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1. Let τ(G) denote the number of spanning trees of a connected graph G. Cayley’s formula
states that τ(Kn) = nn−2 for n ≥ 2. Let K−n denote a graph isomorphic to Kn with one edge
removed.

Find a formula for τ(K−n ).
[Hint: the number of spanning trees containing a given edge of Kn is by symmetry the same

for all edges.]

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, 2nd ed., 8.1, exercise 2]

We will count pairs (T, e) such that T is a spanning tree of Kn that contains a fixed edge
e ∈ E(Kn). (You can think of an incidence matrix with rows indexed by spanning trees of Kn

and columns by edges of Kn. We shall sum the total number of 1s in this incidence matrix by
first summing columns, and then totting up these column sums, and then after this go by row
sums first instead, which are then totted up. Either way we get the same total.)

As remarked in the hint, the number of T containing a given edge e is independent of e, and
hence just a function of n; say there are Cn such spanning trees.

Then, letting e range over E(Kn) (the columns of the (T, e)-incidence matrix) there are(
n
2

)
Cn pairs (T, e) in which T is a spanning tree of Kn and e ∈ T .
On the other hand, the number of pairs (T, e) such that T is a spanning tree of Kn and e ∈ T

is also equal to (n−1)τ(Kn), since there are (n−1) edges e ∈ T (the rows of the (T, e)-incidence
matrix).

Thus
(
n
2

)
Cn = (n−1)Cn = (n−1)nn−2, using Cayley’s formula τ(Kn) = nn−2 in the second

equality, and we have Cn = 2nn−3.
τ(K−n ) is equal to τ(Kn) − Cn, since a spanning tree of Kn not containing e is a spanning

tree of Kn − e ∼= K−n . From this,

τ(K−n ) = nn−2 − 2nn−3 = nn−3(n− 2).

2.

(i) Determine natural numbers a and b with a+b = n for which the product ab is maximized.

By the AGM inequality
√
ab ≤ a+b

2 = n/2, i.e. ab ≤ n2/4, with equality if and only if
a = b. Therefore take a = b = n

2 when n is even, and a = n±1
2 , b = n∓1

2 when n is odd.

Alternative argument: We may suppose 0 < a ≤ b ≤ n and a + b = n. Let d = b−a
2 ≥ 0.

Then ab = (n2 −d)(n2 +d) = n2

4 −d
2 so to maximize the product ab given a+ b = n, a ≤ b,

is the same as minimizing the difference b− a, i.e. make this difference as close to zero as
possible. Thus take a = b = n

2 when n is even, and a = n−1
2 , b = n+1

2 when n is odd.

(ii) For natural numbers k and n, determine all values of natural numbers a1, . . . , ak satisfying∑k
i=1 ai = n such that the product a1a2 · · · ak is maximized.



By the AGM inequality1

(a1a2 · · · ak)
1
k ≤ a1 + a2 + · · ·+ ak

k
,

with equality if and only if a1 = a2 = · · · = ak. Therefore, for integers a1, . . . , ak with
sum n we take ai = dnk e for i = 1, . . . r, where n = km + r for 0 ≤ r < k and ai = bnk c
for i = r + 1, . . . , n. (When n is a multiple of k, r = 0 and we take ai = n/k for each
i = 1, . . . , k.).

(iii) A complete k-partite graphK(V1, V2, . . . , Vk) on a vertex set V is determined by a partition
V1, . . . , Vk of the set V , in which edges are pairs {x, y} of vertices such that x and y lie
in different classes of the partition. Formally, K(V1, . . . , Vk) = (V,E), where {x, y} ∈ E
exactly if x 6= y and |{x, y} ∩ Vi| ≤ 1 for all i = 1, . . . , k. Using part (ii), prove that the
maximum number of edges of a complete k-partite graph on a given vertex set corresponds
to a partition with almost equal parts, i.e. one with ||Vi| − |Vj || ≤ 1 for all i, j. How many
edges are there in such a graph K(V1, . . . , Vk)?

