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1 The chromatic polynomial

1.1 The chromatic polynomial and proper colourings

There are various ways to define the chromatic polynomial P (G; z) of a graph G. Perhaps the first that springs
to mind is to define it to be the graph invariant P (G; k) with the property that when k is a positive integer
P (G; k) is the number of colourings of the vertices of G with k or fewer colours such that adjacent vertices
receive different colours. One then has to prove that P (G; k) is indeed a polynomial in k. This can be done
for example by an inclusion-exclusion argument, or by establishing that P (G; k) satisfies a deletion-contraction
recurrence and using induction.

However, we shall take an alternative approach and define a polynomial P (G; z) by specifying its coefficients
as graph invariants that count what are called colour-partitions of the vertex set of G. It immediately emerges
that P (G; k) does indeed count the proper vertex k-colourings of G. A further aspect of this approach is that
we choose a basis different to the usual basis {1, z, z2, . . .} for polynomials in z. This basis, {1, z, z(z− 1), . . .},
has the advantage that we are able to calculate the chromatic polynomial very easily for many graphs, such as
complete multipartite graphs.

In this chapter we develop some of the many properties of the chromatic polynomial, which has received
intensive study ever since Birkhoff introduced it in 1912 [2], perhaps with an analytic approach to 4CC in mind.
Although such an approach has not led to such a proof of 4CC being found, study of the chromatic polynomial
has led to many advances in graph theory that might not otherwise have ben made. In the context of this book,
the chromatic polynomial played a significant role historically in Tutte’s elucidation of tension-flow duality. (In
the next chapter we look at Tutte’s eponymous polynomial, introduced as simultaneous generalization of the
chromatic and flow polynomials.)

More about graph colourings can be found in e.g. [4, ch. V], [6, ch. 5], and more about the chromatic
polynomial in e.g. [1, ch. 9] and [9].

We approach the chromatic polynomial via the key property that vertices of the same colour in a proper
colouring of G form an independent (stable) set in G.

Definition 1. A colour-partition of a graph G = (V,E) is a partition of V into disjoint non-empty subsets,
V = V1 ∪ V2 ∪ · · · ∪ Vk, such that the colour-class Vi is an independent set of vertices in G, for each 1 ≤ i ≤ k
(i.e., each induced subgraph G[Vi] has no edges).

The chromatic number χ(G) is the least natural number k for which such a partition is possible.

If G has a loop then it has no colour-partitions. Adding or removing edges in parallel to a given edge makes
no difference to what counts as a colour-partition, since its definition depends only on whether vertices are
adjacent or not.

We denote the falling factorial z(z − 1) · · · (z − i+ 1) by zi.

Definition 2. Let G = (V,E) be a graph and let ai(G) denote the number of colour-partitions of G into i
colour-classes. The chromatic polynomial of G is defined by

P (G; z) =

|V |
∑

i=1

ai(G)zi.
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For example, when G is the complete graph on n vertices,

P (Kn; z) = zn = z(z − 1) · · · (z − n+ 1),

with ai(Kn) = 0 for 1 ≤ i ≤ n− 1 and an(Kn) = 1.
If G has n vertices then an(G) = 1 so that P (G; z) has leading coefficient 1. The constant term P (G; 0) is

zero since z is a factor of zi for each 1 ≤ i ≤ n. If E is non-empty then P (G; 1) = 0, so that z − 1 is a factor of
P (G; z). More generally, the integers 0, 1, . . . , χ(G) − 1 are all roots of P (G; z), and χ(G) is the first positive
integer that is not a root of P (G; z).

Proposition 3. If G = (V,E) is a simple graph on n vertices and m edges then the coefficient of zn−1 in
P (G; z) is equal to −m.

Proof. A partition of n vertices into n−1 subsets necessarily consists of n−2 singletons and one pair of vertices
{u, v}. This is a colour-partition if and only if uv 6∈ E. Hence an−1(G) =

(

n
2

)

−m, where m is the number of
pairs of adjacent vertices, equal to the number of edges of G when there are no parallel edges. Then

[zn−1]P (G; z) = −(1 + 2 + · · ·+ n−1)an(G) + an−1(G) = −m.

The join G1 +G2 of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph with vertex set V1 ∪ V2 and
edge set

E1 ∪ E2 ∪ {uv : u ∈ V1, v ∈ V2}.
For example the join of two cocliques Kr +Ks is a complete bipartite graph Kr,s.

