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1. How many graphs on the vertex set [2n] = {1, 2, . . . , 2n} are isomorphic to the graph consisting of n
vertex-disjoint edges (i.e. with edge set {{1, 2}, {3, 4}, . . . , {2n−1, 2n}}?

Any such graph arises by pairing off the 2n vertices that are to be joined by edges. The number of
ways to do this can be counted as follows: choose which vertex to pair with vertex 1 (2n − 1 choices).
This leaves 2n−2 vertices to pair off. Choose which vertex to pair off with the smallest vertex remaining
(2n − 3 choices). Repeat this procedure at step i ∈ [n] by taking the smallest of the remaining vertices
and deciding which one it will pair off with. At step i there are 2n− 2i + 1 free choices of which vertex
to pair off with the smallest remaining vertex. Multiplying these together we find there are

(2n− 1)(2n− 3)(2n− 5) · · · 3 · 1 = (2n− 1)!!

ways in total, and this is the number of graphs on [2n] isomorphic to the given graph consisting of n
vertex-disjoint edges.

The proof can be formalized by induction.
Base case n = 1: There is 1 = 1!! graph consisting of a single edge joining 2 vertices.
Induction hypothesis: there are (2n−1)(2n−3) · · · 3·1 graphs on [2n] isomorphic to the graph consisting

of n vertex-disjoint edges.
Induction step: A graph on [2(n+1)] is isomorphic to the graph consisting of n + 1 vertex-disjoint

edges if and only if it has one isolated edge {1, i} whose removal leaves a graph on [2(n + 1)] \ {1, i}
isomorphic to the graph consisting of n vertex-disjoint edges. There are 2n + 1 choices for i and by
hypothesis (2n−1)(2n−3) · · · 3 · 1 graphs on [2(n + 1)] \ {1, i} that are isomorphic to a graph consisting
of n vertex-disjoint edges.

Hence there are (2n+1) · (2n−1)(2n−3) · · · 3 ·1 graphs on [2(n+1)] isomorphic to the graph consisting
of n + 1 vertex-disjoint edges. �

Remark The number of ordered set partitions1 of a set of size m into r subsets, of sizes k1, . . . , kr, is
the multinomial coefficient

m!

k1! · · · kr!
,

which can be derived by repeated application of the formula for the number of combinations of m things
taken k at a time, (

m

k

)
=

m!

k!(m− k)!
.

By choosing A1 ⊆ A, A2 ⊆ A\A1, . . . , Ar ⊆ A\(A1 ∪ · · · ∪ Ar−1) in orderm the number of ordered set
partitions (A1, . . . , Ar) with |Ai| = ki is

m!

k1! · · · kr!
=

(
m

k1

)(
m− k1

k2

)(
m− k1 − k2

k3

)
· · ·

(
m− k1 − · · · − kr−1

kr

)
.

1An ordered set partition of a set A is a sequence of subsets (A1, . . . , Ar) such that A1 ∪ A2 ∪ · · ·Ar = A and the sets
A1, . . . , Ar are pairwise disjoint. A(n unordered) set partition of A is a set of subsets {A1, . . . , Ar} such that A1∪A2∪· · ·Ar =
A and the sets A1, . . . , Ar are pairwise disjoint. To each set partition into r non-empty sets there corresponds r! ordered set
partitions, obtained by taking all the different possible orderings of the subsets in the partition. When there are s empty
subsets, we need to adjust by a factor of s! to account for permuting the empty subsets among themselves.



If ki ≥ 1 for each i then the number of unordered set partitions of m elements into subsets of sizes
k1, . . . , kr is given by

m!

r!k1! · · · kr!
.

In particular, the number of (unordered) set partitions of 2n vertices into n subsets of size 2 (corre-
sponding to edges) is given by

(2n)!

n!(2!)n
=

(2n) · 2(n−1) · · · 4 · 2 · (2n−1)(2n−3) · · · 3 · 1
2nn!

=
(2n) · 2(n−1) · · · 4 · 2 · (2n−1)(2n−3) · · · 3 · 1

(2n) · 2(n−1) · · · 4 · 2
= (2n− 1)(2n− 3) · · · 3 · 1

2. Let G be a graph with adjacency matrix AG. Show that G contains a triangle (i.e. a copy of K3) if
and only if there exist indices i and j such that both the matrices AG and A2

G have a nonzero entry in
the (i, j)-position.

We may assume i 6= j: if i = j then (AG)i,i = 0 as loops are not allowed. On the other hand we have
(A2

G)i,i = deg(i) since for each vertex k adjacent to i there is the closed walk i, ik, k, ik, i of length 2.
If G contains a triangle on vertices i, j, k then (AG)i, j = 1 and (A2

G)i,j ≥ 1 since i, ik, k, kj, j is a
walk of length 2 from i to j.

Conversely, if (AG)i,j 6= 0 and (A2
G)i,j 6= 0 then, by definition of the adjacency matrix, (AG)i,j = 1

and there is an edge ij, and (A2
G)i,j ≥ 1 so there is at least one walk from i to j of length 2. Let this

walk be i, ik, k, kj, j for a vertex k. Then k 6∈ {i, j} since there are no loops. We then have a triangle,
traversed by the closed walk i, ik, k, kj, j, ij, i.

3. Let G be a graph with 9 vertices, each of degree 5 or 6. Prove that it has at least 5 vertices of degree
6 or at least 6 vertices of degree 5.

We have p5 +p6 = 9 and 5p5 + 6p6 equal to twice the number of edges is even. The number 5p5 + 6p6
is even if and only if p5 is even.

Suppose p5 ≤ 5 and p6 ≤ 4. Then p5 = 5 and p6 = 4 by the vertex count p5 + p6 = 9, but p5 must
be even, a contradiction.

Hence p5 ≥ 6 or p6 ≥ 5.

4. Let T be a tree with n vertices, n ≥ 2. For a positive integer i, let pi be the number of vertices of T
of degree i.

(a) Prove that
p1 − p3 − 2p4 − · · · − (n− 3)pn−1 = 2.

First note that pi = 0 for i ≥ n (a vertex can have degree at most n − 1, which happens for the
star K1,n−1).

Using the fact that T has n vertices and n− 1 edges, we have

p1 + p2 + p3 + · · ·+ pn−1 = n

and
p1 + 2p2 + 3p3 + · · ·+ (n− 1)pn−1 = 2(n− 1).

Subtracting the second equation from twice the first, we obtain

p1 − 2p3 − · · · − (n− 3)pn−1 = 2. (1)

(When n = 2 we have p1 = 2.)



(b) Deduce from (a) the end-vertex lemma, that a tree with at least two vertices has at least two
end-vertices.

By equation (1), p1 = 2 + p3 + 2p4 + · · ·+ (n− 3)pn−1 When n ≥ 3 this implies p1 ≥ 2 since the pi
are nonnegative integers.

(c) Deduce from (a) that a tree with a vertex of degree k has at least k vertices of degree 1.

By equation (1), when pk ≥ 1 we have p1 = 2 + p3 + 2p4 + · · ·+ (n− 3)pn−1 ≥ 2 + (k − 2)pk ≥ k.

Remark Direct proofs of (b) and (c) are as follows:
To show there are at least two endvertices (degree 1), consider a path of maximum length in T . This

has length at least 1 and its endpoints are endvertices of T (if not, then we could extend the path to a
longer one).

Given a vertex v of degree k, deleting v leaves a forest comprising k trees. By (b) each component
contains at least two leaves, one of which was attached to v in T , or consists of an isolated vertex, which
is a leaf in the orginal tree T attached to v. This shows that there must be at least k leaves in T .


