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1. Prove that the Fano plane is the only projective plane of order 2 (i.e. any projective plane
of order 2 is isomorphic to it—define an isomorphism of set systems first).

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, 2nd ed., 9.1, exercise 1]

Choose three points not all on a line, say x, y, z. There are 7 · 6 · 4 = 168 choices for such a
triple (x, y, z) (Choose any pair of points (x, y), and then there are 4 points not on the line xy
to choose from – this is the only freedom we have in constructing a projective plane on a given
set of seven points, as we shall see.)

The three lines yz, xz, xy each determine a third point, and these three points are distinct,
since lines cannot meet in two or more points. Call these points a, b, c respectively (they are
determined by our choice of x, y, z).

The line zc contains a third point not among x, y, a, b since two lines cannot share more
than one point (for example, if x were on zc then there would be an overlap of two points with
line xz). Call this new point d (the last of the seven points).

The point x so far has two lines though it, {x, y, c} and {x, b, z}; the points x and a determine
the third line as {x, a, d} (no other choice for the third point d is possible since other choices
always lead to a pair of lines meeting in two points). Likewise, the point y so far has two lines
though it, {y, z, a} and {x, y, c}; the points y and b determine the third line as {y, b, d} (any
other choice leading to a pair of lines sharing two points).

The points x, y, z, d now each have three lines going through them. The points a, b, c each
have two lines going through them. The only choice for the line determined by a, b that respects
the axiom that any two lines meet in just one point is to take the line {a, b, c}.

The projective plane constructed is isomorphic to the Fano plane on point set {1, 2, 3, 4, 5, 6, 7}
and lines {1, 6, 7}, {2, 5, 7}, {3, 4, 7}, {1, 2, 4}, {2, 3, 6}, {1, 3, 5}, {4, 5, 6} by the bijection be-
tween points defined by the following:

x y z a b c d

1 2 3 6 5 4 7

There are 168 choices for the first three entries under x, y, z, the remaining points being
then determined. We have chosen 1, 2, 3 here.

An isomorphism of projective planes is a permutation equivalence of their incidence matrices;
equivalently, an isomorphism between their incidence graphs that permutes the points among
themselves and lines among themselves. (A permutation involving a swap of points and lines
includes a duality; the Fano plane is self-dual.) The incidence matrix for the plane constructed



on {x, y, z, a, b, c, d} is permutation equivalent to the incidence matrix for the Fano plane.

0 1 1 0 0 1 0
1 0 1 0 1 0 0
1 1 0 1 0 0 0
1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 1 0 0 1
0 0 0 1 1 1 0


by using the permutation described in the table above

2. Let (X,L) be a finite projective plane with set of points X and set of lines L. Let r be the
order of (X,L), defined as the number of points less one in any given line, i.e., r = |L| − 1 for
L ∈ L. The incidence graph (or Levi graph) of (X,L) is the bipartite graph on X ∪ L with an
edge joining x to L precisely when x ∈ L.

(i) The girth of a graph with at least one cycle is the smallest positive integer g for which
there is a g-cycle. (Thus for instance a triangle-free graph has girth at least 4.) A k-regular
graph is a graph in which each vertex has degree k.

Show that a k-regular graph with girth 2m + 1 must have at least 1 + k + k(k−1) +
· · · + k(k−1)m−1 vertices, and that a k-regular graph with girth 2m must have at least
2[1 + (k− 1) + (k−1)2 + · · ·+ (k−1)m−1] vertices.

Consider first a k-regular graph G of odd girth 2m + 1. Choose an arbitrary vertex v.
Consider the subgraph of G consisting of vertices connected to v by a path of length at
most m.

This is a tree with v as its centre, and in which each non-leaf vertex has degree k, and
in which each of the leaves is distance m from the root: It is connected since any pair of
vertices can be joined by a path passing through v. It is acyclic because the only way a
cycle can be formed is if two paths from v meet in another vertex, but this would create
a cycle of length less than 2m + 1, contradicting the girth condition.

This tree has 1 + k + k(k − 1) + ... + k(k − 1)m−1 vertices (for 0 < i ≤ m, the number of
vertices at distance i from the root is k(k − 1)i−1, as can be proved by induction).

For a k-regular graph of even girth 2m, choose a pair of adjacent vertices u and v and
consider the two trees centred at u and at v, in which the centre u of one tree has degree
k − 1, the centre v of the other tree also has degree k − 1, each other non-leaf vertex has
degree k, and the leaves in either tree are distance m− 1 from the root vertex. The tree
containing u as centre does not contain v, and conversely the tree containing v as centre
does not contain u.