Proposition 4. The chromatic polynomial of the join G1 +G2 is given by

P (G1 +G2; z) = P (G1; z) ◦ P (G2; z),

where the ◦ operation is defined by zi ◦ zj = zi+j, extended linearly to polynomials.

Proof. The number of colour-partitions of G = G1 +G2 is given by

ak(G) =
∑

i+j=k

ai(G1)aj(G2),

since every vertex of G1 is adjacent in G to every vertex of G2, so that any colour-class of vertices in G is either
a colour class of G1 or a colour class of G2.

The operation ◦ treats falling factorials zi as though they were usual powers zi when multiplying together
the polynomials

∑

i ai(G1)z
i and

∑

j aj(G2)z
j . This is part the shadowy world of “umbral calculus”...

Question 1

(i) Find the chromatic polynomial of the wheel Cn +K1 on n+ 1 vertices.

(ii) Find an expression for the chromatic polynomial of the complete bipartite graph
Kr,s relative to the factorial basis {zn} (leaving your answer in the form of a double
sum).

Definition 5. A proper k-colouring of the vertices of G = (V,E) is a function f : V → [k] with the property
that f(u) 6= f(v) whenever uv ∈ E.

Note that the vertices of a graph are regarded as labelled and colours are distinguished: colourings are
different even if equivalent up to an automorphism of G or a permutation of the colour set.

Proposition 6. If k ∈ N then P (G; k) is the number of proper vertex k-colourings of G.

2



Proof. To every proper colouring in which exactly i colours are used there corresponds a colour-partition into
i colour classes. Conversely, given a colour-partition into i classes there are ki ways to assign colours to them.
Hence the number of proper k-colourings is

∑

ai(G)ki = P (G; k).

The fact that the polynomial P (G; z) can be interpolated from its evaluations at positive integers gives
a method of proving identities satisfied by P (G; z) generally. Namely, check the truth of the identity when
z = k ∈ N by verifying a combinatorial property of proper k-colourings. We finish this section with some
examples.

Proposition 7. Suppose G′ is obtained from G by joining a new vertex to each vertex of an r-clique in G.
Then P (G′; z) = (z − r)P (G; z).

Proof. The identity holds when z is equal to a positive integer k, for to each proper k-colouring of G there are
exactly k − r colours available for the new vertex to extend to a proper colouring of G′.

Consequently, if G is a tree on n vertices then P (G; z) = z(z − 1)n−1 (every tree on n ≥ 2 vertices has a
vertex of degree 1 attached to a 1-clique in a tree on n− 1 vertices).

A chordal graph is a graph such that every cycle of length four or more contains a chord, i.e., there are
no induced cycles of length four or more. A chordal graph can be constructed by successively adding a new
vertex and joining it to a clique of the existing graph [8]. This ordering of vertices is known as a perfect
elimination ordering. By Proposition 7, for a chordal graph G we have P (G; z) = zc(G)(z − 1)k1 · · · (z − s)ks ,
where k1 + · · ·+ ks = |V | − c(G) and s = χ(G)− 1.

Question 2

(i) Show that if G is the disjoint union of G1 and G2 then P (G; z) =
P (G1; z)P (G2; z).

(ii) Prove that

P (G;x+ y) =
∑

U⊆V

P (G[U ];x)P (G[V \ U ]; y).

Proposition 8. Suppose G = (V,E) has the property that V = V1 ∪ V2 with G[V1 ∩ V2] complete and no edges
joining V1 \ (V1 ∩ V2) to V2 \ (V1 ∩ V2). Then

P (G; z) =
P (G[V1]; z)P (G[V2]; z)

P (G[V1 ∩ V2]; z)
.

In particular, if G is a connected graph with 2-connected blocks G1, . . . , Gℓ then

P (G; z) = z1−ℓP (G1; z)P (G2; z) · · ·P (Gℓ; z).

Proof. It suffices to prove the first identity when z is a positive integer k. Each proper colouring of the
clique G[V1 ∩ V2] extends to P (G[V1]; k)/P (G[V1 ∩ V2]; k) proper colourings of G([V1]), and independently to
P (G[V2]; k)/P (G[V1 ∩ V2]; k) proper colourings of G([V2]). Seeing that such a proper colouring of the clique
G[V1 ∩ V2] also extends to P (G; k)/P (G[V1 ∩ V2]; k) proper colourings of G, we have

P (G; k)

P (G[V1 ∩ V2]; k)
=

P (G[V1]; k)

P (G[V1 ∩ V2]; k)

P (G[V2]; k)

P (G[V1 ∩ V2]; k)
.

