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1 Colouring-flow duality in the plane

We begin with a lovely observation due to Tutte which opened the study of this field. Before

stating it we will need to introduce some basic terminology.

Definition: Let Γ be an abelian group (written additively), and let G = (V,E) be a directed

graph. We define a function φ : E → Γ to be a flow if the following condition (called the

Kirchoff rule) is satisfied at every vertex v ∈ V∑
e∈δ+(v)

φ(e)−
∑

e∈δ−(v)

φ(e) = 0.

So, in words, a function is a flow, if at every vertex v, the sum of the values on the

incoming edges is equal to the sum of the values on the outgoing edges. We say that a

flow is a k-flow when Γ = Z and |φ(e)| < k for every e ∈ E; we call φ nowhere-zero if

φ(e) 6= 0 for every e ∈ E. Note that if we have a flow, then we can reverse an edge and

change its value to −φ(e) and this preserves the Kirchoff rule, so we still have a flow. This

also preserves the properties of k-flow and nowhere-zero flow. Accordingly, we will say that

an undirected graph has a nowhere-zero Γ flow or nowehere-zero k-flow if some (and thus

every) orientation of it has this property.

Theorem 1.1 (Tutte). If G and G∗ are dual planar graphs, then G∗ has a proper k-colouring

if and only if G has a nowhere-zero k-flow.

Proof of the “only if” direction. (see next section for the “if” direction) Let V ∗ be the set

of vertices of G∗ and also the set of faces of G and suppose that g : V ∗ → {0, 1, . . . , k − 1}
is a proper k-colouring. Now, orient the edges of G arbitrarily and assign each edge e of G

a value φ(e) according to the rule that φ(e) = g(a) − g(b) where a is the face to the left of

the directed edge e (when it is oriented upward) and b is the face to the right. To check that

this is a flow, consider a vertex v and suppose first that all edges are directed away from

v. In this case, the Kirchoff rule will be satisfied at v because within this sum each face a

incident with v contributes g(a)− g(a) = 0. If we flip the direction of an edge, this flips its

sign, so the Kirchoff rule will still be satisfied. Since our colouring was proper, the resulting

function φ is indeed a nowhere-zero k-flow, as desired.
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Note that a planar graph with a loop edge does not have any proper colouring, so it’s

dual does not have any nowhere-zero k-flow. More generally, any graph with a cut-edge will

not have a nowhere-zero Γ-flow for any (abelian) group Γ. To see this, just sum the Kirchoff

rule over all vertices in one component of G− e for a cut-edge e. Since we have a flow, this

sum must be zero, but all terms in this sum apart from φ(e) cancel, so it gives φ(e) = 0.

Based on the above theorem connecting flows and colourings, Tutte made three remarkable

conjectures concerning the existence of nowhere-zero flows, all of which are still open despite

considerable efforts.

Conjecture 1.2 (Tutte). Let G be a graph without a cut-edge.

1. Then G has a nowhere-zero 5-flow.

2. If G has no Petersen minor, it has a nowhere-zero 4-flow.

3. If G is 4-edge-connected, it has a nowhere-zero 3-flow.

The first of these conjectures, the 5-flow conjecture, holds true for planar graphs by the

5-colour theorem. The Petersen graph does not have a nowhere-zero 4-flow, so if it is true,

the 5-flow conjecture would be best possible. Seymour proved that every graph without a

cut-edge has a nowhere-zero 6-flow, and this result will be of significance for our forthcoming

discussion.

The 4-flow conjecture when restricted to cubic graphs is equivalent to the statement that

every cubic graph with no cut-edge and no Petersen minor has a 3-edge colouring. This was

proved by Robertson, Sanders, Seymour and Thomas, but little more is known in general.

The last of these conjectures holds true for planar graphs since it dualizes to the statement

that every triangle free planar graph is 3-colourable—which was proved by Grötzsch.

