transition system. A transition system determines
a set of closed Eulerian walks, where two consecutive edges of a walk form one of the pairs in a transition. A
transition is white if the edges e1 and f1 are consecutive edges of a white face of m(G) (and hence so are e2 and
f2). Likewise, a transition is black if the edges e1 and f1 are consecutive edges of a black face of m(G) (and
so are e2 and f2). Otherwise, a transition neither white nor black is called a crossing transition. See Figure 3,
where a transition {e1, f1}, {e2, f2} at a vertex is represented by suppressing the vertex and, for i = 1, 2, joining
ei and fi to make a single edge whose endpoints are the two other vertices incident with these original edges. (If
this is done for every vertex then eventually one obtains a set of curves, one for each of the closed Eulerian walks
determined by the transition system, and these curves are non-intersecting if there are no crossing transitions.)

bc

black white crossingvertex of medial graph

Figure 3: Three types of transition at the vertex of a 4-regular graph. An Eulerian walk matches the four edges
incident with a vertex into two pairs. (The vertex is deleted, and each matched pair of edges is joined to make
a connected line.)

A white-black Eulerian partition is one in which very transition is white or black, and a white-black Eulerian
tour is defined likewise. Godsil and Royle call a white-black Eulerian partition a bent Eulerian partition, as
following the tour you turn a bend at every corner, never going straight on. Kauffman [31] and [30] calls a
white-black Eulerian tour a Jordan-Euler trail, because the trail (i.e., tour, in our terminology) forms a Jordan
curve in the plane when its transitions are represented as in Figure 3. Since the medial graph comes with a
proper face 2-colouring with exterior face white, the inside of the Jordan curve formed by an Eulerian tour is
black and its outside is white.

Lemma 15. Let m(G) be the medial graph of plane graph G. Then there is a bijection between white-black
Eulerian tours of m(G) and spanning trees of G.

Proof. The graph G is the black face graph of m(G), and its dual G∗ the white face graph of m(G). Given
a white-black Eulerian tour of m(G), define a graph T ∗ on white faces by joining two white faces (vertices of
G∗) by an edge if they meet at a vertex at which there is a black transition. Likewise, define a graph T on
black faces by joining two black faces (vertices of G) by an edge if they meet at a vertex at which there is a
white transition. Since the edges of the Euler tour form a single Jordan curve it follows that T corresponds to
a spanning tree of G and T ∗ to a spanning tree of G∗.

Conversely, give a spanning tree T of G (viewed as a spanning tree of the black face graph of m(G)) the
inverse operation of assigning white transitions to vertices of m(G) common to a pair of black faces adjacent in
T and black transitions to the other vertices of m(G) yields an Eulerian tour of m(G). (Black transitions are
at vertices common to adjacent white faces in T ∗ viewed as a spanning tree of the white face graph of m(G).
The spanning tree T ∗ of G∗ has edge set under the duality correspondence e 7→ e∗ equal to E(G) \ T .)

In view of Lemma 15, we may identify an Eulerian tour T of m(G) with a spanning tree T of G. Following
Kauffman [31], we define activities for white-black Eulerian tours, using Tutte’s spanning tree activities as a
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guide. Suppose G has m edges. Each vertex of m(G) corresponds to a unique edge of G (and of G∗). Label the
vertices of m(G) by [m]. Given an Eulerian tour of m(G), suppose we replace the transition at vertex i by its
opposite, i.e., swapping white for black or vice versa.

This produces two component Eulerian cycles. Say two vertices interact if they belong to different Eulerian
cycles. The vertex labelled i is active if it has the least label amongst all interacting vertices.

We then have
T (G;x, y) =

∑

white-black Eulerian tours T of m(G)

xwa(T )yba(T ),

where wa(T ) and ba(T ) respectively denote the number of active vertices at which T has a white or black
transition.

We can develop this correspondence from Eulerian tours and spanning trees to a one-to-one correspondence
between white-black Eulerian partitions of m(G) and spanning subgraphs of G. Identifying edges of G with
vertices of m(G), to A ⊆ E(G) there corresponds a white-black Eulerian partition of m(G), which we shall
denote by EA, whose white transitions are at vertices in A and whose black transitions are at vertices in E \A.

Each Eulerian cycle C of EA is a Jordan curve, whose interior may contain other Eulerian cycles of the
partition. Suppose any Eulerian cycles that lie inside C are contracted one by one to points in the plane,
contracting first those that contain no other cycle, and then these points are deleted: this leaves the interior
of C a single colour, either white or black, and we call C an inwardly white or inwardly black Eulerian cycle
of EA accordingly. (This is not to cast aspersions on its moral rectitude.) A connected component of (V,A)
corresponds to an inwardly black Eulerian cycle in EA, while a connected component of the subgraph of G∗

spanned by E(G) \ A not containing the vertex corresponding to the exterior white face corresponds to an
inwardly white Eulerian cycle of EA.

Theorem 16. Let G = (V,E) be a plane graph and m(G) = (E,L) its medial graph. For each A ⊆ E let
EA denote the white-black Eulerian partition of m(G) whose white transitions occur at vertices in A and black
transitions at vertices in E \A. Then

T (G;x+ 1, y + 1) =
∑

A⊆E

xb(EA)−1yw(EA),

where b(EA) is the number of inwardly black Eulerian cycles in the Eulerian partition EA of m(G) and w(EA)
the number of inwardly white Eulerian cycles.

Proof. By the subgraph expansion for the Tutte polynomial,

T (G;x+ 1, y + 1) =
∑

A⊆E

xrG(E)−rG(A)ynG(A).

Consider a connected plane graphG = (V,E, F ) with dualG∗ identified with (F,E, V ). ForA ⊆ E, the subgraph
(V,A) of G has rG(E)−rG(A)+1 components, and the subgraph (F,E \A) of G∗ has rG∗(E)−rG∗(E \A)+1 =
nG(A) + 1 components. The result now folllows by the correspondence already described between connected
components of (V,A) and inwardly-black Eulerian cycles, and between components of (F,E \A) and inwardly-
white Eulerian cycles (with the exception of the one component that contains the vertex of G∗ corresponding
to the outer white face of m(G)).