Each of the two trees has 1 + (k− 1) + (k− 1)2 + ...+ (k− 1)m−1 vertices, since there are
(k− 1)i vertices at distance i from the root. Each are trees in having no cycles because a
cycle in either would have length at most 2m− 2, and furthermore, the two trees do not
overlap in any vertices for otherwise a cycle of length at most 2m − 1 would be formed
(involving the edge uv).

The two vertex-disjoint trees centred at u and at v are subgraphs of G and together
account for 2[1 + (k − 1) + (k − 1)2 + ... + (k − 1)m−1] vertices.

(ii) Show that the incidence graph of (X,L) is an (r+1)-regular graph of girth 6 which attains
the lower bound given in (i) for m = 3. (Thus the incidence graph of a projective plane of
order r has the minimum number of vertices among all (r+1)-regular graphs of girth 6.)



The incidence graph of a projective plane of order r has 2[1 + r + r2] vertices, is bipartite
with one half of the vertices representing points the other half lines and (r + 1)-regular
since each point lies on r + 1 lines and each lines contains r + 1 points.The girth is even
(since every cycle is even in a bipartite graph), and greater than 4 since a 4-cycle would
correspond to a pair of lines meeting in two common points, and equal to 6 since three
points not all on a line give a triangle in the plane, corresponding to a 6-cycle in the
incidence graph.

Taking k = r+1 and m = 3 in (i), a (r+1)-regular graph of girth 6 has at least 2[1+r+r2]
vertices, and this is achieved by the incidence graph of a projective plane of order r.

[N. Biggs, Discrete Mathematics, rev. ed., 1989. 8.8, exercises 18 (and 20), and 16.10, exercise 10.]

3. Let X be a finite set and L a system of lines (subsets of X) satisfying conditions (P1) and
(P2), and the following condition:

(P0’) There exist at least two distinct lines having at least three points each.

Prove that any such (X,L) is a finite projective plane. [Hint: By (P0’) and (P1) the
symmetric difference of the two such lines contains at least four points. Show these give a set
F satisfying (P0).]

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, 2nd ed. 9.1, exercise 4]

Let L1, L2 be lines satisfying (P0’), i.e., |L1| ≥ 3, |L2| ≥ 3. By (P1) |L1 ∩ L2| = 1, so that
|L1∆L2| = |L1∪L2|−|L1∩L2| = |L1|+L2|−2|L1∩L2| ≥ 3+3−2 = 4. Let F = {a1, b1, a2, b2} ⊆
L1∆L2, with {a1, b1} ⊆ L1 \ L2 and {a2, b2} ⊆ L2 \ L1.

We need to show that |F ∩L| ≤ 2 for all lines L. This is true for L = L1 (F ∩L1 = {a1, b1})
and L = L2 (F ∩ L2 = {a2, b2}). If a line meets F in three or more points then it either passes
through a1 and b1 (in which case by (P2) it is determined as the line L1) or it passes through
a2 and b2 (in which case by (P2) it is determined as the line L2). Hence any other line must
meet F in at most two points. Therefore F is a quadrangle, satisfying (P0).

4.

(i) Find an example of a set system (X,L) on a non-empty finite set X that satisfies conditions
(P1) and (P2) but does not satisfy (P0).

For example, take the only line to be X (containing all points), i.e. L = {X}.

(ii) Describe all set systems (X,L) on non-empty finite set X satisfying conditions (P1) and
(P2) but not (P0).

[Hint: By question 3, it may be assumed that there is a most one line containing three or
more points.]

If (P1) and (P2) hold and there are two lines with three or more points then by the
previous question (P0) is also satisfied.

Let L be the single line that contains three or more points. Other lines must have one or
two points at most.

If there is a line {a} consisting of just one point a, then by (P1) every other one-point line
must contain a, so there is at most one such line. Supposing {a} is a single-point line, if
there is a line with two points, then by (P1) one of these points is a. Further, a two-point
line {a, b} meets the line L in a unique point, which by (P1) must be b.

So we have the following possibilities for a projective geometry (X,L) on a finite set X of
three or more elements:



– L = {X} (no 1- or 2-point lines)

– L = {{a}, X} for some a ∈ X (no 2-point line)

– L = {{a}, X \ {a}} ∪ {{a, b} : b ∈ X \ {a}} for some a ∈ X (no 1-point line)

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, 2nd ed. 9.1, exercise 3]


