Discrete Mathematics Exercise sheet 4

24 October/ 1 November 2016

- 1. [Bookwork] Let $R \subseteq X \times X$ be a relation on a set X. Define what is means for R to be
 - (a) reflexive, $\forall x \in X \quad (x, x) \in R$
 - (b) symmetric, $\forall x, y \in X$ $(x, y) \in R \Rightarrow (y, x) \in R$
 - (c) anti-symmetric, $\forall x, y \in X \quad [x \neq y \land (x, y) \in R] \Rightarrow (y, x) \notin R.$ Alternatively, $\forall x, y \in X \quad [(x, y) \in R \land (y, x) \in R] \Rightarrow x = y.$
 - (d) transitive, $\forall x, y, z \in X$ $[(x, z) \in R \land (z, y) \in R] \Rightarrow (x, y) \in R$
 - (e) an equivalence relation, reflexive, symmetric and transitive
 - (f) a partial order, reflexive, anti-symmetric and transitive
 - (g) a linear order. partial order in which every pair of elements are comparable, i.e., $\forall x, y \in X \quad [(x, y) \in R \lor (y, x) \in R].$

2. The *adjacency matrix* of a binary relation R on $[n] = \{1, 2, ..., n\}$ is the matrix whose (i, j)-entry is defined for $i, j \in [n]$ by

$$a_{i,j} = \begin{cases} 1 & (i,j) \in R \\ 0 & (i,j) \notin R \end{cases}$$

(See Section 1.5 of Matoušek & Nešetřil, *Invitation to Discrete Mathematics*, for a detailed exposition.)

(a) How many relations are there on [n] in total? [*Hint: an* $n \times n$ *matrix with entries* 0 or 1 defines the adjacency matrix of a relation. Count how many such matrices there are.]

Think of the matrix as a function from $[n] \times [n]$ to $\{0, 1\}$. There are $2^{|[n] \times [n]|} = 2^{n^2}$ such functions, each specifying a unique relation on $[n] \times [n]$.

(b) How many reflexive relations are there on [n]?

For a reflexive relation the adjacency matrix must have $a_{i,i} = 1$ for i = 1, ..., n. The other entries $a_{i,j}$ with $i \neq j$ can be 0 or 1 independently. Hence there are 2^{n^2-n} reflexive relations on [n].

(c) How many symmetric relations are there on [n]?

For a symmetric relation we must have $a_{j,i} = a_{i,j}$ for each $i, j \in [n]$ (the adjacency matrix is equal to its own transpose). Once $a_{i,j}$ has been specified for $i \leq j$, the remaining entries are determined.

Hence there are $2^{\frac{n^2-n}{2}+n} = 2^{\frac{1}{2}n(n+1)}$ symmetric relations on [n].

(d) How many anti-symmetric relations are there on [n]? [*Hint: for a pair* (i, i) there are two choices (either $(i, i) \in R$ or $(i, i) \notin R$), while for (i, j) with $i \neq j$ there are three mutually exclusive choices, $(i, j) \in R$, $(j, i) \in R$ or neither.]

For each entry $a_{i,i}$ there are 2 possibilities, namely 0 or 1, making 2^n in total for these diagonal entries. For each of the $\frac{1}{2}(n^2 - n)$ pairs of entries $(a_{i,j}, a_{j,i})$ with i < j there are 3 possibilities, namely (1,0), (0,1), (0,0), making $3^{\frac{1}{2}(n^2-n)}$ in total. Hence there are $2^n \cdot 3^{\binom{n}{2}}$ anti-symmetric relations on [n].

(e) How many linear orders are there on [n]? [You may find the adjacency matrix point of view not so helpful to answer this question, but rather take another viewpoint.]

A linear order on [n] is determined by a permutation of [n], a function $f : [n] \to [n]$ such that $f(i) \leq f(j)$ when $i \leq j$. Thus $f(1) \leq f(2) \leq f(3) \leq \cdots \leq f(n)$. Each of the n! permutations of [n] determines in this way a linear order on [n].

Hence there are n! linear orders on [n].

For any partial order (X, \preceq) (satisfying reflexivity, anti-symmetry and transitivity) there corresponds a *strict partial order* (X, \prec) satisfying *irreflexivity*, anti-symmetry and transitivity: define $x \prec y$ iff $x \preceq y$ and $x \neq y$.

Conversely, given a strict partial order (X, \prec) there corresponds a partial order (X, \preceq) in which $x \preceq y$ iff $x \prec y$ or x = y.

The number of linear orders is the same as the number of strict linear orders, by this correspondence.

At the end of the class there was a potential confusion raised which happily is not one after all: in defining a partial order on [n] the elements of [n] are *distinct* and cannot be identified in producing a linear order, without making a linear order on fewer than n elements. Further, in a (strict) linear order, any two distinct elements are comparable, so we have a bijection between permutations of [n] and linear orders, and between permutations of [n] and strict linear orders.

3. Let D_n be the set of divisors of n. Show that the relation \leq on D_n defined by $a \leq b$ if and only if a divides b is a partial order.

By definition, for $a, b \in \mathbb{N}$, a|b iff b = xa for some $x \in \mathbb{N}$.