As a corollary we have the following result due to Martin [37, 38].

Corollary 17. Let G be a connected plane graph and m(G) its medial graph. Then the number of white-black
Eulerian partitions with c components is equal to the coefficient of xc−1 in T (G;x+ 1, x+ 1).

Corollary 17 can be proved directly by deletion-contraction and appeal to the Recipe Theorem: deleting an
edge of G is to choose a black transition at the corresponding vertex of m(G), while contraction makes a white
transition. (Duality of deletion and contraction is here observed in that white transitions correspond to edges
of G∗.)
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Question 10 Let G be a plane graph and m(G) its medial graph with the usual colouring
of its vertex-faces black and face-faces white. Suppose m(G) is given an orientation so
that each black face has an anticlockwise rotation (each arc has a black face to its left).

(i) Explain why a white-black Eulerian partition of the undirected graph m(G) can be
viewed as a partition of the oriented graph m(G) into directed Eulerian cycles.

(ii) Show that an inwardly black Eulerian cycle of m(G) corresponds to a directed
Eulerian cycle traversed in an anticlockwise sense in the plane, and an inwardly
white Eulerian cycle to a clockwise directed Eulerian cycle.

(iii) Reformulate Theorem 16 for the oriented medial graph in terms of partitions into
directed Eulerian cycles.

This section has given but a surface glimpse of the deep relationship of the Tutte polynomial to knot
invariants. We refer the interested reader to [53] and the references contained therein.

Before moving on let’s just finish with an informal description of a couple of further results as they are
particularly relevant to what we have been looking at and do not require the introduction of additional concepts.

Jaeger’s transition polynomial is defined by

Q(m(G);α, β, γ; z) =
∑

Eulerian partitions

α#whiteβ# blackγ# crossingz# components,

where the sum ranges over all 3|E| Eulerian partitions (equivalently, transition systems), “#white” denotes
the number of white transitions etc. and #components the number of Eulerian cycles in the Eulerian par-
tition. Note that Q(m(G);α, β, γ; 1) = (α + β + γ)|E|. Corollary 17 involves the case α = β = 1, stating
thatQ(m(G); 1, 1, 0; z) = T (G; 1 + z, 1 + z). Jaeger [27] proved more generally that if γ = 0 and αβ 6= 0 then,
for a connected plane graph G = (V,E, F ),

Q(m(G);α, β, 0; z) = α|F |−1β|V |−1T (G; 1 +
α

β
z, 1 +

β

α
z).

What about transition systems where γ 6= 0? If we ask that every vertex transition is crossing, i.e., α = β = 0,
then there is just one Eulerian partition. Whether this consists of just one component turns out to depend on
whether G has any bicycles, which we shall define and study in Section 3.7.1. See e.g. [23] and [5] for a proof
of the following result:

Theorem 18. Let G = (V,E) be a connected plane graph and m(G) its medial graph. Then

T (G;−1,−1) = (−1)|E|(−2)c−1,

where c is the number of components in the Eulerian partition of m(G) where each transition a crossing. In
particular, there is an Eulerian tour of m(G) whose transitions are all crossings if and only if G has an odd
number of white-black Eulerian tours.

A curious counterpart to Theorem 18 is the following result of Las Vergnas [36]:

Theorem 19. Let G be a connected plane graph and m(G) its medial graph. Then

T (G; 3, 3) = K2c−1,

where c is the number of Eulerian cycles in the everywhere-crossing Eulerian partition of m(G) and K is an
odd integer.

(Since T (G; 3, 3) ≡ T (G;−1,−1) (mod 4), we know from Theorem 18 that T (G; 3, 3) is odd when there is
an Eulerian tour all of whose transitions are crossing, and that T (G; 3; 3) is singly even if there are exactly two
component cycles in the everywhere-crossing Eulerian partition. The content of Theorem 19 is to extend these
observations to any number of component cycles.)
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Corollary 17 with x = 2 provides a combinatorial interpretation of sorts for T (G; 3, 3) (in terms of 2-coloured
Eulerian cycle partitions of m(G)). Las Vergnas gave one in terms of Eulerian orientations of m(G):

2T (G; 3, 3) =
∑

Eulerian orientations
of m(G)

2# saddle vertices,

where a saddle vertex has edges directed “in, out, in, out” in cyclic order. (The one interpretation can be
derived from the other, as shown in [32].)

Question 11 Suppose that as for Question 11 the medial graph m(G) of plane graph
G is given an orientation so that black faces are traversed anticlockwise.

(i) Show that the Eulerian partition of the undirected medial graph with all transitions
crossing corresponds to a partition of the directed medial graph into cycles whose
edges alternate in direction when traversed.

(ii) Reformulate Theorem 18 in terms of the oriented medial graph.

Choosing the weights α = 0, β = 1, γ = −1 in the transition polynomial gives the Penrose polynomial, about
whose fascinating properties and suggestive intersection with the Tutte polynomial at precisely the locus of the
Four Colour Theorem see e.g. [5].

It is possible to extend consideration from the medial graph of plane graphs to 4-regular graphs embedded
in surfaces of higher genus, with the Tutte polynomial of Theorem 16 being replaced by the coloured Tutte
polynomial of Bollobás and Riordan. See [32].

The Penrose polynomial, and transition polynomials more generally, has been extended from plane graphs to
dual pairs of binary matroids, via isotropic systems. See in particular Bouchet [15], [16], Aigner [1], [3], Aigner
and Mielke [2], Las Vergnas [33], [34], Ellis-Monaghan [41], [42], [43], Bollobás [14], Jaeger [27]. The Martin
polynomial was discovered independently (in the form of the “circuit partition polynomial”) in the context of
DNA sequencing [6]. The latter paper uses the encoding of Eulerian partitions of planar 4-regular graphs by
interlacement graphs to define an interlace polynomial defined for an arbitrary graph, for which see [7], [8].

