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1. [Bookwork] Let R ⊆ X ×X be a relation on a set X. Define what is means for R to be

(a) reflexive, ∀x ∈ X (x, x) ∈ R

(b) symmetric, ∀x, y ∈ X (x, y) ∈ R ⇒ (y, x) ∈ R

(c) anti-symmetric, ∀x, y ∈ X [x 6= y ∧ (x, y) ∈ R] ⇒ (y, x) 6∈ R.

Alternatively, ∀x, y ∈ X [(x, y) ∈ R ∧ (y, x) ∈ R] ⇒ x = y.

(d) transitive, ∀x, y, z ∈ X [(x, z) ∈ R ∧ (z, y) ∈ R] ⇒ (x, y) ∈ R

(e) an equivalence relation, reflexive, symmetric and transitive

(f) a partial order, reflexive, anti-symmetric and transitive

(g) a linear order. partial order in which every pair of elements are comparable,
i.e., ∀x, y ∈ X [(x, y) ∈ R ∨ (y, x) ∈ R].

2. The adjacency matrix of a binary relation R on [n] = {1, 2, . . . , n} is the matrix whose
(i, j)-entry is defined for i, j ∈ [n] by

ai,j =

{
1 (i, j) ∈ R

0 (i, j) 6∈ R.

(See Section 1.5 of Matoušek & Nešetřil, Invitation to Discrete Mathematics, for a detailed
exposition.)

(a) How many relations are there on [n] in total? [Hint: an n× n matrix with entries 0 or 1
defines the adjacency matrix of a relation. Count how many such matrices there are.]

Think of the matrix as a function from [n]× [n] to {0, 1}. There are 2|[n]×[n]| = 2n
2

such
functions, each specifying a unique relation on [n]× [n].

(b) How many reflexive relations are there on [n]?

For a reflexive relation the adjacency matrix must have ai,i = 1 for i = 1, . . . , n. The

other entries ai,j with i 6= j can be 0 or 1 independently. Hence there are 2n
2−n reflexive

relations on [n].

(c) How many symmetric relations are there on [n]?

For a symmetric relation we must have aj,i = ai,j for each i, j ∈ [n] (the adjacency matrix
is equal to its own transpose). Once ai,j has been specified for i ≤ j, the remaining entries
are determined.

Hence there are 2
n2−n

2
+n = 2

1
2
n(n+1) symmetric relations on [n].



(d) How many anti-symmetric relations are there on [n]? [Hint: for a pair (i, i) there are two
choices (either (i, i) ∈ R or (i, i) 6∈ R), while for (i, j) with i 6= j there are three mutually
exclusive choices, (i, j) ∈ R, (j, i) ∈ R or neither.]

For each entry ai,i there are 2 possibilities, namely 0 or 1, making 2n in total for these
diagonal entries. For each of the 1

2(n2−n) pairs of entries (ai,j , aj,i) with i < j there are 3

possibilities, namely (1, 0), (0, 1), (0, 0), making 3
1
2
(n2−n) in total. Hence there are 2n ·3(n2)

anti-symmetric relations on [n].

(e) How many linear orders are there on [n]? [You may find the adjacency matrix point of
view not so helpful to answer this question, but rather take another viewpoint.]

A linear order on [n] is determined by a permutation of [n], a function f : [n]→ [n] such
that f(i) � f(j) when i ≤ j. Thus f(1) � f(2) � f(3) � · · · � f(n). Each of the n!
permutations of [n] determines in this way a linear order on [n].

Hence there are n! linear orders on [n].

For any partial order (X,�) (satisfying reflexivity, anti-symmetry and transitivity) there
corresponds a strict partial order (X,≺) satisfying irreflexivity, anti-symmetry and transitivity:
define x ≺ y iff x � y and x 6= y.

Conversely, given a strict partial order (X,≺) there corresponds a partial order (X,�) in
which x � y iff x ≺ y or x = y.

The number of linear orders is the same as the number of strict linear orders, by this
correspondence.

At the end of the class there was a potential confusion raised which happily is not one after
all: in defining a partial order on [n] the elements of [n] are distinct and cannot be identified in
producing a linear order, without making a linear order on fewer than n elements. Further, in a
(strict) linear order, any two distinct elements are comparable, so we have a bijection between
permutations of [n] and linear orders, and between permutations of [n] and strict linear orders.

3. Let Dn be the set of divisors of n. Show that the relation � on Dn defined by a � b if and
only if a divides b is a partial order.