1.2 Deletion and contraction

Proposition 9. The chromatic polynomial of a graph G satisfies the relation

P (G; z) = P (G\e; z)− P (G/e; z),

for any edge e.
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Figure 1: Deletion-contraction computation tree for the chromatic polynomial of K3. Parallel edges produced
by contraction/identification are omitted since they do not affect the value of the chromatic polynomial. Leaf
nodes are empty graphs.

Proof. When e is a loop we have P (G; z) = 0 = P (G\e; z)− P (G/e; z) since G\e ∼= G/e. When e is parallel to
another edge of G we have P (G; z) = P (G\e; z) and P (G/e; z) = 0 since G/e has a loop.

Suppose then that e is not a loop or parallel to another edge. Consider the proper vertex k-colourings of
G\e. Those which colour the ends of e differently are in bijective correspondence with proper k-colourings of
G, while those that colour the ends the same are in bijective correspondence with proper k-colourings of G/e.
Hence P (G\e; k) = P (G; k) + P (G/e; k) for each positive integer k.

Proposition 9 provides the basis for a possible inductive proof of any given statement about the chromatic
polynomial for a minor-closed class of graphs (such as planar graphs). We shall see a few such examples in this
chapter.

Question 3

Use the deletion–contraction recurrence of Proposition 9 to

(i) give another proof that the chromatic polynomial of a tree on n vertices is given
by z(z − 1)n−1;

(ii) find the chromatic polynomial of the cycle Cn.

We can use the recurrence given by Proposition 9 to compute the chromatic polynomial of a graph G
recursively. A convenient way to record this computation is to draw a binary tree rooted at G whose nodes are
minors of G and where the children of a node are the two graphs obtained by the deletion and contraction of
an edge. Along each branch of the computation tree it does not matter in which order we choose the edges to
delete or contract. If we continue this computation tree until no edges remain to delete and contract then the
leaves of the computation tree are edgeless graphs Ki on 1 ≤ i ≤ n vertices, whose chromatic polynomial is
given by zi. The sign of this term in its contribution to the chromatic polynomial of G is positive if an even
number of contractions occur on its branch, and negative otherwise. See Figure 1 for an example.

For a simple graph G = (V,E) a binary deletion-contraction tree of depth |E| is required to reach cocliques at
all the leaves. When multiple edges appear they can be deleted to leave simple edges (in other words, contraction
of an edge parallel to another edge gives a loop and this contributes zero to the chromatic polynomial).
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Question 4

Suppose G is a simple connected graph on n vertices.

(i) Prove that the number of edge contractions along a branch of the computation
tree for the chromatic polynomial of G whose leaf node is a coclique of i vertices
is equal to n− i.

(ii) Prove that for each 1 ≤ i ≤ n we can always obtain a coclique on i vertices by
deleting/contracting edges in some appropriate order. Deduce that

P (G; z) =
∑

0≤i≤n−1

(−1)ici(G)zn−i,

where ci(G) > 0 is the number of cocliques of order n − i occurring as leaf node
in the computation tree for G. (A formal proof of the fact that the coefficients
of P (G; z) alternate in sign is given in Proposition 10 below. A combinatorial
interpretation for ci(G) in terms of spanning forests of G is given by Theorem 14.)

If we start with a connected graph G in building the computation tree we can always choose an edge whose
deletion leaves the graph connected, so that the children of a node are both connected graphs. In this way
we end up with trees (at which point deleting any edge disconnects the tree). Seeing that we know that the
chromatic polynomial of a tree on i vertices is given by z(z − 1)i−1 we could stop the computation tree at this
point when we reach trees as leaf nodes. The sign of the term z(z− 1)i−1 contributed to P (G; z) by a leaf node
tree on i vertices is positive if there are an even number of edge contractions on its branch, and otherwise it
has negative sign in its contribution. See the left-hand diagram of Figure 2 for an example with G = K−

4 (K4

minus an edge).

Question 5

(i) Show in a similar way to the previous question that if G is a connected graph on
n vertices then each leaf of the deletion-contraction computation tree for G which
is a tree on i vertices contributes (−1)n−iz(z − 1)i−1 to P (G; z).