Let n = |V | and ai = |Vi|. Then a1 + · · · + ak = n and the number of edges in
K(V1, V2, . . . , Vk) is

∑
1≤i<j≤k

aiaj =
1

2

(
∑

1≤i≤k
ai)

2 −
∑

1≤i≤k
a2i


=

1

2
n2 − 1

2

∑
1≤i≤k

a2i .

So we wish to minimize the sum
∑

1≤i≤k a
2
i subject to

∑
1≤i≤k ai = n and ai ∈ N.

By the Cauchy-Schwarz inequality, ∑
1≤i≤k

ai · 1

2

≤
∑

1≤i≤k
a2i
∑

1≤i≤k
12

i.e.
n2/k ≤

∑
1≤i≤k

a2i

with equality if and only if a1 = a2 = · · · = ak. Therefore we should take (as in (ii)2)
ai = dnk e for i = 1, . . . r, where n = km+ r for 0 ≤ r < k and ai = bnk c for i = r+ 1, . . . , n.

Then |ai − aj | ≤ 1 for each 1 ≤ i, j ≤ k, i.e. ||Vi| − |Vj || ≤ 1 .

Alternative argument: Set ai = |Vi as before. Assume for the sake of contradiction that
there are i, j such that aj −ai ≥ 2 in a k-partite graph G = K(V1, . . . , Vk) with maximum
number of edges m. Consider now the graph created from G by taking a vertex v ∈ Vj
and adding it Vi. This switch changes the number of edges by

(ai + 1)(aj − 1)− aiaj = aj − ai − 1 ≥ 1

contradicting minimality of m. Hence the sizes of two sets cannot differ in size by more
than 1.

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, 2nd ed., 4.7, exercises 1,2 and 3]

1For a proof of the AGM inequality for general k, see for example https://en.wikipedia.org/wiki/

Inequality_of_arithmetic_and_geometric_means
2In Matoušek & Nešetřil they state that part (ii) should be used to solve this part (iii), but currently I don’t

see how exactly, and so have used an alternative route.

https://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means
https://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means


3. Prove that for any t ≥ 2, the maximum number of edges of a graph on n vertices containing
no K2,t as a subgraph is at most

1

2

(√
t− 1n3/2 + n

)
.

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, 2nd ed. 7.3, exercise 1]

We count the number of pairs (v, {u, u′}) such that v ∈ V , {u, u′} ∈
(
V
2

)
and uv, u′v ∈ E(G)

in two ways.
First, for fixed v there are

(
deg(v)

2

)
choices for {u, u′} such that uv, u′v ∈ E(G).

Second, for fixed {u, u′} there are at most (t − 1) distinct choices for v such that uv, u′v ∈
E(G). This is because t such vertices v would give a copy of K2,t, which is excluded.

Since there are
(
n
2

)
choices for {u, u′} ∈

(
V
2

)
, we therefore have

∑
v∈V

(
deg(v)

2

)
≤ (t− 1)

(
n

2

)
.

Using
(
d
2

)
≥ 1

2(d− 1)2 and
(
n
2

)
< 1

2n
2, this gives∑

v∈V
(deg(v)− 1)2 < (t− 1)n2,

and then ∑
v∈V

(deg(v)− 1)2 < (t− 1)n2,

On the other hand, by the (square of the) Cauchy-Schwarz inequality,(∑
v∈V

(deg(v)−1) · 1

)2

≤
∑
v∈V

(deg(v)−1)2
∑
v∈V

12,

from which
2|E| − n <

√
t− 1n ·

√
n,

i.e.

|E| < 1

2
(
√
t− 1n3/2 + n).

Note: The simplification of
(
d
2

)
to 1

2(d − 1)2 in the course of the proof means that the

inequality bounding |E| is not sharp: we replace
∑

v∈V
(
deg(v)

2

)
by
∑

v∈V
1
2(deg(v)− 1)2, which

is less by a difference of 1
2

∑
v∈V (deg(v)−1) = |E|− 1

2n. Therefore we cannot expect to achieve
the upper bound. However, as shown in Exercise 9.4.2 in Matoušek & Nešetřil, for t = 2
(excluding K2,2 as a subgraph) the dominant term 1

2n
3/2 is attainable when n is a prime power.