Reflexive: a|a since a = 1a.

Anti-symmetric: if a|b and b|a then b = xa, a = yb for some $x, y \in \mathbb{N}$, whence a = yxa, from which yx = 1, and y = x = 1. Thus a = b.

Transitive: if a|c and c|b then c = ya, b = xc for some $x, y \in \mathbb{N}$, from which b = xya, and so a|b.

(b) For n = 2, 3, ..., 11 draw the Hasse diagram of the poset (D_n, \preceq) of divisors of n.

For example, the posets of divisors of 8 and 14 are as below:

(c) What property does the number n have if (D_n, \preceq) is a linear order (as for n = 8)? $n = p^a$ for some prime p and integer $a \ge 1$. (d) When is (D_n, \preceq) isomorphic to the poset $([m], \subseteq)$ for some m (as is the case for n = 14 with m = 2)?

When $n = p_1 p_2 \cdots p_m$ for distinct primes p_1, \ldots, p_m . (A divisor of n takes the form $p_1^{a_1} p_2^{a_2} \cdots p_m^{a_m}$ for $a_1, a_2, \ldots, a_m \in \{0, 1\}$. These are in one-to-one correspondence with subsets of [m] by reading a_i as the indicator function of the subset $A \subseteq [m]$ defined by $i \in A$ iff $a_i = 1$.)

(e) What is the size of the longest chain in (D_n, \preceq) ?

If $n = p_1^{a_1} \cdot p_2^{a_2} \cdots p_m^{a_m}$ for primes p_1, \ldots, p_m and integers $a_1, \ldots, a_m \ge 1$ then the longest chain has size $a_1 + a_2 + \cdots + a_m + 1$.

The exponent b_i of p_i in a chain beginning at 1 satisfies $0 \le b_i \le a_i$: it begins 0 and then forms a non-decreasing sequence, until it finally reaches a_i (its maximum value among divisors of n). Consider now the exponents b_1, b_2, \ldots, b_m of the primes p_1, p_2, \ldots, p_m in a divisor of n together while moving up a chain in (D_n, \preceq) . From one to the next divisor at least one of the exponents b_i must increase by 1 (or more). The number of such increments to the *i*th exponent is bounded above by a_i . Hence the total number of steps is bounded above by $\sum a_i$, making the size of the chain at most $1 + \sum a_i$. By incrementing just one exponent b_i by 1 each time, this bound can be achieved.

What is the size of the largest antichain in (D_n, \preceq) ?

This last question should not have remained on the exercise sheet! Answering it is difficult, and includes Sperner's theorem as a special case. For information, here is the answer (for a proof see N. G. de Bruijn, Ca. van Ebbenhorst Tengbergen, and D. Kruyswijk, On the set of divisors of a number, Nieuw Arch. Wiskunde (2) 23 (1951), 191–193):

Let $n = p_1^{a_1} \cdot p_2^{a_2} \cdots p_m^{a_m}$ for primes p_1, \ldots, p_m and integers $a_1, \ldots, a_m \ge 1$ and set $a = a_1 + a_2 + \cdots + a_m = \sum a_i$.

If a = 2b is even, an antichain of divisors of n of maximum size includes the set of all divisors $p_1^{b_1}p_2^{b_2}\cdots p_m^{b_m}$ with $\sum b_i = b$. There may be other sets of divisors than these that also form an antichain of maximum size: for example $n = 24 = 2^3 \cdot 3$ has 6 antichains of maximum size 2:

$$\{4,6\} = \{2^2, 2 \cdot 3\}, \{8,6\}, \{2,3\}, \{4,3\}, \{8,3\}, \{8,12\}.$$

(However, if $a_i = 1$ for each *i* then there is a unique antichain of maximum size.)

If a = 2b + 1 is odd, two antichains of divisors of n of maximum size include the set of divisors $p_1^{b_1} p_2^{b_2} \cdots p_m^{b_m}$ with $\sum b_i = b$, and the set of divisors $p_1^{b_1} p_2^{b_2} \cdots p_m^{b_m}$ with $\sum b_i = b + 1$. (If $a_i = 1$ for each i then these two antichains are the only ones of maximum size.)

Recall from part (d) that the poset of divisors of $n = p_1 p_2 \cdots p_m$, where p_1, p_2, \ldots, p_m are distinct primes, is isomorphic to the poset $([m], \subseteq)$.

Sperner's theorem The largest antichain in $([m], \subseteq)$ when m is even is $\binom{[m]}{m/2}$ and there are two largest antichains in $([m], \subseteq)$ when m is odd, namely $\binom{[m]}{(m-1)/2}$ and $\binom{[m]}{(m+1)/2}$.

[Hint: give your answer in terms of the factorization of n into a product of prime powers. A prime power is a number of the form p^a for some prime p and integer $a \ge 1$. For a number n > 1 we have $n = p_1^{a_1} \cdot p_2^{a_2} \cdots p_m^{a_m}$ for primes p_1, \ldots, p_m and integers $a_1, \ldots, a_m \ge 1$. For the above examples, $8 = 2^3$ and $14 = 2 \cdot 7$.]