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1. Express the nth term of the sequences given by the following recurrence relations (generalize
the method used for the Fibonacci numbers in Section 12.3):

(a) a0 = 2, a1 = 3, an+2 = 3an − 2an+1 (n = 0, 1, 2, . . . )

(b) a0 = 0, a1 = 1, an+2 = 4an+1 − 4an (n = 0, 1, 2, . . . )

(c) a0 = 1, an+1 = 2an + 3 (n = 0, 1, 2, . . . )

Since an = 2an−1 + 3 for n ≥ 1,

∞∑
n=1

anx
n =

∞∑
n=1

an−1x
n + 3

∞∑
n=1

xn,

the g.f. a(x) for (an) satisfies

a(x)− 1 = 2xa(x) + 3x(1− x)−1

from which

a(x) =
1

1− 2x
+

3x

(1− x)(1− 2x)

=
1 + 2x

(1− x)(1− 2x)

=
4

1− 2x
− 3

1− x

and so
an = 4 · 2n − 3.

Check: 1 = a0 = 4 · 1− 3.

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, section 12.3, exercise 12.3.3. ]

2. Solve the recurrence an+2 =
√
an+1an with initial conditions a0 = 2, a1 = 8. Find

limn→∞ an.
[Take base 2 logarithms of the given recurrence.]
[Matoušek & Nešetřil, Invitation to Discrete Mathematics, section 12.3, exercise 12.3.5. ]

Set bn = log2 an. Then b0 = 1, b1 = 3, and, for n ≥ 2,

2bn = bn−1 + bn−2.

If b(x) is the g.f for (bn) then

2[b(x)− 1− 3x] = x[b(x)− 1] + x2b(x),



from which

b(x) =
2 + 5x

2− x− x2
=

2 + 5x

(2 + x)(1− x)
.

Writing as partial fractions,

2 + 5x

(2 + x)(1− x)
=

A

2 + x
+

B

1− x

for constants A,B satisfying
A + 2B = 2, −A + B = 5,

i.e. A = −8
3 , B = 7

3 . Then

3b(x) =
7

1− x
− 4

1 + x/2
,

from which

bn =
7− 4(−1)n2−n

3
.

Check: 1 = b0 = 7−4
3 , 3 = b1 = 7+4/2

3 .
Since 2−n → 0 as n→∞, so bn → 7

3 as n→∞. By continuity of the function x→ 2x, and

an = 2bn , we have lim an = 2lim bn = 2
7
3 = 4 3

√
2.

[The term an is the geometric mean of the two previous terms an−1 and an−2 and we have
seen that lim an = 4 3

√
2. Since the geometric mean of two lengths can be constructed using

ruler and compass, by constructing first the geometric mean of line segments of lengths 2 and 8
and then iteratively constructing geometric means, in the limit you reach a construction of the
cube root of 2. A famous theorem of Euclidean geometry is that the cube root of 2 cannot be
constructed by ruler and compass alone in a finite number of steps.]

3.

(a) Solve the recurrence an = an−1 + an−2 + · · ·+ a1 + a0 with the initial condition a0 = 1.

For n ≥ 2,
an−1 = an−2 + · · ·+ a1 + a0

so that
an = an−1 + an−1 = 2an−1,

whence an = 2n−1 for n ≥ 1, by induction on n, or by finding the generating function
a(x) satisfies a(x) − 1 − x = 2x(a(x) − 1), from which a(x) = 1−x

1−2x and then reading off

from this that an = 2n − 2n−1 = 2n−1 for n ≥ 1.

Alternatively, using the fact that if a(x) is the g.f. for (an) then a(x)
1−x is the g.f. for the

partial sums (
∑n

i=0 ai), and so xa(x)
1−x is the g.f. for the partial sums (

∑n−1
i=0 ai), we have

a(x)− 1 =
xa(x)

1− x
,

from which a(x) = 1−x
1−2x .

*(b) Solve the recurrence an = an−1 + an−3 + · · ·+ a1 + a0 (n ≥ 3) with the initial condition
a0 = a1 = a2 = 1.

Beginning with a0, the first few terms of this sequence are 1, 1, 1, 2, 4, 7, 12, 21, 37, 65, . . . .
For some examples of what an counts see https://oeis.org/A005251 (e.g. the number
of compositions of n avoiding the part 2; so a4 = 4 since the compositions of 4 avoiding 2
are 4, 3 + 1, 1 + 3 and 1 + 1 + 1 + 1).



Since for n ≥ 3

an =

(
n−1∑
i=0

ai

)
− an−2,

the g.f for (an) satisfies

a(x)− 1− x− x2 =
x[a(x)− 1− x]

1− x
− x2[a(x)− 1],

from which, after a little algebra,

a(x)[1− 2x + x2 − x3] = 1− x,

and the g.f. for (an) is thus

a(x) =
1− x

1− 2x + x2 − x3
.

[Alternative derivation: for n ≥ 3, an = an−1+an−3+(an−1−an−2) = 2an−1−an−2+an−3,
from which a(x)− 1− x− x2 = 2x[a(x)− 1− x]− x2[a(x)− 1] + x3a(x), and this yields
the same formula for a(x).]

The denominator does not factorize easily as polynomial in x, but rather in x
1
2 as difference

of two squares:

1− 2x + x2 − x3 = (1− x)2 − (x
3
2 )2 = [1− x− x

3
2 ][1− x + x

3
2 ].

We find then that

2a(x) =
1

1− x− x
3
2

+
1

1− x + x
3
2

.

