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Notation: [n] = {1, 2, . . . , n}.

1.

(a) State how many functions there are from [n] to [m], where m,n ∈ N.

There are mn such functions (number of sequences of n elements f(1), f(2), . . . , f(n), each
element chosen freely from [m]).

(b) Deduce from your answer to (a) that there are 2n subsets of [n].

A subset S ⊆ [n] is uniquely defined by its characteristic function (or indicator function)
fS : [n]→ {0, 1}, defined for x ∈ [n] by

fS(x) =

{
1 x ∈ S,

0 x 6∈ S.

By (a) there are 2n functions f : [n]→ {0, 1}, and hence 2n subsets of [n].

(c) Determine the number of ordered pairs (A,B), where A ⊆ B ⊆ [n].

The triple of sets (A,B\A, [n]\B) are disjoint and their union is [n] (i.e. they form
an ordered partition of [n]). There is a bijection between such ordered partitions of
[n] into three subsets and functions f : [n] → [3] (for example, by the correspondence
A↔ {x ∈ [n] : f(x) = 1} = f−1({1}), B\A↔ f−1({2}) and [n]\B ↔ f−1({3}).
To recover (A,B) with A ⊆ B ⊆ [n] from the ordered partition (A,B\A, [n]\B) of [n] into
three subsets, let A be the first subset and B the union of the first two.

Hence there are 3n ordered pairs (A,B) in which A ⊆ B ⊆ [n].

(d) Determine the number of ordered triples (A,B,C), where A ⊆ B ⊆ C ⊆ [n].

The quadruple of sets (A,B\A,C\B, [n]\C) are disjoint and their union is [n]. These are
in one-to-one correspondence with functions f : [n]→ [4], and in a similar way to (c) we
conclude that there are 4n ordered triples (A,B,C) with A ⊆ B ⊆ C ⊆ [n].

2. A permutation of [n] is a bijection f : [n]→ [n].

(a) Look up/remind yourself what is meant by a cycle of the permutation f (e.g. section 3.2
of Matoušek & Nešetřil, Invitation to Discrete Mathematics, page 65 in 2nd ed).

A cycle of f consists of a finite sequence x, f(x), f2(x), . . . , f `−1(x), where ` is the least
positive integer such that f `(x) = x. The next term in the sequence is obtained by
applying f , including the “wrap-around” at the end, f(f `−1(x)) = x. (There is such
an integer ` since [n] is finite: among the n + 1 elements x, f(x), f2(x), . . . , fn(x), each



belonging to [n], by the pigeon-hole principle there must be 0 ≤ i < j ≤ n such that
f i(x) = f j(x), from which x = f j−i(x) by applying (composing) the inverse function f−1

on both sides of this equality i times, and taking ` to be the least positive value of j − i
for such pairs i, j.)

Usually a cycle of a permutation f is written ( x f(x) f2(x) . . . f `−1(x) )

Note that rather than at x we could start the cycle at f i(x) for any 0 ≤ i ≤ ` − 1:
( f i(x) f i+1(x) f i+2(x) . . . f `+i−1(x) ) is the same cycle.

Two cycles
( x1 x2 x3 . . . x` ) and ( y1 y2 y3 . . . ym )

are the same permutation if and only if ` = m and there is 0 ≤ d < ` such that

yi =

{
xi+d i + d ≤ `

xi+d−` i + d > `

(this just says that you can cyclically permute the elements yi to obtain the elements xi).
For example, ( 1 2 3 ), ( 2 3 1 ) and ( 3 1 2 ) are the same cycle, while ( 3 2 1 ),
( 1 3 2 ) and ( 2 1 3 ) are different to these.

(b) How many permutations of [n] have a single cycle?

A sequence of length n is cyclically equivalent to n distinct cycles (including itself). There
are n! sequences of length n with elements in [n]. Hence there are n!/n = (n − 1)!
permutations of [n] consisting of a single cycle.

(c) For a permutation f : [n]→ [n], define the k-fold composition of f recursively by f1 = f
and fk = fk−1 ◦ f . Let R be the relation on [n] defined by (x, y) ∈ R if and only if there
exists an integer k ≥ 1 such that fk(x) = y.

Prove that the relation R is reflexive, symmetric and transitive.

(x, x) ∈ R: f `(x) = x, where ` is the length of the cycle containing x.

(x, y) ∈ R implies (y, x) ∈ R: if fk(x) = y then x, y belong to the same cycle, say of length
`, and we may assume 0 ≤ k < `. Then f `(y) = y = fk(x), from which f `−k(y) = x.

(x, y) ∈ R and (y, z) ∈ R imply (x, z) ∈ R: by hypothesis there are positive integers k, j
such that fk(x) = y and f j(y) = z. By substitution, z = f j(fk(x)) = f j+k(x), so that
(x, z) ∈ R.

3. Let
(
n
k

)
denote the number of subsets of k elements from [n]. (For n ≥ 0 we have

(
n
0

)
= 1 =(

n
n

)
.)
Prove the following identities by using this combinatorial definition of

(
n
k

)
:

(a)
(

n
n−k

)
=
(
n
k

)
for 0 ≤ k ≤ n.

There is a one-to-one correspondence between subsets S ⊆ [n] of size k and their comple-
ments [n]\S, which are subsets of size n− k.

(b)
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
for 1 ≤ k ≤ n− 1.

Subsets S ⊆ [n] of size k may be partitioned into two classes: subsets of [n− 1] of size k
and sets {n} ∪ T where T ⊆ [n− 1] has size k − 1.

(c)
n∑

k=0

(
n

k

)
= 2n



By 1(b) the number of subsets of [n] is 2n, and these can be partitioned according to their
size 0 ≤ k ≤ n and by definition there are

(
n
k

)
subsets of size k.

(d)
n∑

k=0

(−1)k
(
n

k

)
= 0

NB The identity holds for n ≥ 1 (when n = 0 the sum is 1).

Taking all the negative terms to the other side of this equality, the assertion is that the
number of subsets of [n] having even size is equal to the number of subsets having odd
size. If n is odd this is immediate by the bijection between subsets and their complements
(these have opposite parity, since n is odd).

For an argument that works for both odd and even n, partition sets as in part (b) into
those that contain n as an element and those that do not. The map S 7→ S ∪ {n} is
a bijection between those not containing n and those containing n, with the property
that it changes the parity of the set (from odd to even, or even to odd). This pairing of
an odd-sized subset with an even-sized subset establishes that the number of odd-sized
subsets is equal to the number of even-sized subsets.

[Alternatively, define a bijection on the set of all subsets of [n] by the map S 7→ S4{n}
(symmetric difference with {n}, i.e., remove the element n if it belongs to S, add n to S
otherwise).]


