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1. An augmenting path with respect to a matching M in a bipartite graph G is a path P in
G which starts at an unmatched vertex and then contains alternately an edge not in M and an
edge in M and ends in another unmatched vertex. The symmetric difference of the edges of P
and the edges of M is again a matching and covers two more vertices than M (the endpoints
of P ).

(i) Let M be a matching in a bipartite graph G. Show that if M contains fewer edges than
some other matching N in G then G contains an augmenting path with respect to M .

[Consider the symmetric difference of M and N .]

The spanning subgraph M4N has vertices of degree 0, 1 or 2. Its connected components
are thus cycles or paths. In a cycle the edges alternate between M and N , and so contain
an equal number of edges in M as in N . Likewise, on a path edges alternate beween M
and N . Since N has more edges in total than M , there must then be some path in which
there are more edges in N than in M . Necessarily in this case the endpoints of the path
are incident with edges of N , which are therefore not incident with edges of M . This path
is thus an augmenting path for M .

(ii) Describe an algorithm based on (i) that finds a matching of maximum cardinality in any
given biparite graph. [Fine details not required; you may assume there is an oracle that
provides you with an augmenting path when one exists.]

1. Begin with any matching M (one edge alone will serve)

2. Search for an augmenting path for M

3. If an augmenting path is found, construct a larger matching M ′ by switching edges
along this path, and return to step 2. with M ′ in place of M

4. If no augmenting path can be found, stop: M is a maximum matching.

See N. Biggs, Discrete Mathematics, 10.5 for a description of how an augmenting path
can be found by breadth-first-search, which starts at an unmatched vertex and builds a tree of
‘partial’ alternating paths starting from it, which are turn by turn extended until either another
unmatched vertex is found or all vertices are visited.

2.

(a) Use Hall’s condition to show that the bipartite graph in Figure 1 has no complete matching.

N({x1, x3, x4}) = {y2, y4} violates Hall’s condition for a complete matching from the xs
to the ys. (Also N({x1, x2, x3, x4}) = {y2, y4, y5}.)
N({y1, y3}) = {x5} violates Hall’s condition for a complete matching from the ys to the
xs.



(b) Let M be the matching {x3y2, x4y4, x5y5} denoted by heavier lines in Figure 1.

(i) Find an augmenting path for M beginning at x2. x2y5x5y1 is an example.

(ii) Use it to construct a matching M ′ with four edges. M ′ = {x2y5, x3y2, x4y4, x5y1}
(iii) Check that there is no augmenting path for M ′.

(iv) Is M ′ a maximum matching? (i.e. are there any matchings with more than four
edges?) Yes: any larger would be a complete matching, which we know does not
exist by (a).

[Biggs, Discrete Mathematics, exercises 10.4.1 and 10.4.2]
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Figure 1: Bipartite graph for Exercise 2.

3. Let G be a bipartite graph with vertex sets V1 and V2. Let U be the set of vertices of
maximal degree (i.e., the degree of each vertex in U is the maximum degree of G). Show that
there is a complete matching from U ∩ V1 into V2.

[Bollobás, Modern Graph Theory, III.6 exercise 21.]

Let k be the maximum degree of G and let U be the set of vertices in G of degree k.
Let S ⊆ U ∩ V1. There are k|S| edges with an endpoint in S. Each vertex in V2 has degree

≤ k. So there are at most k|N(S)| edges with an endpoint in S. It follows that k|S| ≤ k|N(S)|,
so that Hall’s condition |S| ≤ |N(S)| is satisfied for each S ⊆ U ∩ V1, so there is a complete
matching of the bipartite graph with bipartition (U ∩ V1, V2).

When U = V1∪V2 we obtain the following theorem, whose proof is given to exhibit the par-
allel:

Every regular bipartite graph has a perfect matching.

Proof: Let G be a k-regular bipartite graph with bipartition (V1, V2). Let S ⊆ V1 and let t
be the number of edges with one end in X. Since every vertex in S has degree k, it follows that
k|S| = t. Similarly, every vertex in N(S) has degree k, so t is less than or equal to k|N(S)|. It
follows that |S| is at most |N(S)|. Thus, by Hall’s Theorem, there is a matching covering V1,
or equivalently, every maximum matching covers V1. By a similar argument, we find that every
maximum matching covers V2, and this completes the proof.