3.7 Tension-flows

We now return to general graphs, not necessarily planar, and explore a further aspect of the duality between
tensions and flows. We begin with bicycles, for these are related to the all-crossing Eulerian partitions of medial
graphs that we encountered in the previous section.

First though let’s revisit some facts about tensions and flows to prepare the ground for bicycles.

Let G = (V,E) be a graph, A an Abelian group of order k, and C the set of A-flows of G and its orthogonal
complement C⊥ the set of A-tensions of G.

The monochrome polynomial B(G; k, y) of G was defined just before Proposition 17 in the chapter on the
chromatic polynomialin terms of vertex k-colourings, but we can write it in terms of A-tensions as follows:

k−c(G)B(G; k, y) =
∑

z∈C⊥

y|E|−|supp(z)|. (9)

In coding theory |supp(z)| is called the Hamming weight of the vector z and the polynomial on the right-hand
side of (9) is known as the (Hamming) weight enumerator of the code C⊥.

By deletion-contraction and the Recipe Theorem we have seen that

B(G; k, y) = kc(G)(y − 1)r(G)T (G;
y − 1 + k

y − 1
, y). (10)

A code over a field F is a special type of matroid, namely one that is representable over F. The point (y−1+k
y−1 , y)

lies on the hyperbola (x − 1)(y − 1) = k. Greene [25] was first to make the connection between the Tutte
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polynomial and linear codes over a field of k elements, proving that the Tutte polynomial of the matroid of
a code specializes on the hyperbola (x − 1)(y − 1) = k to the weight enumerator of the code (effectively,
identity (10) generalized to codes/representable matroids).

The dual version of the monochrome polynomial (the weight enumerator for A-tensions (9)) is the weight
enumerator for A-flows:

C(G; k, x) =
∑

z∈C
x|E|−|supp(z)| = (x− 1)n(G)T (G;x,

x− 1 + k

x− 1
). (11)

(This identity can be proved by an inductive deletion-contraction argument, as for the monochrome polynomial.)
Thus by identities (10) and (11) we have

B(G; k, y) = k|V (G)|−|E(G)|(y − 1)|E(G)|C(G; k,
y − 1 + k

y − 1
), (12)

which amounts to MacWilliams identity in coding theory.

3.7.1 Bicycles

In this section we take A = F2 in the incidence mapping D : AE → AV for a graph G = (V,E). As usual
we write C = kerD and C⊥ = imD⊤. In the chapter on tensions and flows we saw that vectors in C are
characteristic vectors of Eulerian subgraphs of G (sometimes just called cycles or even subgraphs of G), and
that vectors in C⊤ are characteristic vectors of cutsets of G.

An Eulerian subgraph meets a cutset in an even number of edges (by orthogonality of flows and tensions, and
by definition when considering cuts comprising edges from {v} to V \ {v}, these vertex-cuts together spanning
all cuts).

We identify a subset of edges of G with its characteristic vector.

A vector x in the intersection C∩C⊥ is called a bicycle of G, and is self-orthogonal, i.e., x⊤x = 0. So a bicycle
has an even number of edges. A bicycle is an Eulerian subgraph that meets every other Eulerian subgraph in
an even number of edges (as well as every cut in an even number of edges). Alternatively, a bicycle is a cut
that meets every other cut in an even number of edges (as well as meeting every Eulerian subgraph in an even
number of edges).

In short, a bicycle is a cutset that is also an Eulerian subgraph of G. In particular, if G is itself a bipartite
Eulerian graph then E (the all-one vector) is a bicycle.

For more about bicycles see Sections 14.15-16 and 15.7 in [23], and for the usefulness of bicycles in relation
to knots see Chapter 17 of the same reference.

Theorem 20. Let e be the edge of a graph G. Then precisely one of the following holds:

(i) e belongs to a bicycle,

(ii) e belongs to a cut B such that B \ {e} is Eulerian,

(iii) e belongs to an Eulerian subgraph C such that C \ {e} is a cut.

Proof. Suppose e ∈ E(G) and e is its indicator vector in F
E
2 . If e belongs to a bicycle with indicator vector x

then x⊤e 6= 0 and therefore e 6∈ (C ∩ C⊥)⊥ = C⊥ + C. If e does not belong to a bicycle then e is orthogonal to
all vectors in C ∩ C⊥ and so e ∈ C + C⊥. In other words, e is either contained in a bicycle or e is the symmetric
difference of an Eulerian subgraph and a cutset.

In any representation of e as the symmetric difference of an Eulerian subgraph and a cut, either e will always
belong to the Eulerian subgraph, or e will always belong to the cut. For suppose that e = z+y = z′+y′ where
z, z′ ∈ C and y,y′ ∈ C⊥. Then z+z′ ∈ C and y+y′ ∈ C⊥ so z+z′ = y+y′ is a bicycle. Since e does not belong
to a bicycle, it must belong to both or neither of z and z′,and to neither or both of y and y′, respectively (since
e = z+ y).
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An edge e of G is of bicycle-type, cut-type or flow-type according as (i), (ii) or (iii) holds in the statement of
Theorem 20, respectively. This is known as the principal tripartition of the edges of G.

A bridge is an edge of cut-type [take cut B = {e} in (ii)] and a loop is an edge of flow-type [take Eulerian
subgraph {e} in (iii)].

If G is planar then edges of bicycle-type in G remain of bicycle-type in G∗. By flow–tension duality, edges
of cut-type in G are edges of flow-type in G∗, and similarly edges of flow-type in G∗ are edges of cut-type in
G∗.

Question 12 Let G be a graph with incidence matrix D and Q = DDT be the Laplacian
matrix of G.
For edge e = uv, let y ∈ F

V
2 be the vector with 1 in the places indexed by u and v and 0

elsewhere (i.e., the column of D indexed by e, which when read in F2 is a 0− 1 vector).
Prove the following:

(i) If Qx = y has no solution then e is of bicycle-type.

(ii) If Qx = y has a solution x with xTQx 6= 0, then e is of cut-type.

(iii) If Qx = y has a solution x with xTQx = 0, then e is of cut-type.

Consequently, whether an edge is of bicycle-, cut- or flow-type can be decided in polyno-
mial time.