Before leaving this section let us close with another easy observation and another useful

theorem of Tutte. Observe that our proof of the “only if” direction of Theorem 1.1 actually

gives a somewhat more general result. If instead of choosing a k-colouring using the colours

{0, 1, . . . , k − 1} we had instead chosen Γ to be an abelian group of order k and chosen

g : E → Γ to be our colouring, then the construction would have resulted in a nowhere-

zero Γ flow. So, a k-colouring of the dual naturally gives us either a nowhere-zero k-flow

or a nowhere-zero Γ-flow in the original graph G. The following theorem shows that this

phenomena holds true in a more general setting.

Theorem 1.3 (Tutte). For every positive integer k and graph G, the following are equivalent.

1. G has a nowhere-zero k-flow.

2. G has a nowhere-zero Γ flow for some group Γ with |Γ| = k.

3. G has a nowhere-zero Γ flow for every group Γ with |Γ| = k.
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The utility of this result becomes immediately apparent when one starts working with

flows. The reason is that it is easy to modify a Γ-flow to get another Γ-flow (for instance

by adding a constant value to all edges on a directed cycle), but it is generally difficult to

modify a k-flow to get another k-flow.

2 Duality for orientable surfaces

Let’s consider a directed graph G = (V,E) which is embedded in an orientable surface. Let

φ : E → Γ be a flow on G. Now we may construct the dual graph G∗ = (V ∗, E∗) and orient

its edges so that whenever e ∈ E corresponds to e∗ ∈ E∗, the edge e∗ crosses left to right

over e. Now consider the function φ∗ : E∗ → Γ given by the rule φ∗(e∗) = φ(e). For a walk

W in G∗ with edge sequence e∗1, . . . , e
∗
m we define the height of this walk to be

φ∗(W ) =
m∑
i=1

εiφ(e∗i )

where εi = 1 if e∗i is traversed forward, and εi = −1 if e∗i is traversed backward. With this

notation in place, we see that the Kirchoff rule for a vertex v in the original graph is precisely

equivalent to the statement that the closed walk bounding the face of G∗ corresponding to

v has height 0. So, our flow φ dualizes to give a function φ∗ with the property that every

facial walk has height 0. This is an important concept, so let’s pause to define it.

Definition: For an embedded directed graph G and a function ψ : E(G)→ Γ, we say that

ψ is a local-tension if the height of every facial walk is 0. We say that ψ is a tension if every

closed walk has height 0.

Just as with flows, we will call a (local) tension ψ nowhere-zero if ψ(e) 6= 0 for every

e ∈ E(G) and we call ψ a k-(local) tension if Γ = Z and |ψ(e)| < k for every e ∈ E(G).

Also just like flows, we can reverse the direction of an edge and multiply its value by −1 to

obtain a new (local) tension, so the question of when a directed graph has a nowhere-zero

(local) tension depends only on the underlying graph and not the orientation. The following

key result shows that nowhere-zero tensions are essentially the same as colourings.

Proposition 2.1. A graph G has a nowhere-zero Γ-tension if and only if it has a proper

|Γ|-colouring.

Sketch of proof. For the “if” direction, choose a Γ-colouring of G given by g : V (G) → Γ.

Then orient the edges of G arbitrarily and assign the value ψ(e) = g(v)− g(u) if e is an edge

directed from v to u. It is straightforward to check that this gives a nowhere-zero tension.

For the“only if” direction choose a nowhere-zero tension ψ : E(G) → Γ and then fix a

base point u ∈ V (G). Now for every vertex v ∈ V (G) choose a walk Wv from u to v and
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define g(v) = ψ(Wv). It follows from the assumption that ψ is a tension that the value g(v)

does not depend on the choice of Wv. Moreover, the assumption that ψ was nowhere-zero

means that the resulting function g is a proper colouring.

Assume that we have a tension ψ of an embedded graph G, and assume that every face

in this embedding is a disc. If W is a closed walk in the graph which forms a contractible

curve in the surface, then we may deform W to a trivial walk by rerouting along faces one

at a time. It follows from this that ψ(W ) = 0. More generally, let us fix a base point

u ∈ V (G) and consider two closed walks W and W ′ starting and ending at u. If W and W ′

are homotopic, then by the same argument, we deduce that ψ(W ) = ψ(W ′). This leads us

to the following key property.