(ii) Deduce that when G is connected

P (G; z) = z
∑

1≤i≤n

(−1)n−iti(G)(z − 1)i−1,

where ti(G) is the number of trees of order i occurring as leaf nodes in the com-
putation tree for G. (We shall see in the chapter on the Tutte polynomial that the
coefficients ti(G) have a combinatorial interpretation in terms of spanning trees of
G.)

If we write the recurrence given in Proposition 9 as P (G\e; z) = P (G; z) + P (G/e; z), we can by adding
edges between non-adjacent vertices or identifying such non-adjacent vertices “fill out” a dense connected graph
to complete graphs. Add the edge e to G\e to make G, and if G/e has parallel edges these can be removed
without affecting the value of P (G/e; z): in any event, the number of non-edges in both G and (the simplified

graph) G/e is one less than in G\e. Hence, starting with a simple connected graph G = (V,E),
(

|V |
2

)

− |E|
addition-identification steps are required to reach complete graphs. See the right-hand diagram in Figure 2 for
a small example.

Question 6 By considering the definition of the chromatic polynomial (Definition 2),
prove that

zn =
∑

1≤i≤n

S(n, i)zi,

where S(n, i) is equal to the number of partitions of an n-set into i non-empty sets.
(These are known as the Stirling numbers of the second kind.)
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Figure 2: Deletion-contraction and addition-identification computation tree for the chromatic polynomial of
K−

4 . Parallel edges produced by contraction/identification are omitted since they do not affect the value of the
chromatic polynomial. Leaf nodes for deletion-contraction are trees, leaf nodes for addition-identification are
complete graphs.

To move from the basis {zn} to the basis {zn} for polynomials in z we have the identity

zn =
∑

1≤i≤n

s(n, i)zi,

where s(n, i) are the signed Stirling numbers of the first kind, defined recursively by

s(n, i) = s(n− 1, i− 1)− (n− 1)s(n− 1, i),
{

s(r, 0) = 0 r = 1, 2, ...

s(r, r) = 1 r = 0, 1, 2, ...
.

The number (−1)n−is(n, i) counts the number of permutations of an n-set that have exactly i cycles. By
Question 4 it is also the number of cocliques of order i occurring as leaves in the computation tree for P (Kn; z),
and by Theorem 14 below it also has an interpretation in terms of forests on n vertices.

Question 7

(i) Explain why P (G; z) > 0 when z ∈ (−∞, 0), provided G has no loops.

(ii) Show that if G is connected and without loops then P (G; z) is non-zero with sign
(−1)|V |−1 when z ∈ (0, 1).

Remark Let zi denote the rising factorial z(z + 1) · · · (z + i− 1). Brenti [5] proved that

P (G; z) =
∑

1≤i≤|V |

(−1)|V |−ibi(G)zi,

where bi(G) is the number of set partitions V1∪V2∪· · ·∪Vi of V into i blocks paired with an acyclic orientation
of G[V1] ∪ G[V2] ∪ · · · ∪ G[Vi]. See [18] for expressions for the coefficients of the chromatic polynomial relative
to any polynomial basis {ei(z)} of binomial type (meaning it satisfies ej(x + y) =

∑

0≤i≤j

(

j
i

)

ei(x)ej−i(y)).
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In Question 5 above you argued from the computation tree for a connected graph G that the coefficients of
P (G; z) alternate in sign. Let’s formalize this argument and prove it for general graphs:

Proposition 10. Suppose G is a loopless graph and that

P (G; z) =
∑

0≤i≤|V |

(−1)ici(G)z|V |−i.

Then ci(G) > 0 for 0 ≤ i ≤ r(G), and ci(G) = 0 for r(G) < i ≤ |V |.

Proof. We shall show that

(−1)|V |P (G;−z) =
∑

0≤i≤r(G)

ci(G)z|V |−i

has strictly positive coefficients. (When G has loops P (G; z) = 0.) By the deletion–contraction formula, and
using the fact that |V (G\e)| = |V (G)| and |V (G/e)| = |V (G)| − 1 when e is not a loop,

(−1)|V (G)|P (G;−z) = (−1)|V (G\e)|P (G\e;−z) + (−1)|V (G/e)|P (G/e;−z).