Lemma 21. Let G be a graph with bicycle space of dimension d, and e an edge of G. The following table gives
the dimension of the bicycle space of G/e and G\e.

Type of e G/e G\e
Bridge or loop d d
Bicycle-type d− 1 d− 1
Cut-type, not bridge d d+ 1
Flow-type, not loop d+ 1 d

Proof. A bridge belongs to no cycle and hence to no Eulerian subgraph, and therefore to no bicycle. So any
bicycle of G is a bicycle of G\e. Conversely, a bicycle of G\e is also a bicycle of G. Likewise, bicycles of G/e
correspond to bicycles of G.

Similarly, a loop belongs to no cut and hence to no bicycle, so bicycles of G are bicycles of G\e, and
conversely. For a loop we have G/e ∼= G\e.

For an ordinary edge e we shall find the following two observations useful:

(i) If e is not a loop and belongs an Eulerian subgraph C, then C \ {e} is neither an Eulerian subgraph of G
nor of G\e. On the other hand, C \ {e} is an Eulerian subgraph of G/e.

(ii) Dually, if e is not a bridge and belongs to a cut B, then B \ {e} is neither a cut of G nor of G/e. On the
other hand, B \ {e} is a cut of G\e.

Suppose then that e is an ordinary edge. We distinguish the three cases of the principal tripartition:

(a) e belongs to a bicycle A.

By (i) and (ii), A \ {e} is not a bicycle of G, G\e or G/e. On the other hand, any bicycle of G which
does not contain e remains a bicycle of G\e and G/e. Hence the bicycle spaces of G\e and of G/e both
correspond to the subspace of bicycles of G that do not contain e, and their dimensions are therefore 1
less than the bicycle dimension of G.

(b) e belongs to a cut B, such that B \ {e} is an Eulerian subgraph of G.

By (ii), the set B \ {e} is a cut of G\e, but not of G or G/e. Hence B \ {e} is a bicycle of G\e, but not of
G or G/e. The effect is to increase the dimension of the bicycle space of G\e by 1. All bicycles of G are
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bicycles of G\e since e is of cut-type, and so bicycles of G\e are bicycles of G together with symmetric
difference of bicycles of G with the fixed set B \ {e}. On the other hand, the dimension of the bicycle
space of G/e coincides with that of G, all bicycles of G being bicycles of G/e, and no others.

(c) e belongs to an Eulerian subgraph C such that C \ {e} is a cut.

By (i), the set C \ {e} is an Eulerian subgraph of G/e, but not of G or G\e. Hence C \ {e} is a bicycle of
G/e, but not of G or G\e. Similarly to case (b), this implies the dimension of the bicycle space of G/e is
1 more than that of G, while G\e has the same bicycle dimension as G.

Lemma 22. Let G = (V,E) be a graph with bicycle space of dimension b(G), and let e be an edge of G. Then
the graph invariant

f(G) = (−1)|E|(−2)b(G)

satisfies

f(G) =











(−1)f(G/e) e a bridge,

(−1)f(G\e) e a loop,

f(G/e) + f(G\e) e ordinary.

Proof. We use Lemma 21.

If e is a bridge or loop then the bicycle spaces of G/e, G\e and G are all of the same dimension, and this
implies the first two cases.

Suppose e is ordinary. If e is of cut-type then

f(G/e) + f(G\e) = (−1)|E|−1(−2)b(G) + (−1)|E|−1(−2)b(G)+1

= (−1)|E|(−2)b(G).

If e is of flow-type then

f(G/e) + f(G\e) = (−1)|E|−1(−2)b(G)+1 + (−1)|E|−1(−2)b(G)

= (−1)|E|(−2)b(G).

If e belongs to a bicycle then

f(G/e) + f(G\e) = 2(−1)|E|−1(−2)b(G)−1 = (−1)|E|(−2)b(G).

By the Recipe Theorem (Theorem 5) we obtain the following polynomial-time computable evaluation of the
Tutte polynomial:

Theorem 23 ([46]). Let G = (V,E) be a graph and let b(G) denote the dimension of its bicycle space. Then
(−1)|E|(−2)b(G) = T (G;−1,−1).

Question 13

Prove that a connected graph G has no non-trivial bicycles if and only if G has an odd
number of spanning trees.
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3.7.2 Z3-tension-flows

In this section we take A = F3 (additive group isomorphic to Z3) and consider the intersection of the space of
Z3-flows and the space of Z3-tensions. If D : FE

3 → F
V
3 is the incidence mapping, and we let C = kerD, so that

C⊥ = imD⊤, then we shall call a vector in C ∩ C⊥ a Z3-tension-flow. In other words, a Z3-tension-flow is both
a Z3-tension and a Z3-flow, and is self-orthogonal in F

E
3 . (In this terminology we could have called bicycles

Z2-tension-flows.)

Let ω = e2πi/3 be a primitive cube root of unity. In [28] Jaeger proved by a deletion-contraction argument

that T (G;ω, ω2) = ±ω|E|+dimC(i
√
3)dim(C∩C⊥), using the principal quadripartition of the edges of a graph (a

generalization to flows and tensions over finite fields of characteristic 6= 2 of the principal tripartition). Gioan
and Las Vergnas [22] provide a linear algebra proof that has the benefit of determining the sign. It is this latter
proof that we shall present here.

Recall that we say vectors y and z are orthogonal if y⊤z = 0. A self-orthogonal vector (also called an
isotropic vector) is a vector z with z⊤z = 0.

Lemma 24. Let C be a finite-dimensional vector space over a field of characteristic not equal to 2. Then C has
an orthogonal basis.

Proof. Let {z1, . . . , zd} be a basis for C. If there is an index 1 ≤ i ≤ d such that zi is not self-orthogonal then
reindex in such a way that i = 1 and set z′1 = z1. Otherwise, if there is an index 2 ≤ i ≤ d such that z1 + zi is

not self-orthogonal then set z′1 = z1 + zi. In both cases update zj as zj − z′⊤1 zj

z′⊤1 z′1
z′1 for 2 ≤ j ≤ d. Now z′1 and

zj are orthogonal for 2 ≤ j ≤ d.