Proposition 2.2. Let G be a directed graph embedded in a surface S. If ψ : E(G)→ Γ is a

local-tension, then ψ induces a group homomorphism from π1(S)→ Γ. This homomorphism

is trivial if and only if ψ is a tension.

With this, we can now return to prove the other part of our first theorem.

Proof of “if” direction of Theorem 1.1. By assumption, the graph G has a nowhere-zero k-

flow. So, by Theorem 1.3 we may orient G and choose a nowhere-zero Zk flow φ. Let G∗

be the oriented dual (as above) and define φ∗(e∗) = φ(e) for every edge e∗ ∈ E(G∗). Then

φ∗ is a nowhere-zero Zk-local tension. However, since the homotopy group of the plane is

trivial, the above proposition implies that φ∗ is actually a tension. Thus by Proposition 2.1

the graph G∗ has a proper k-colouring.

3 Duality for nonorientable surfaces

Now we shall start off with a directed graph G which is embedded in a non-orientable surface,

and a local tension ψ : E(G) → Γ. Our aim is to translate the local-tension property into

a kind of flow in the dual graph. However, since our surface is not orientable, there is no

obvious orientation of the dual to use. In fact, we will need a more complicated notion.

A bidirected graph is a graph in which every edge has two arrowheads, one associated with

each endpoint. Just as with usual directed graphs, these arrowheads may be directed either

toward or away from this endpoint.

e

e

f

f

σ(e) = −1 σ(f) = 1

Figure 1: edge types
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We assume (as usual) that every face of the embedded graph G is a disc, and we will

think of each of these discs as equipped with a local notion of clockwise. (This is one of the

many ways of working with nonorientable surface embeddings.) Let G∗ be the dual graph,

and consider the face of G which is associated to some vertex v∗ ∈ V . We have chosen a

clockwise orientation of this face, and we let Wv∗ be a facial walk which traverses this face

clockwise. Now, by assumption we have ψ(Wv∗) = 0 and we shall translate this into a flow

type condition at the vertex v∗ in the dual. To do so, just mark each edge e∗ of G∗ which is

incident with v∗ with an arrowhead directed to v∗ if the corresponding edge e of G is forward

in Wv∗ and with an arrowhead the opposite direction if it is backward. This immediately

translates the property ψ(Wv∗) = 0 into the Kirchoff rule being satisfied at v∗. However, if

we do this at every vertex of the dual, we will in general end up with a bidirected orientation

of this dual graph

Figure 2: duality

Following the above process and giving the dual graph G∗ a bidirected orientation results

in the duality we want. Namely, we will have that our local tension ψ of G translates

into a flow ψ∗ of the dual (bidirected) graph G∗. So, just as we could use nowhere-zero

flows in ordinary digraphs to construct local-tensions on orientable surfaces, we can now

use nowhere-zero flows in bidirected graphs to construct local-tension on non-orientable

surfaces. One might have hoped that the analogue of Tutte’s 5-flow conjecture would still

hold true for bidirected graphs, that is that every bidirected graph without the obvious

obstruction has a nowhere-zero 5-flow, but this is not true. To see why, consider the dual

graphs K6 and Petersen embedded in the projective plane. Direct the edges of K6 and use

the above procedure to give Petersen a bidirected orientation. Now consider any local tension

φ : E(K6)→ Z of K6. By Proposition 2.2 this local tension induces a group homomorphism
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from the fundamental group of our surface, which is isomorphic to Z/2Z to the group Z.

Since this must be trivial, we deduce that φ must be a tension. It follows that this embedded

K6 does not have a 5-local-tension, and then by duality the associated bidirected Petersen

does not have a nowhere-zero 5-flow. Bouchet conjectured that this was the most extreme

example.

Figure 3: Petersen and K6 in the projective plane

Conjecture 3.1 (Bouchet). Every bidirected graph with a nowhere-zero Z-flow has a nowhere-

zero 6-flow.

Bouchet proved that graphs with nowhere-zero Z-flows have nowhere-zero 216-flows. This

was improved to 30-flows by Fouquet and independently by Zyka. We have shown that such

graphs have nowhere-zero 12-flows.
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