Hence
ci(G) = ci(G\e) + ci−1(G/e).

Assume inductively on the number of edges that ci(G) > 0 for 0 ≤ i ≤ r(G), and that ci(G) = 0 otherwise. As
a base for induction, (−1)nP (Kn;−z) = zn.

By inductive hypothesis, for 0 ≤ i ≤ r(G\e) we have ci(G\e) > 0 and for 0 ≤ i − 1 ≤ r(G/e) we have
ci−1(G/e) > 0. When e is not a bridge r(G\e) = r(G) and so ci(G\e) > 0 for 0 ≤ i ≤ r(G), otherwise for a
bridge r(G\e) = r(G)−1 and in this case ci(G) > 0 for 0 ≤ i ≤ r(G)−1. Since e is not a loop r(G/e) = r(G)−1,
so we have ci−1(G/e) > 0 for 1 ≤ i ≤ r(G). Together these inequalities imply ci(G) > 0 for 0 ≤ i ≤ r(G).

Clearly z divides P (G; z) for a connected graph. It follows that zc(G) is a factor of P (G; z) by multiplicativity
of the chromatic polynomial over disjoint unions. Hence ci(G) = 0 for r(G) < i ≤ |V (G)|. Also, the degree of
P (G; z) is |V (G)| by its definition, so there are no remaining non-zero coefficients.

We shall see below in Whitney’s Broken Circuit Theorem that the numbers ci(G) have a combinatorial
interpretation in terms of spanning forests of G.

Question 8

(i) Prove that the only rational roots of P (G; z) are 0, 1, . . . , χ(G)− 1. (It may help
to remind oneself that a monic polynomial with integer coefficients cannot have
rational roots that are not integers.)

(ii) Show that the root 0 has multiplicity c(G) and that the root 1 has multiplicity
equal to the number of blocks of G.

Jackson [11] proved that P (G; z) can have no root in (1, 32/27]. Thomassen [14] a few years later proved
that in any other interval of the real line there is a graph whose chromatic polynomial has a root contained in
it.

Earlier in the history of the chromatic poylnomial, Birkhoff and Lewis [3] showed that the chromatic poly-
nomial of a plane triangulation cannot have a root in the intervals (1, 2) or [5, 8). Tutte [15] observed that for
planar graphs there is often a root of the chromatic polynomial close to τ2 where τ = 1

2 (1 +
√
5) is the golden

ratio, and proved that if G is a triangulation of the plane with n vertices then P (G; τ2) ≤ τ5−n. See e.g. [9, ch.
12-14] and [12] for more about chromatic roots.

Here is another illustration of how deletion-contraction arguments can be used to give simple inductive proofs.
On the other hand, as with inductive proofs generally, the art is knowing what to prove. We shall shortly see
that the coefficients of P (G; z) have a general expression, given by Whitney’s Broken Circuit Theorem, of which
Proposition 3 and the following are particular instances.

Proposition 11. For a simple graph G on n vertices and m edges the coefficient of zn−2 in P (G; z) is equal
to

(

m
2

)

− t, where t is the number of triangles in G.
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Proof. The assertion is true when m = 0, 1, 2. Suppose G has n vertices and m ≥ 3 edges. For a non-loop
e, c2(G) = c2(G\e) − c1(G/e). Inductively, c2(G\e) =

(

m−1
2

)

− t0, where t0 is the number of triangles in G
not containing the edge e, the graph G\e being simple. In a triangle {e, e1, e2} of G containing e, the edges
e1, e2 do not appear in any other triangle of G containing e, since G is simple. When e is contracted the edges
e1 and e2 become parallel edges in G/e, and moreover there are no other edge parallel to these. Hence for
each triangle {e, e1, e2} of G we remove one parallel edge in G/e in order to reduce it to a simple graph. So
c1(G/e) = (m − 1) − t1, where t1 is the number of triangles of G containing e. With t0 + t1 = t equal to the
number of triangles in G, the result now follows by induction.

Proposition 12. If P (G; z) = z(z − 1)n−1 then G is a tree on n vertices, and more generally P (G; z) =
zc(z − 1)n−c implies G is a forest on n vertices with c components.

Proof. The degree of P (G; z) is n so G has n vertices. The coefficient of zc is non-zero but zc−1 has zero
coefficient, hence by Proposition 10 G has c connected components. Finally, reading off the coefficient of zn−1

tells us that the number of edges is n− c, so that G is a forest on n vertices with c components.

