
Combinatorics and Graph Theory I

Exercise sheet 9: Latin squares, Ramsey theory

3 May 2017

1.

(i) Prove that the n× n array L whose (i, j)-entry is defined by

L(i, j) = i + j (mod n)

is a Latin square.

L(i, j) = L(i′, j) iff i+ j = i′+ j iff i = i′, so columns contain distinct elements. Similarly,
L(i, j) = L(i, j′) iff i + j = i + j′ iff j = j′, so rows contain distinct elements.

(ii) Let p be a prime and 1 ≤ k ≤ p − 1. Prove that the p × p array Lk whose (i, j)-entry is
defined by

Lk(i, j) = ki + j (mod p)

defines a Latin square.

Lk(i, j) = Lk(i′, j) iff ki+j = ki′+j iff ki = ki′ iff i = i′ (the last since k is non-zero mod p
and hence invertible), so columns contain distinct elements. Similarly, Lk(i, j) = Lk(i, j′)
iff ki + j = ki + j′ iff j = j′, so rows contain distinct elements.

(iii) Prove that when k 6= ` the Latin squares Lk and L` defined in (ii) are orthogonal.

If the Latin squares Lk and L` have the same pair of symbols (a, b) in positions (i, j) and
(i′, j′) then

ki + j = a, `i + j = b,

ki′ + j′ = a, `i′ + j′ = b.

It follows that
k(i− i′) = j′ − j, `(i− i′) = j′ − j

. If i − i′ = 0 then j′ − j = 0 and the two positions are the same. If not, then i − i′ is
invertible and

k = (i− i′)−1(j′ − j) = `,

so that k = `. Hence if k 6= ` then Lk and L` are orthogonal.

[In the answers to (ii) and (iii) all the equalities stand for equivalence modulo p (or equality
of elements in Zp).] [Adaptation of Matoušek & Nešetřil, Invitation to Discrete Mathematics, 2nd ed.

9.3, exercise 5, which uses the same construction for a finite field on a prime power number of elements

more generally; here the finite field is Zp.]



2. Use the Pigeonhole Principle to show that any finite graph has at least two vertices of the
same degree.

The “boxes” are possible vertex degrees 0, 1, 2, . . . , n− 1, where n is the number of vertices
in the graph, and n vertices are placed into these boxes.

If there is a vertex of degree n − 1 (box n − 1 is not empty) then it is joined to all other
vertices, so there cannot be a vertex of degree 0. Otherwise there is no vertex of degree n− 1.

In any event, there are only n − 1 possible degrees a vertex may have. Since there are n
vertices, the Pigeonhole Principle guarantees that some degree d is common to some pair of
vertices.

[P.J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge Univ. Press, 1994.

Chapter 10, exercise 2]

3.

(i) Show that if n ≥ (r−1)(s−1)(t−1)+1 then any sequence of n real numbers must contain
either a strictly increasing subsequence of length r, a strictly decreasing subsequence of
length s, or a constant subsequence of length t.

[First consider the case where only (r− 1)(s− 1) or fewer distinct values occur and apply
the Pigeonhole Principle to deduce the existence of a suitably long constant subsequence.
Otherwise there are at least (r− 1)(s− 1) + 1 distinct elements: apply the Erdős–Szekeres
theorem as formulated in class.]

Given n ≥ (r − 1)(s− 1) + 1 distinct real numbers x1, x2, ..., xn, there is either a strictly
increasing subsequence of length r, or a strictly decreasing subsequence of length s.

Note that since the terms of the sequence are distinct, an increasing subsequence is strictly
increasing, and a decreasing subsequence strictly decreasing.

Proof sketch: For a contradiction, suppose that all increasing subsequences have at most
r − 1 terms, and all decreasing subsequences have at most s − 1 terms. Define ai as the
longest increasing subsequence ending xi, and bi as longest decreasing subsequence ending
xi. By assumption 1 ≤ ai ≤ r − 1 and 1 ≤ bi ≤ s − 1. Given i < j, either xi < xj , in
which case ai < aj , or xi > xj , in which case bi < bj . It follows that the pairs (ai, bi) and
(aj , bj) are different for each i < j. In other words the n pairs (ai, bi) are distinct, taking
values among (r − 1)(s− 1) possible pairs {(a, b) : 1 ≤ a ≤ r − 1, 1 ≤ b ≤ s− 1}. But by
assumption n ≥ (r − 1)(s − 1) + 1, and by the Pigeonhole Principle there must be some
i < j with (ai, bi) = (aj , bj). This is the desired contradiction.

An extremal sequence is given by

s−1, s−2, . . . , 2, 1; 2(s−1), 2(s−1)−1, . . . , s+1., s; . . . . . . ;

(r−1)(s−1), (r−1)(s−1)−1, . . . , (r−2)(s−1)+2, (r−2)(s−1)+1.

(This is the concatenation of (r − 1) strictly decreasing sequences of length s − 1, such
that later sequences have all their terms greater than those in earlier ones. Any increasing
subsequence can have at most one term in each of these sequences, and hence has length
at most r − 1; any decreasing subsequence cannot have terms from two or more of the
r − 1 strictly decreasing subsequences, and so has at most s− 1 terms.)

A similar, reverse construction is to concatenate increasing sequences of length r − 1:

(r−1)(s−2) + 1, (r−1)(s−2) + 2, . . . (r−1)(s−1)− 1, (r−1)(s−1); . . . . . . ;

r, r+1, . . . , 2(r−1)−1, 2(r−1); 1, 2, . . . , r−2, r−1

Suppose then n ≥ (r − 1)(s− 1)(t− 1) + 1.



If there are at most (r − 1)(s − 1) distinct values taken by terms of the sequence then

by PHP there is some value taken at least d (r−1)(s−1)(t−1)+1
(r−1)(s−1) e = t times: this defines a

constant subsequence of at least t terms.

Otherwise there are at least (r − 1)(s − 1) + 1 distinct terms: choose a subsequence of
length (r − 1)(s − 1) + 1 consisting of distinct terms. By the Erdős–Szekeres theorem
there is a strictly increasing subsequence of length r or a strictly decreasing subsequence
of length s.

(ii) Show also that the result of (i) is best possible, i.e., construct a sequence of (r − 1)(s −
1)(t − 1) real numbers with no strictly increasing subsequence of length r, no strictly
decreasing subsequence of length s, and no constant subsequence of length t.

Take one of the extremal sequences above with each term repeated successively t−1 times.

[P.J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge Univ. Press, 1994.

Chapter 10, exercise 4]


