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2. Let
−→
G = (V,

−→
E ) be a digraph with source s and sink t and suppose φ :

−→
E → R is a function,

not necessarily a flow.

(a) Show that ∑
x∈V

φ(x, V \ x) =
∑
x∈V

φ(V \ x, x).

It will help to relabel the dummy variable x ∈ V in the right-hand sum as y ∈ V . We are
asked to show that ∑

x∈V
φ(x, V \ x) =

∑
y∈V

φ(V \ y, y).

Any given arc (x, y) ∈
−→
E with y ∈ V \ x contributes once to the sum on the left-hand

side, giving a term φ(x, y); and the same arc contributes once to the right-hand side as
x ∈ V \ y, again the term it contributes being φ(x, y).

Hence the two sums are equal, as they each range over the set of all (non-loop) arcs in
−→
G :⋃

{(x, y) : x ∈ V, y ∈ V \ x} =
⋃
{(x, y) : y ∈ V, x ∈ V \ y}

(b) Deduce from (a) that if φ is a flow then the net flow out of s is equal to the net flow into t:

φ(s, V \ s)− φ(V \ s, s) = φ(V \ t, t)− φ(t, V \ t).

By definition, if φ is a flow then φ(x, V \ x) = φ(V \ x, x) for all x ∈ V \ {s, t}. Hence by
(a), after cancelling all but the terms indexed by s and t,

φ(s, V \ s) + φ(t, V \ t) = φ(V \ s, s) + φ(V \ t, t).

Rearranging this equation give the result.

3. Suppose S ⊆
−→
E is a set of edges after whose deletion there is no flow from s to t with

strictly positive value. Prove that S contains a cut separating s from t, i.e., there is X ⊂ V

with s ∈ X and t 6∈ X such that
−→
E (X,V \X) ⊆ S.

[Bollobás, Modern Graph Theory, II.6 exercise 1]

Set the capacity of arcs in S equal to 0. By the max-flow min-cut theorem there is a flow

with value at least equal to the minimum size of a cut separating s and t in
−→
G \ S. This

minimum size is zero by the assumption that there is no flow from s to t with strictly positive

value. In other words, s and t are already separated in
−→
G \ S. Define X to be all the vertices

reachable by a directed path from s. Then s ∈ X and by what we have just proved t 6∈ X
(otherwise we could send a positive flow along this path from s to t). From this it follows that

S must contain
−→
E (X,V \X).



4. Let f :
−→
E → R+ be a flow on a digraph

−→
G = (V,

−→
E ) with source s, sink t and capacity

function c :
−→
E → R+.

(a) Define the value of the flow f .

The value of f is defined as the common value of f(s, V \ s)− f(V \ s, s) and f(V \ t, t)−
f(t, V \ t), i.e., the net flow going out of the source s, which is the same as the net flow
going into the sink t.

(b) Suppose that X ⊆ V contains s but not t. Show that the value of f is also equal to

f(X,V \X)− f(V \X,X).

We have

f(s, V \ s)− f(V \ s, s) = f(s, V )− f(V, s)

=
∑
x∈X

[f(x, V )− f(V, x)]

=
∑
x∈X

[f(x, V \X)− f(V \X,x)]

= f(X,V \X)− f(V \X,X)

where to get to the second line we use the flow condition f(x, V ) − f(V, x) = 0 for each
x ∈ V \{s, t} and to get to the third line we use the fact that to each arc (x1, x2) ∈ X×X
there is a contribution of f(x1, x2) − f(x1, x2) = 0 to

∑
x∈X [f(x, V ) − f(V, x)]. An

alternative way to write the same sequence of equalities is

f(s, V \ s)− f(V \ s, s) = f(s, V )− f(V, s)

=
∑
x∈X

[f(x, V )− f(V, x)]

= f(X,V )− f(V,X)

= f(X,X) + f(X,V \X)− [f(X,X) + f(V \X,X)]

= f(X,V \X)− f(V \X,X)

(c) Using (b) and the fact that 0 ≤ f(x, y) ≤ c(x, y) for each (x, y) ∈
−→
E prove that the value

of f is at most equal to the capacity of a cut
−→
E (X,V \X) separating s from t.

Since 0 ≤ f(x, y) ≤ c(x, y) for each arc (x, y), we then have 0 ≤ f(V \ X,X) and
f(X,V \X) ≤ c(X,V \X), so that

f(X,V \X)− f(V \X,X) ≤ c(X,V \X).

Remark: Equality holds if and only if f(x, y) = c(x, y) for each arc (x, y) with x ∈ X, y ∈
V \X and f(y, x) = 0 for each arc (y, x) with x ∈ X, y ∈ V \X: f reaches capacity going
from X to V \X and does not use arcs going back from V \X to X.

[Bollobás, Modern Graph Theory, III.6 exercise 2.]



5. Let f be a flow on a network comprising digraph
−→
G , source s, sink t, and capacity function

c :
−→
E → R+.
A circular flow in f is a directed cycle in

−→
G such that f(x, y) > 0 for each arc (x, y) in the

cycle.
By successively reducing the number of circular flows in a given flow f of maximum value

prove that there is a maximal flow f∗ without circular flows in which f∗(V \ s, s) = 0 and
f(t, V \ t) = 0.

[Bollobás, Modern Graph Theory, III.6 exercise 4.]

If f takes minimum value a > 0 on a directed cycle then by subtracting a from each edge of
the cycle we obtain another flow with the same value but equal to zero for at least one edge on
the cycle. Recursively reducing positive cycles in this way we obtain a flow f∗ with no positive
cycles (an acyclic flow).

Given an acyclic flow f∗ of value v, there must be a directed path from s to t along which all
flow is positive, because there are no positive cycles. (For every vertex not s or t with a positive
incoming arc there is a positive outgoing arc, by the Kirchhoff rule and by nonnegativity of f∗.
Starting from s, following arcs with positive flow either you reach t or you traverse a directed
cycle, and the latter cannot happen.) Decrementing the flow on each edge of this path yields
another acyclic flow of value v − 1. Recursively we decompose f∗ as a sum of flows of value 1
along directed paths from s to t. It follows that f∗ is zero on any arcs going into s and any arcs
going out of t.