Question 9 Prove that if P (G; z) = P (Kn; z) then G ∼= Kn and that if P (G; z) =
P (Cn; z) then G ∼= Cn.

1.3 Subgraph expansions

From Question 21 in Chapter 4 we have by an inclusion-exclusion argument for nowhere-zero k-tensions that

P (G; k) = kc(G)
∑

F⊆E

(−1)|E|−|F |kr(F ).

A similar inclusion-exclusion argument can be used for proper vertex k-colourings:

Theorem 13. The chromatic polynomial of a graph G = (V,E) has subgraph expansion

P (G; z) =
∑

F⊆E

(−1)|F |zc(F ),

where c(A) is the number of connected components in the spanning subgraph (V,A).

Proof. We prove the identity when z is a positive integer k.
For an edge e = uv let Me = {κ : V → [k] : κ(u) = κ(v)}. Then

⋂

e∈E

Me = {κ : V → [k] : ∀uv∈E κ(u) 6= κ(v)}

is the set of proper k-colourings of G. By the principle of inclusion-exclusion,

∣

∣

∣

∣

∣

⋂

e∈E

Me

∣

∣

∣

∣

∣

=
∑

F⊆E

(−1)|F |

∣

∣

∣

∣

∣

∣

⋂

f∈F

Mf

∣

∣

∣

∣

∣

∣

.

But
∣

∣

∣

⋂

f∈F Mf

∣

∣

∣
= kc(F ), since a function κ : V → [k] monochrome on each edge of F is constant on each

connected component of (V, F ), and conversely assigning each connected component a colour independently
yields such a function κ.

In the subgraph expansion for the chromatic polynomial given in Theorem 13 there are many cancellations.
If f ∈ F belongs to a cycle of (V, F ) then the sets F and F \ {f} have contributions to the sum that cancel.
Whitney’s Broken Circuit expansion results by pairing off subgraphs in a systematic way.

Let G = (V,E) be a simple graph whose edge set has been ordered e1 < e2 < · · · < em. A broken circuit
is the result of removing the first edge from some circuit, i.e., a subset B ⊆ E such that for some edge el the
edges B ∪ {el} form a circuit of G and i > l for each ei ∈ B.
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Theorem 14. Whitney [17]. Let G be a simple graph on n vertices with edges totally ordered, and let P (G; z) =
∑

(−1)ici(G)zn−i. Then ci(G) is the number of subgraphs of G which have i edges and contain no broken circuits.

Proof. Suppose B1, . . . , Bt is a list of the broken circuits in lexicographic order based on the ordering of E. Let
fj (1 ≤ j ≤ t) denote the edge which when added to Bj completes a circuit. Note that fj 6∈ Bk when k ≥ j
(otherwise Bk would contain in fj an edge smaller than any edge in Bj , contrary to lexicographic ordering).

Define S0 to be the set of subgraphs of G containing no broken circuit and for 1 ≤ j ≤ t define Sj to be
the set of subgraphs containing Bj but not Bk for k > j. Then S0,S1, . . . ,St is a partition of the set of all
subgraphs of G.

If A ⊆ E does not contain fj, then A contains Bj if and only if A ∪ {fj} contains Bj . Further, A contains
Bk (k > j) if and only if A∪{fj} contains Bk, since fj is not in Bk either. If one the subgraphs A and A∪{fj}
are in Sj then both are, and since c(A) = c(A ∪ {fj}) the contributions to the alternating sum cancel.

The only terms remaining are contributions from subsets in S0: a subset of size i spans a forest with n− i
components, thus contributing (−1)izn−i to the sum.

Proposition 15. Suppose G is a simple connected graph on n vertices and m edges and having girth g, and
that P (G; z) =

∑

(−1)ici(G)zn−i. Then

ci(G) =

(

m

i

)

, for i = 0, 1, . . . , g − 2,

and

cg−1(G) =

(

m

g − 1

)

− t,

where t is the number of circuits of size g in G.

Question 10

Show that if G is a simple connected graph on n vertices and m edges and P (G; z) =
∑

(−1)ici(G)zn−i then, for 0 ≤ i ≤ n− 1,

(

n− 1

i

)

≤ ci(G) ≤

(

m

i

)

.