Otherwise the vectors zj are self-orthogonal for 1 ≤ j ≤ d, and z1 + zj is self-orthogonal for 2 ≤ j ≤ d. The
latter implies z⊤1 z1 + 2z1zj + z⊤j zj = 2z⊤1 zj = 0. Hence z⊤1 zj = 0 in characteristic 6= 2. Set z′1 = z1.

In all three cases z′1, z2, . . . , zd comprise a basis of C such that z′1 is orthogonal to the space generated by
the remaining vectors z2, . . . , zd.

The result now follows by induction.

Lemma 25. The self-orthogonal vectors of an orthogonal basis of C form a basis for C ∩ C⊥.

Proof. Let z1, . . . , zd form an orthogonal basis for C, and z =
∑

1≤j≤d ajzj ∈ C ∩ C⊥. For 1 ≤ i ≤ d we have

0 = z⊤zi =
∑

1≤j≤d ajz
⊤
j zi = aiz

⊤
i zi. Hence if z⊤i zi 6= 0 then ai = 0. It follows that z is generated by the

self-orthogonal vectors of the basis, which, being independent, therefore form a basis of C ∩ C⊥.

Proposition 26. Let C be a subspace of FE
3 . Then

∑

z∈C
ω|supp(z)| = (−1)d+d1(i

√
3)d+d0 ,

where d = dim C, d0 = dim(C ∩C⊥), and d1 is the number of basis vectors of support size congruent to 1 modulo
3 in any orthogonal basis of C.

Proof. Observe that for z ∈ Z
E
3 we have |supp(z)| ≡ z⊤z (mod 3). It follows that ω|supp(z)| = ωz⊤z.

By Lemma 24 there is an orthogonal basis {z1, . . . , zd} of C. In particular, the inner product of z =
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∑

1≤j≤d ajzj with itself is equal to
∑

1≤j≤d a
2
jz

⊤
j zj . So we find that

∑

z∈C
ωz⊤z =

∑

(a1,...,ad)∈Z
d
3

ω
∑

1≤j≤d a2
jz

⊤
j zj

=
∑

(a1,...,ad)∈Z
d
3

∏

1≤j≤d

ωa2
jz

⊤
j zj

=
∏

1≤j≤d

∑

aj∈Z3

ωa2
jz

⊤
j zj

=
∏

1≤j≤d

(1 + 2ωz⊤j zj )

= 3d0(1 + 2ω)d1(1 + 2ω2)d−d0−d1 ,

where d0 (resp. d1) is the number of vectors zj , 1 ≤ j ≤ d, such that z⊤j zj = 0 (resp. = 1). With 1+2ω = i
√
3,

1 + 2ω2 = −i
√
3, and d0 = dim(C ∩ C⊥) by Lemma 25, the statement of the proposition now follows.

As Gioan and Las Vergnas [22] observe in their Corollary 2, it is not obvious that the parity of the number
of vectors in an orthogonal basis for C with support size congruent to 1 modulo 3 is independent of the choice
of basis, a fact implied by Proposition 26.

We reach another polynomial time computable evaluation of the Tutte polynomial (bases for finite-
dimensional vector spaces being easy to find by Gaussian elimination, and Lemma 24 providing a polynomial
time algorithm for constructing an orthogonal basis):

Theorem 27. Let G = (V,E) be a graph and ω = e2πi/3. We have

T (G;ω, ω2) = (−1)d2ω|E|+d(i
√
3)d0 ,

where d0 is the dimension of the space of Z3-tension-flows of G, d the dimension of the space of Z3-flows, and
d2 is the number of vectors with support size congruent to 2 modulo 3 in any orthogonal basis for the space of
Z3-flows.

Proof. Setting k = 3 and x = ω2 = ω−1 in equation (11) we have
∑

z∈C
ω−|E|+|supp(z)| = (ω2 − 1)dT (G;ω2, ω),

where d = dim C = n(G) is the dimension of the space of Z3-flows. Then by Proposition 26 and ω2 − 1 = i
√
3ω

we obtain
ω−|E|(−1)d+d1(i

√
3)d+d0 = (i

√
3ω)dT (G;ω2, ω).

Since T (G;ω2, ω) is the complex conjugate of T (G;ω, ω2) the result follows.

It is interesting to note that although Z3-tension-flows are self-dual (flow-tensions are tension-flows), which
leads one to expect their number to be counted by some evaluation of T (G;x, y) on the line x = y, here the
point (ω, ω2) lies on the line x = y in the complex plane.

In Section 3.7.1 we saw that T (G;−1,−1) = (−1)|E(G)|(−2)b(G), where b(G) is the bicycle dimension of
G, i.e., the dimension of the the subspace of Z2-tension-flows. The point (−1,−1) lies on the hyperbola
(x− 1)(y − 1) = 4, so that by identity (11)

T (G;−1,−1) = (−2)−n(G)
∑

Z2 × Z2-flows z

(−1)|E|−|supp(z)|.

This might lead one to expect rather an expression for T (G;−1,−1) in terms of the space of Z2×Z2-tension-flows
in F

E
4 . Indeed, the dimension of the space of Z2 × Z2-tension-flows is equal to the bicycle dimension b(G). A

Z2×Z2-tension-flow decomposes by projection into a pair of Z2-tension-flows, and conversely such a pair of Z2-
tension-flows can be pieced together to make a Z2 ×Z2-tension-flow. Hence there are precisely (2b(G))2 vectors
that are Z2 ×Z2-tension-flows, i.e., they comprise a space of dimension b(G) over F4. Hence we could also have
written that T (G;−1,−1) = (−1)|E|(−2)d0 , where d0 is the dimension of the space of Z2 × Z2-tension-flows.
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Question 14 Are there in general as many Z4-tension-flows as Z2 × Z2-tension-flows?