Expanding the two series of the form (1− y)−1 with y = x(1± x
1
2 ),

2a(x) =
∞∑
j=0

xj [(1 + x
1
2 )j + (1− x

1
2 )j ]

= 2
∞∑
j=0

xj
j∑

i=0

(
j

2i

)
xi

= 2
∞∑
n=0

(
n∑

i=0

(
n− i

2i

))
xn,

from which

an =
n∑

i=0

(
n− i

2i

)
,

in which the range of summation can in fact be restricted to 0 ≤ i ≤ bn/3c since the
binomial coefficient is zero when 2i > n− i. As a check,

a0 =

(
0

0

)
= 1, , a1 =

(
1

0

)
= 1, a2 =

(
2

0

)
= 1, a3 =

(
3

0

)
+

(
2

2

)
= 2.

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, section 12.3, exercise 12.3.6.]



4. Express the sum

Sn =

(
2n

0

)
+ 2

(
2n− 1

1

)
+ 22

(
2n− 2

2

)
+ · · ·+ 2n

(
n

n

)
as the coefficient of x2n in a suitable power series. Find a simple formula for Sn.

[Use xk(1 + 2x)k =
∑k

i=0 2i
(
k
i

)
xk+i, sum over integers k, and set k + i = 2n to pick out the

requisite coefficient.] [Matoušek & Nešetřil, Invitation to Discrete Mathematics, section 12.3, exercise

12.3.7 ]

1

1− x− 2x2
=

∞∑
k=0

xk(1 + 2x)k =

∞∑
k=0

k∑
i=0

2i
(
k

i

)
xk+i

=

∞∑
m=0

m∑
i=0

2i
(
m− i

i

)
xm,

in which the range in the inner summation can in fact be restricted to 0 ≤ i ≤ bm/2c since(
m−i
i

)
= 0 for i > m− i. Taking m = 2n,

[x2n]
1

1− x− 2x2
=

n∑
i=0

2i
(

2n− i

i

)
= Sn.

Since
1

1− x− 2x2
=

1

(1 + x)(1− 2x)
=

1

3

(
1

1 + x
+

2

1− 2x

)
,

we have

Sn =
1

3
(−1)2n +

2

3
22n =

1

3
(1 + 22n+1).

Check:
(
0
0

)
= 1 = S0 = 1

3(1 + 2) and
(
2
0

)
+ 2
(
1
1

)
= 3 = S1 = 1

3(1 + 8).

5.

(a) Show that the number 1
2(1 +

√
2)n + 1

2(1 −
√

2)n is an integer for all n ≥ 1. [Find the
generating function for the sequence; equivalently, the recurrence it satisfies.]

Let a(x) be the g.f. for the sequence (an) defined by an = 1
2(1 +

√
2)n + 1

2(1−
√

2)n.

a(x) =

∞∑
n=0

[
1

2
(1 +

√
2)n +

1

2
(1−

√
2)n
]
xn =

1
2

1− (1 +
√

2)x
+

1
2

1− (1−
√

2)x

=
1− x

1− 2x− x2

The initial terms are a0 = 1, a1 = 1. Since

a(x) = 1− x + 2xa(x) + x2a(x),

we have
a(x)− 1− x = 2x[a(x)− 1] + x2a(x),

from which, for n ≥ 2,
an = 2an−1 + an−2.

Remark: Here we use the fact that a(x)− a0 − a1x is the g.f. for (an)n≥2, x[a(x)− a0] is
the g.f. for (an−1)n≥2 and x2a(x) is the g.f. for (an−2)n≥2.



Since a0 = 1 = a1 are integers and the recurrence an = 2an−1 + an−2 is an integer linear
combination, it follows that an is an integer for all n.

Alternatively, a direct appeal to the binomial theorem gives

1

2
(1 +

√
2)n +

1

2
(1−

√
2)n =

1

2

(
n∑

i=0

(
n

i

)
2i/2(1 + (−1)i)

)

=

bn/2c∑
j=0

(
n

2j

)
2j ,

which is a sum of postive integers.

(b) Show that the decimal expansion of (6 +
√

37)999 has at least 999 zeros following the
decimal point.

[Show that an = (6+
√

37)n+(6−
√

37)n satisfies an+2 = 12an+1+an with initial conditions
a0 = 2, a1 = 12, and hence is an integer for all n ≥ 1. Use the fact that

√
37− 6 < 0 · 1.]

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, section 12.3, exercises 12.3.9 and 12.3.10.]

Let an = (6 +
√

37)n + (6−
√

37)n have g.f. a(x). Then

a(x) =
∞∑
n=0

[
(6 +

√
37)n + (6−

√
37)n

]
xn =

1

1− (6 +
√

37)x
+

1

1− (6−
√

37)x

=
2− 12x

1− 12x− x2

Calculating a0 = 2, a1 = 12, and

a(x) = 2− 12x + 12xa(x) + x2a(x),

a(x)− 2− 12x = 12x[a(x)− 2] + x2a(x),

we deduce that, for n ≥ 2,
an = 12an−1 + an−2.

It follows that (an) is an integer sequence.
Given that 0 <

√
37− 6 = 1√

37+6
< 1

12 < 1
10 , we have (6 +

√
37)n = an − (6−

√
37)n. When

n is odd,
0 < −(6−

√
37)n = (

√
37− 6)n < 10−n,

so that (6 +
√

37)n is equal to the integer an plus a positive number with at least n zeroes after
the decimal point.