By definition, for a, b ∈ N, a|b iff b = xa for some x ∈ N.
Reflexive: a|a since a = 1a.
Anti-symmetric: if a|b and b|a then b = xa, a = yb for some x, y ∈ N, whence a = yxa, from

which yx = 1, and y = x = 1. Thus a = b.
Transitive: if a|c and c|b then c = ya, b = xc for some x, y ∈ N, from which b = xya, and so

a|b.

(b) For n = 2, 3, . . . , 11 draw the Hasse diagram of the poset (Dn,�) of divisors of n.

For example, the posets of divisors of 8 and 14 are as below:
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(c) What property does the number n have if (Dn,�) is a linear order (as for n = 8)?

n = pa for some prime p and integer a ≥ 1.



(d) When is (Dn,�) isomorphic to the poset ([m],⊆) for some m (as is the case for n = 14
with m = 2)?

When n = p1p2 · · · pm for distinct primes p1, . . . , pm. (A divisor of n takes the form
pa11 pa22 · · · pamm for a1, a2, . . . , am ∈ {0, 1}. These are in one-to-one correspondence with
subsets of [m] by reading ai as the indicator function of the subset A ⊆ [m] defined by
i ∈ A iff ai = 1.)

(e) What is the size of the longest chain in (Dn,�)?

If n = pa11 · p
a2
2 · · · pamm for primes p1, . . . , pm and integers a1, . . . , am ≥ 1 then the longest

chain has size a1 + a2 + · · ·+ am + 1.

The exponent bi of pi in a chain beginning at 1 satisfies 0 ≤ bi ≤ ai: it begins 0 and then
forms a non-decreasing sequence, until it finally reaches ai (its maximum value among
divisors of n). Consider now the exponents b1, b2, . . . , bm of the primes p1, p2, . . . , pm in a
divisor of n together while moving up a chain in (Dn,�). From one to the next divisor at
least one of the exponents bi must increase by 1 (or more). The number of such increments
to the ith exponent is bounded above by ai. Hence the total number of steps is bounded
above by

∑
ai, making the size of the chain at most 1 +

∑
ai. By incrementing just one

exponent bi by 1 each time, this bound can be achieved.

What is the size of the largest antichain in (Dn,�)?

This last question should not have remained on the exercise sheet! Answering it is difficult,
and includes Sperner’s theorem as a special case. For information, here is the answer (for
a proof see N. G. de Bruijn, Ca. van Ebbenhorst Tengbergen, and D. Kruyswijk, On the
set of divisors of a number, Nieuw Arch. Wiskunde (2) 23 (1951), 191–193):

Let n = pa11 · p
a2
2 · · · pamm for primes p1, . . . , pm and integers a1, . . . , am ≥ 1 and set a =

a1 + a2 + · · ·+ am =
∑

ai.

If a = 2b is even, an antichain of divisors of n of maximum size includes the set of all
divisors pb11 pb22 · · · pbmm with

∑
bi = b. There may be other sets of divisors than these that

also form an antichain of maximum size: for example n = 24 = 23 · 3 has 6 antichains of
maximum size 2:

{4, 6} = {22, 2 · 3}, {8, 6}, {2, 3}, {4, 3}, {8, 3}, {8, 12}.

(However, if ai = 1 for each i then there is a unique antichain of maximum size.)

If a = 2b + 1 is odd, two antichains of divisors of n of maximum size include the set of
divisors pb11 pb22 · · · pbmm with

∑
bi = b, and the set of divisors pb11 pb22 · · · pbmm with

∑
bi = b+1.

(If ai = 1 for each i then these two antichains are the only ones of maximum size.)

Recall from part (d) that the poset of divisors of n = p1p2 · · · pm, where p1, p2, . . . , pm are
distinct primes, is isomorphic to the poset ([m],⊆).

Sperner’s theorem The largest antichain in ([m],⊆) when m is even is
( [m]
m/2

)
and there

are two largest antichains in ([m],⊆) when m is odd, namely
( [m]
(m−1)/2

)
and

( [m]
(m+1)/2

)
.

[Hint: give your answer in terms of the factorization of n into a product of prime powers.
A prime power is a number of the form pa for some prime p and integer a ≥ 1. For a
number n > 1 we have n = pa11 ·p

a2
2 · · · pamm for primes p1, . . . , pm and integers a1, . . . , am ≥

1. For the above examples, 8 = 23 and 14 = 2 · 7. ]

http://alexandria.tue.nl/repository/freearticles/597494.pdf
http://alexandria.tue.nl/repository/freearticles/597494.pdf