Vertigan [50] proved that the Tutte polynomial evaluated at the point (i,−i) on the hyperbola (x−1)(y−1) =
2 has the following interpretation:

Theorem 28 ([50]). Let G be a graph with bicycle dimension b(G). Then

|T (G; i,−i)| =
{√

2
b(G)

if every bicycle has size a multiple of 4,

0 otherwise.

For example, T (C4; i,−i) = i3 + i2 + i − i = −i − 1 = −
√
21+i√

2
, where 1+i√

2
is a primitive eighth root of

unity. Recall also that every bicycle has even size, so that the bicycles of size a multiple of 4 either comprise all
bicycles, or exactly half of them. Theorem 28 implies a polynomial time algorithm for evaluating T (G; i,−i).
[What is the argument of T (G; i,−i) as a complex number?]

3.8 The beta invariant

In this chapter we have been mainly concerned with evaluations of the Tutte polynomial. In this section we
concentrate on one of its coefficients.

The coefficient t1,0(G) is known as Crapo’s beta invariant, or also the chromatic invariant, with t1,0(G) =
(−1)|V (G)|P ′(G; 1). By Propositions 13 and 12, t1,0(G) = t1,0(G

∗) when G is a connected planar graph.

We know from the corresponding property of the chromatic polynomial that the beta invariant is unaffected
by the addition or removal of parallel edges. A direct proof can be given by a deletion/contraction of a parallel
edge, noting that t1,0(G) = 0 if G has a loop. Also, since t1,0(G) = t0,1(G) when G has at least two edges, we can
use the property of the flow polynomial that is invariant under edge subdivisions (the number of nowhere-zero
Zk-flows being unaffected) to deduce that t1,0(G) is unaffected by subdivision of an edge (when G has at least
two edges). We shall generalize these observations, and to do so we introduce the notions of series and parallel
connections of graphs.

3.8.1 Series and parallel connections

Suppose Gi = (Vi, Ei), i = 1, 2, are vertex-disjoint graphs, and that we are given edges e1 = u1v1 ∈ E1 and
e2 = u2v2 ∈ E2. The parallel connection of G1 and G2 along edges e1 and e2 is formed by first deleting edges
e1 and e2, identifying u1 with u2 to make a new vertex u, identifying v1 with v2 to make a new vertex v, and
finally joining u and v with a new edge e. (See Figure 4.) The parallel connection as defined has vertex set
V1 ∪V2 ∪{u, v} \ {u1, v1, u2, v2} and edge set E1 ∪E2 ∪{e} \ {e1, e2}. The series connection of G1 and G2 along
edges e1 and e2 is formed by first deleting edges e1 and e2, then identifying u1 with u2 to make a new vertex u,
and finally joining vertices v1 and v2 by a new edge e. The series connection has vertex set V1∪V2∪{u}\{u1, u2}
and edge set E1 ∪ E2 ∪ {e} \ {e1, e2}.

Strictly speaking we ought to choose oriented edges e1 and e2, but in fact it will not matter what order
we choose the endpoints ui and vi of ei in making series and parallel connections, since up to 2-isomorphism
the result will be the same. Since we are interested in the behaviour of the Tutte polynomial and this is a
2-isomorphism invariant, we can leave the choice arbitrary.

Let C(G) denote the set of circuits of a graph G. Then the set of circuits of the series connection of G1 and
G2 is given by

C(G1 \ e1) ∪ C(G2 \ e2) ∪ {(C1 \ e1) ∪ (C2 \ e2) ∪ {e} : ei ∈ Ci ∈ C(Gi), i = 1, 2}.

The set of circuits of the parallel connection of G1 and G2 is likewise given by

C(G1\e1) ∪ {(C1 \ e1) ∪ {e} : e1 ∈ C1 ∈ C(G1)}
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Figure 4: Series and parallel connection of vertex-disjoint graphs G1 and G2 along edges u1v1 and u2v2, both
of which are deleted before making the vertex identification(s) involved in either operation.

∪ C(G2\e2) ∪ {(C2 \ e2) ∪ {e} : e2 ∈ C2 ∈ C(G2)}
∪ {(C1\e1) ∪ (C2\e2) : ei ∈ Ci ∈ C(Gi), i = 1, 2}.

Question 15

(i) Suppose e1 = u1v1 is a loop in G1, i.e., u1 = v2. Show that the parallel connection
of G1 and G2 along edges e1 and e2 is 2-ismorphic to he disjoint union of G1 and
G2/e2. (In terms of matroids, the cycle matroid of the parallel connection is
isomorphic to the 2-sum of the cycle matroids for G1 and G2/e2.)

(ii) Suppose e1 = u1v2 is a bridge in G1. Show that the series connection of G1 and
G2 along edges e1 and e2 is 2-isomorphic to the disjoin union of G1 and G2\e2.

We observe that the edge e formed by the parallel connection of G1 and G2 along edges e1 and e2 is a loop if
and only if either e1 or e2 is a loop. Likewise, the edge e formed in the series connection of G1 and G2 is a
bridge if and only if either e1 or e2 is a bridge.

Definition 29. A graph is series-parallel if it can be constructed from K2 by a sequence of the following two
operations:

(i) subdividing an edge (introducing a vertex of degree 2),

(ii) placing an edge parallel to an existing edge.

A 2-connected series-parallel graph can be constructed from C2 (a pair of vertices joined by two parallel
edges) by a sequence of series and parallel extensions. Series-parallel graphs are loopless and planar. See
Figure 5 to see how series-parallel extensions are particular cases of series-parallel connections.

Proposition 30. Let Gi = (Vi, Ei), i = 1, 2, be graphs.

(i) Suppose G is the graph obtained by joining G1 and G2 in series along edges e1 and e2, at least one of
them not a bridge. Then T forms a spanning tree of G if and only if T ∩ Ei is a spanning tree of Gi for
i = 1, 2.
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Figure 5: Series-parallel extensions are series-parallel connections with C2.

(ii) Suppose now G is obtained by joining G1 and G2 in parallel along edges e1 and e2, at least one of them
not a loop. Then T is a spanning tree of G containing the edge e formed by the connection if and only
if T ∩ Ei is a spanning tree of Gi containing ei for i = 1, 2. Moreover, T is a spanning tree of G not
containing e if and only if e 6∈ T and the sets (T ∩Ei)∪ {ei} and T ∩Ej are spanning trees of Gi and Gj

respectively, where {i, j} = {1, 2}.