Proposition 16. If G is a simple connected graph on n vertices and m edges and P (G; z) =
∑

(−1)ici(G)zn−i

then,

ci−1(G) ≤ ci(G) for all 1 ≤ i ≤ 1

2
(n− 1).

Proof. In terms of the coefficients relative to the tree basis {z(z − 1)n−1},

P (G; z) =

n
∑

i=1

(−1)n−iti(G)z(z − 1)i−1,

we have

ci(G) =
∑

0≤j≤i

tn−j(G)

(

n− 1− j

n− 1− i

)

=

i
∑

j=0

tn−j(G)

(

n− 1− j

i− j

)

.

If i ≤ 1
2 (n− 1) then i− j ≤ 1

2 (n− 1− j) for all j ≥ 0. By unimodality of the binomial coefficients,

(

n− 1− j

i− j

)

≥
(

n− 1− j

i− 1− j

)

for i ≤ 1

2
(n− 1), j ≥ 0.

Since each tn−j(G) is a non-negative integer, it follows that ci(G) ≥ ci−1(G) for i ≤ 1
2 (n− 1).
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Question 11

Recall that if G is a forest then P (G; z) = zc(G)(z−1)r(G). Also (−1)|V (G)|P (G;−z) =
∑

i
ci(G)z|V (G)|−i, where ci(G) = ci(G\e) + ci−1(G/e) .

(i) Simplify the proof of Proposition 10, that ci(G) > 0 for 0 ≤ i ≤ r(G) and
ci(G) = 0 otherwise, by using as base for induction the truth of the statement for
forests and choosing a non-bridge edge in the deletion-contraction induction step.

(ii) Likewise, prove that ci−1(G) < ci(G) for 0 ≤ i ≤ 1
2
r(G) (Proposition 16 for

not necessarily connected graphs G) by using base for induction the fact that this
statement is true for forests and using deletion-contraction of a non-bridge edge.

(iii) Re-prove Theorem 14 that ci(G) is the number of i-subsets of E(G) not containing
a broken circuit by showing that this quantity satisfies the recurrence ci(G) =
ci(G\e) + ci−1(G/e). (For this induction on number of edges the base case is
c0(Kn) = 1 and ci(Kn) = 0 for i > 0, for which the assertion is trivially satisfied.
To move by induction to an arbitrary graph G, with total order on E(G) used to
define broken circuits, choose the edge e to be the greatest.)

Proposition 16 is the easy half of a long-standing conjecture first made by Read in 1968 that the coefficients
ci(G) of the chromatic polynomial are unimodal. An even stronger conjecture of log-concavity was later made,
i.e., that ci−1(G)ci+1(G) ≤ ci(G)2. Both conjectures fell simultaneously in 2010 when J. Huh [10] proved
log-concavity as a corollary of a more general theorem in algebraic geometry.

A theorem due to Newton states that if a polynomial
∑

i ciz
n−i has strictly positive coefficients and all of

its roots are real then the sequence (ci) of coefficients is log-concave (and hence unimodal). If it were the case
that the chromatic polynomial always had real roots then log-concavity of the sequence of absolute values of its
coefficients would therefore follow by this result. However, not only is it true that there are some graphs whose
chromatic polynomial has complex roots that are not real, but Sokal [13] showed that the set of complex numbers
that are roots of some chromatic polynomial are dense in the whole complex plane. (This in contradistinction
to when we restrict attention to the real line itself, where no chromatic roots can lie on (−∞, 32

27 ].) Can you
think of a family of graphs {Gn} with the property that P (Gn; z) has non-real roots?

1.4 Some other deletion–contraction invariants.

We have seen that the chromatic polynomial P (G; z) satisfies the recurrence relation

P (G; z) = P (G\e; z)− P (G/e; z), (1)

for any edge e of G. Together with boundary conditions

P (Kn; z) = zn, n = 1, 2, . . . (2)

this suffices to determine P (G; z) on all graphs. A slight variation on giving the boundary conditions (2) is to
supplement the recurrence (1) with the property of multiplicativity over disjoint unions

P (G1 ∪G2; z) = P (G1; z)P (G2; z), (3)

and then to give the single boundary condition P (K1; z) = z.
Define

B(G; k, y) =
∑

f :V (G)→[k]

y#{uv∈E(G):f(u)=f(v)},

where k ∈ Z>0 and y is an indeterminate. This polynomial in y is a generating function for colourings of G (not
necessarily proper) counted according to the number of monochromatic edges, i.e., edges receiving the same
colour on their endpoints. (Edges are taken with their multiplicity when counting the number of monochromatic
edges in the exponent of y.) Note that B(G; k, 0) = P (G; k).
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Proposition 17. For each edge e of G,

B(G; k, y) = (y − 1)B(G/e; k, y) +B(G\e; k, y).

