Mathematical Analysis I

Exercise sheet 4

29 October 2015

References: Abbott, 2.2, 2.3. Bartle & Sherbert 3.1, 3.2

- 1. Define what it means for a sequence (a_n) of reals to *converge* to a limit $l \in \mathbb{R}$.
- Use question 6(ii) of Exercise Sheet 2 to explain why the sequence $(\frac{1}{n})$ is convergent with limit 0. Determine which of the following sequences are convergent and for those which are convergent state (without proof) what the limit is:
 - (i) $a_n = \frac{an+c}{bn+d}$, where $a, b, c, d \in \mathbb{R}$ and $b \neq 0$.

(ii)
$$a_n = (-1)^n$$

(iii)
$$a_n = 1 + \frac{(-1)^n}{n}$$

- (iv) $a_n = 1$ if n is prime and $a_n = 0$ otherwise.
- (v) $a_n = \frac{1}{n}$ if n is prime and $a_n = 0$ otherwise.
- (vi) $a_n = 1$ if both n and n + 2 are prime, and $a_n = 0$ otherwise. [For this sequence you might like to look up the status of the Twin Prime Conjecture.]
- 2. Prove that if (a_n) and (b_n) are convergent sequences with limits a and b respectively, then
 - (i) $(a_n + b_n)$ is convergent and $\lim(a_n + b_n) = a + b$,
 - (ii) $(a_n b_n)$ is convergent and $\lim(a_n b_n) = ab$,
- **3**. Define what is meant by a *subsequence* of a sequence (a_n) .
 - (i) Prove that if (a_n) is convergent then any subsequence of (a_n) is convergent to the same limit.
 - (ii) (Squeeze Theorem) Prove that if $a_n \leq c_n \leq b_n$ for all n and $\lim a_n = l = \lim b_n$ then (c_n) is convergent and $\lim c_n = l$.
- (iii) Suppose (c_n) is the sequence defined by from the two sequences (a_n) and (b_n) by setting

$$c_n = \begin{cases} a_n & \text{if } n \text{ is odd} \\ b_n & \text{if } n \text{ is even.} \end{cases}$$

Show that if (a_n) and (b_n) are convergent to the same limit l then (c_n) is also convergent with limit l. Does the converse necessarily hold?

- 4.
- (i) Show that if (b_n) is convergent and $b_n \ge 0$ for all n then $\lim b_n \ge 0$.
- (ii) Show that if (a_n) is a sequence of positive real numbers such that (a_{n+1}/a_n) is convergent and $\lim \frac{a_{n+1}}{a_n} < 1$ then (a_n) is convergent with limit 0. [You may assume that when $0 \le r < 1$ the sequence (r^n) is convergent with limit 0.]
- (iii) Deduce from (ii) that the sequence $\left(\frac{n}{2^n}\right)$ converges to 0.
- 5. (Cesàro Mean)
 - (i) Show that if (a_n) is a convergent sequence, then the sequence (b_n) given by the averages

$$b_n = \frac{a_1 + a_2 + \dots + a_n}{n}$$

also converges to the same limit.

- (ii) Give an example to show that it is possible for the sequence (b_n) of averages to converge even if (a_n) does not.
- 6. Define what it means for a sequence to be *bounded* and for a sequence to be *monotone*.
 - (i) Prove that a convergent sequence is bounded.
 - (ii) Give an example of a bounded sequence that is not convergent. [*This gives a counterexample to* the converse of (i).]
- (iii) Use the fact that a bounded set of reals has a supremum to prove that any bounded monotone sequence converges to a limit. [*This is the Monotone Convergence Theorem for sequences.*]
- (iv) Show that the sequence $\sqrt{2}$, $\sqrt{2 + \sqrt{2}}$, $\sqrt{2 + \sqrt{2} + \sqrt{2}}$, ... defined recursively by $a_{n+1} = \sqrt{2 + a_n}$ is bounded above by 2 and that it is increasing. Deduce from (iii) that (a_n) is convergent and find its limit.