Lemma 31. If G is 2-connected and G/e is not, then G is a parallel connection. If G is 2-connected and G\e
is not, then G is a series connection.

See [45, Theorem 7.1.16].

3.8.2 Properties of the beta invariant

Lemma 32. The beta invariant t1,0(G) is multiplicative over series and parallel connections.

Proof. By Proposition 30 we can analyse spanning tree activities of a series or parallel connection of graphs G1

and G2 in terms of those of G2 and G2. By Tutte’s interpretation of t1,0(G) as the number of spanning trees of
internal activity 1 and external activity 0 [...]

Theorem 33. Let G be a loopless 2-connected graph. Then t1,0(G) ≥ 1 with equality if and only if G is
series-parallel.

Proof. If G is not 2-connected then t1,0(G) = 0.

We prove the statement by induction on the number of edges. The base case C2 has T (C2;x, y) = x+ y.

Suppose G is 2-connected with m ≥ 3 edges and assume the truth of the assertion for 2-connected graphs
with less than m edges. If G has an edge e that has been introduced in series (one of its endpoints has degree
2), then G/e is 2-connected while G\e is not. Hence t1,0(G\e) = 0 while by inductive hypothesis t1,0(G/e) = 1

On the other hand, if e is parallel to another edge of G then G/e has a loop and at least one other edge and
hence is not 2-connected, while G\e is 2-connected. By inductive hypothesis we have t1,0(G\e) = 1, so that
t1,0(G) = 0 + t1,0(G) = 1.

For the converse, that t1,0(G) = 1 implies G is series-parallel, we again proceed by induction on the number
of edges. Since t1,0(G) = 1, G is 2-connected. Take e any edge. Since t1,0(G) = t1,0(G\e) + t1,0(G/e), exactly
one of G/e or G\e is 2-connected (and incidentally the other is series-parallel by the inductive hypothesis, but
this is not needed).
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Consider the case where G is 2-connected but G/e is not. Hence G is a parallel connection, and by multi-
plicativity of t1,0(G) over series-parallel connections it has to be a parallel connection of series-parallel graphs.
But this is again series-parallel.

The case where G\e is similar.

Proofs given of Theorem 33 usually invoke Dirac’s characterization of series-parallel graphs as precisely those
with no K4 minor [20] and a fact first proved by Brylawski [18] that if G is 2-connected and H is a (non-empty)
minor of G then ti,j(H) ≤ ti,j(G). The proof we have presented follows Zavlasky [56].

Question 16

(i) Let Wn = K1+Cn be the wheel on n+1 vertices (an n-cycle all of whose vertices
are joined to a new central vertex). In the chapter on the chroamtic polynomial you
calculated the chromatic polynomial of Wn: leaning on your past labours, deduce
the value t1,0(Wn). If it had slipped your mind to find P (Wn; z) earlier, then what
alternative method might you have used to calculate t1,0(Wn)?

(ii) By using P (Kn; z) = zn, show that t1,0(Kn) = (n− 2)!.

Proposition 34. If G = G1 ∪G2 where |V (G1)∩ V (G2)| = s ≥ 2 and the induced subgraph on V (G1)∩ V (G2)
is a clique Ks, then

t1,0(G) = t1,0(G1)t1,0(G2)/(s− 2)!.

Note that if G has a cut-vertex (s = 1) then t1,0(G) = 0.

Proof. This follows from the expression for the chromatic polynomial of a quasi-separation (see Prop. 8 in the
chapter on chromatic polynomial) written as

P (G; 1− z)P (Ks; 1− z) = P (G1; 1− z)P (G2; 1− z),

where, for connected G,

P (G; 1 − z) = (1− z)
∑

1≤i≤|V |−1

(−1)|V |−1−iti,0(G)zi,

and the fact that t1,0(Ks) = (s− 2)!. Comparing coefficients of z2 gives the result.

In particular, edge-glueing a series-parallel graph to G does not change its beta invariant.

The only 3-connected graph G with beta invariant t1,0(G) = 2 is K4, and a similar classification of 3-
connected graphs with beta invariant up to 9 has been made (see references given in [44, §7.1]). An outerplanar
graph is a planar graph with an embedding in the plane with the property that all vertices of G lie on the outer
face. A graph is outerplanar if and only if it has no K4 minor (so it is series-parallel) or K2,3 minor.

Theorem 35. [24] If G is a simple 2-connected series-parallel graph then t2,0(G) ≥ t0,2(G) + 1 with equality if
and only if G is outerplanar.

It turns out that the beta invariant t1,0(G) counts a certain subset of those acyclic orientations counted by
T (G; 1, 0) (Theorem 7 above).

Theorem 36. [Greene and Zaslavsky, 1983; Las Vergnas, 1984]1 Let G be a connected graph and uv ∈ E(G).
The number of acyclic orientations of G with u as unique source and v as unique sink is equal to t1,0(G).

1The original proofs of Greene and Zaslavsky of this result and Theorem 7 use hyperplane arrangements. A contraction–deletion
proof was given by Gebhard and Sagan [21]. Las Vergnas proved a stronger theorem in [35], giving an orientation expansion for
the Tutte polynomial.
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Proof. Let Quv(G) denote the number of acyclic orientations of G with u as unique source and v as unique sink.

Recall that t1,0(G) = 0 if G is not 2-connected. We know that t1,0(G) = t1,0(G/e)+t1,0(G\e) for an ordinary
edge e, and if G has more than one edge and e is a bridge of G then t1,0(G) = 0 (since G is not 2-connected).
Also t1,0(K2) = 1. Finally, t1,0(G) = 0 if G has a loop e.