Together with the boundary conditions B(Kn; k, y) = kn, for n = 1, 2, . . . , this determines B(G; k, y) as a
polynomial in k and y.

Proof. Given e = st,

B(G; k, y) = y
∑

f:V (G)→[k]

f(s)=f(t)

y#{uv∈E\e:f(u)=f(v)} +
∑

f:V (G)→[k]

f(s) 6=f(t)

y#{uv∈E\e:f(u)=f(v)}

= yB(G/e; k, y) + [B(G\e; k, y)−B(G/e; k, y)].

The fact that B(G; k, y) is a polynomial follows by induction of the number of edges and the given boundary
condition B(Kn; k, y) = kn. Further, it has degree |V (G)| as a polynomial in k and degree |E(G)| as a
polynomial in y (again by induction on number of edges by tracking the relevant coefficient in the recurrence
B(G; k, y) = (y − 1)B(G/e; k, y) +B(G\e; k, y)).

An acyclic orientation of a graph is an orientation that has no directed cycles. A loop has no acyclic
orientation, but any loopless graph does (for example, if its vertices are labelled by 1, . . . , n and an edge is
directed from the smaller to the higher number).

Theorem 18. [Stanley, 1973] The number of acyclic orientations of a graph G with at least one edge is given
by (−1)|V (G)|P (G;−1).

Proof. Let Q(G) denote the number of acyclic orientations of G. When G is a single edge Q(G) = 2 and
when G is a loop Q(G) = 0. If e is parallel to another edge of G then Q(G) = Q(G\e), since parallel edges
must have the same direction in an acyclic orientation. Also, Q is multiplicative over disjoint unions, i.e.,
Q(G1 ∪G2) = Q(G1)Q(G2).

To prove then that Q(G) = (−1)|V (G)|P (G;−1) it suffices to show that when e is not a loop or parallel to
another edge of G we have

Q(G) = Q(G\e) +Q(G/e). (4)

Let e = uv be a simple edge of G and consider an acyclic orientation O of G\e. There is always one direction
u → v or u ← v possible so that O can be extended to an acyclic orientation of G: if both directions were to
produce directed cycles then there would have to be a directed path from u to v and a directed path from v to
u, which together would make a directed cycle in O.

Those acyclic orientations of G\e that permit exactly one direction of e are in bijective correspondence
with the subset of acyclic orientations of G where the direction of e cannot be reversed while preserving the
property of being acyclic. Such an orientation of G induces an orientation that has a directed cycle in G/e, and
contributes 1 to Q(G) and 1 + 0 = 1 to Q(G\e) +Q(G/e).

Those acyclic orientations of G\e where the direction of e can be reversed to make another acyclic orienta-
tion of G are in bijective correspondence with those orientations of G that induce acyclic orientations on the
contracted graph G/e. Such a pair of acyclic orientations of G differing just on the direction of e contribute 2
to Q(G) and 1 + 1 = 2 to Q(G\e) +Q(G/e).

This establishes the recurrence (4).

In [16] Tutte describes how he was led to define his polynomial (he called it the dichromate) by observing
how graph invariants such as the chromatic polynomial and the number of spanning trees of a graph shared the
property of satisfying a deletion–contraction recurrence.
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Question 12 Suppose f(G) is a graph invariant that for a connected graph G counts
one of the following:

(i) the number of spanning trees of G,

(ii) the number of spanning forests of G,

(iii) the number of connected spanning subgraphs of G.

Further suppose we stipulate that f is multiplicative over disjoint unions, f(G1 ∪G2) =
f(G1)f(G2).
Show that in each case f satisfies the recurrence

f(G) = f(G\e) + f(G/e),

for each edge e of G that is not a loop or bridge. How do these three invariants differ for
bridges and loops?

These deletion-contraction invariants form a sort of preview of the chapter on the Tutte polynomial. Before
that though we return to the flow polyomial and see how some of the properties of the chromatic polynomial
dualize to properties of the flow polynomial.
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