When G is not 2-connected it is impossible to have an acyclic orientation of G with unique source u and
unique sink v. First, if G is not connected then there are not even any acyclic orientations with unique source
u, since each component has a source. Second, if G is connected and G ∼= G1 ∪G2 with |V (G1) ∩ V (G2)| = 1,
then an acyclic orientation restricted to G1 has at least one source and sink, at least one of which survives as a
source or sink in G. Similarly for G2. But then there is either a source or sink in G1 and in G2, and these are
not connected by an edge. Hence u and v are not unique as source and sink.

Clearly Quv(K2) = 1 and Quv(G) = 0 if G has a loop.

If G has at least two edges, is 2-connected and has no loops, then G has no bridges. It remains to prove
that in this case Quv(G) = Quv(G/e) + Quv(G\e), where e is an ordinary edge. We can choose e = wv with
w 6= u, v. In an acyclic orientation of G with unique sink v the edge wv is directed from w to v. Since u is
the unique source there is at least one edge directed into w. If there is also at least one other edge directed
out of w, then deleting e gives an acyclic orientation of G\e with unique source u and unique sink v. On the
other hand, if e is the only edge directed out of w then contracting the edge e gives an acyclic orientation of
G/e with unique source u and unique sink v (which is identified with w in the graph G/e). Thus partitioning
acyclic orientations of G with unique source u and unique sink v according to whether or not G\wv is also an
acyclic orientation with this property, we find that Quv(G) = Quv(G/wv) +Quv(G\wv).

Question 17 Formulate and prove the dual statement to Theorem 36 that concerns
totally cyclic orientations. (Since t1,0(G) = t0,1(G) when G has at least two edges, the
number of this type of totally cyclic orientation turns out to be the same as the number
of acyclic orientations with prescribed source and sink.)

3.9 Computational complexity

We have seen that the Tutte polynomial can be computed in polynomial time at some particular points.
Specifically, these points are: (0, 0) (whether there are any edges), (1, 1) (number of spanning trees), (2, 2)
(number of subgraphs), (−1, 0) (whether bipartite or not), (0,−1) (whether Eulerian or not), (−1,−1) (up to
easily determined sign equal to number of bicycles), and also in the last section interpretations for evaluations
at (e2πi/3, e−2πi/3) and (i,−i), the former involving the dimension of the space spanned by vectors that are
simultaneously Z3-flows and Z3-tensions.

Recall also that T (G;x, y) = (x− 1)r(G)y|E(G)| when (x− 1)(y− 1) = 1, so that the Tutte polynomial is also
polynomial time computable at points on this hyperbola (the points (0, 0) and (2, 2) were already mentioned in
the previous paragraph).

Theorem 37 below says that we have in fact now encountered all such “easy points”.

A computational (enumeration) problem can be regarded as a function mapping inputs to solutions (graphs
to the number of their proper vertex 3-colourings, for example). A problem is polynomial time computable if
there is an algorithm which computes the output in length of time (number of steps) bounded by a polynomial
in the size of the problem instance. The class of such problems is denoted by P. If A and B are two problems,
we say that A is polynomial time reducible to B, written A ∝ B, if it is possible with the help of a subroutine
for problem B to solve problem A is polynomial time.

The class #P can be roughly described as the class of all enumeration problems in which the structures
being counted can be recognized in polynomial time (i.e., instances of an NP problem). For example, counting
Hamiltonian paths in a graph is in #P because it is easy to check whether a given set of edges is a Hamitonian
path.

The class #P has a class of “hardest” problems called the #P-complete problems. A problem A belonging to
#P is #P-complete if for any other problem B in #P we have B ∝ A. A prototypical example of a #P-complete
problem is #Sat, the problem of counting the number of satisfying assignments of a Boolean function. Many
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of the thousands of problems known to be #P complete have been shown to be so by reduction to #Sat.
Counting Hamiltonian paths is an example of a #P-complete problem (even when restricted to planar graphs
with maximum degree 3).

A problem is #P-hard if any problem in #P is polynomial time reducible to it. In other words, A is #P-hard
if the existence of a polynomial time algorithm for A would imply the existence of a polynomial time algorithm
for any problem in #P. (A #P-hard problem is #P-complete if it belongs to the class #P itself.)

Many evaluations of the Tutte polynomial count structures associated with a graph. Sometimes though it
is not apparent what an evaluation of the Tutte polynomial at a particular point (a, b) might count. However,
we can still speak of whether the problem of computing T (G; a, b) can be done in polynomial time or if it is a
#P-hard problem (being able to evaluate it for any graph in polynomial time would imply that every problem
in #P could be computed in polynomial time).

Theorem 37 ([29]). Evaluating the Tutte polynomial of a graph at a particular point of the complex plane is
#P-hard except when either

(i) the point lies on the hyperbola (x − 1)(y − 1) = 1,

(ii) the point is one of the special points (1, 1), (−1, 0), (0,−1), (−1,−1), (i,−i), (−i, i), (e2πi/3, e−2πi/3),
(e−2πi/3, e2πi/3).

In the special cases (i) and (ii) evaluation can be carried out in polynomial time.

In [49] Vertigan and Welsh show that the same statement in Theorem 37 holds even when restricting the
problem to computing the Tutte polynomial for bipartite graphs.

Around the same time as [49], but only much later published, Vertigan showed that restricting the problem of
evaluating the Tutte polynomial to planar graphs only yields extra “easy points” on the hyperbola (x−1)(y−1) =
2 (corresponding to the partition function of the Ising model, which in the planar case is polynomial time
computable due to Kasteleyn’s expression for the partition function of the Ising model as the Pfaffian of an
associated matrix).

Theorem 38 ([52]). The problem of computing the Tutte polynomial of a planar graph at a particular point of
the complex plane is #P-hard except when either

(i) the point lies on one the hyperbolae (x− 1)(y − 1) = 1 or (x− 1)(y − 1) = 2,

(ii) the point is one of the special points (1, 1), (−1, 0), (0,−1), (−1,−1), (e2πi/3, e−2πi/3), (e−2πi/3, e2πi/3).

In the special cases (i) and (ii) evaluation can be carried out in polynomial time.

See e.g. [53] for a more detailed account of the complexity of counting problems, with special emphasis on
those related to the Tutte polynomial.
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