Combinatorics and Graph Theory I
Exercise sheet 3: Generating functions ctd.

8 March 2017

1. Express the nth term of the sequences given by the following recurrence relations (generalize
the method used for the Fibonacci numbers in Section 12.3):

(a) ap =2, a1 =3, apnt2 = 3an — 2ap+1 (n=10,1,2,...)
(b) ap =0, a1 =1, apy2 = 4ap41 —4a, (n=0,1,2,...)

(¢) ap =1, apy1 =2a,+3 (n=0,1,2,...)

Since a,, = 2a,_1 + 3 for n > 1,
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and so
an, =4-2" - 3.

Check: 1=aqp=4-1-3.
[Matousek & Nesetfil, Invitation to Discrete Mathematics, section 12.3, exercise 12.3.3. ]
2. Solve the recurrence ani2 = /an+1a, with initial conditions ayp = 2,a; = 8. Find
limy, o0 U,
[Take base 2 logarithms of the given recurrence.]

[Matousek & Nesettil, Invitation to Discrete Mathematics, section 12.3, exercise 12.3.5. ]

Set b, = logy a,. Then by = 1,b; = 3, and, for n > 2,
an = bn—l + bn—2-
If b(x) is the g.f for (b,) then

2[b(x) — 1 — 3z] = z[b(z) — 1] + 22b(z),



from which
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Writing as partial fractions,
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for constants A, B satisfying
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Check: 1=by = 5%, 3 =b; = 22,

Since 27" — 0 as n — o0, so b, — % as n — 0o. By continuity of the function z — 2%, and
ap = 2b”, we have lim a,, = 2iimbn = 2% =4Y2.

[The term a,, is the geometric mean of the two previous terms a,_; and a,_2 and we have
seen that lima, = 4+/2. Since the geometric mean of two lengths can be constructed using
ruler and compass, by constructing first the geometric mean of line segments of lengths 2 and 8
and then iteratively constructing geometric means, in the limit you reach a construction of the
cube root of 2. A famous theorem of Euclidean geometry is that the cube root of 2 cannot be
constructed by ruler and compass alone in a finite number of steps.]

(a)

Solve the recurrence a,, = ay—1 + an—2 + - -+ + a1 + ap with the initial condition ag = 1.

For n > 2,
Ap—1 =Ap—92+ - -+ a1+ ao

so that

(p = Qp_1 + Gp_1 = 2ap_1,
whence a, = 2"~! for n > 1, by induction on n, or by finding the generating function
a(z) satisfies a(z) — 1 — z = 2z(a(z) — 1), from which a(z) = =% and then reading off
from this that a, = 2" — 2"~ 1 =271 for n > 1.

Alternatively, using the fact that if a(z) is the g.f. for (a,) then % is the g.f. for the

partial sums (37" a;), and so %(? is the g.f. for the partial sums (327 a;), we have
za(x)
alx) — 1=
(0)-1=722,
. 1—
from which a(z) = 155.
Solve the recurrence a,, = ap—1 + ap—3+ -+ a1 + ap (n > 3) with the initial condition

apg = a] = a = 1.

Beginning with ag, the first few terms of this sequence are 1,1,1,2,4,7,12,21,37,65,....
For some examples of what a,, counts see https://oeis.org/A005251 (e.g. the number
of compositions of n avoiding the part 2; so a4 = 4 since the compositions of 4 avoiding 2
are4,3+1,1+3and 1 +1+1+1).



Since for n > 3

n—1
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the g.f for (a,) satisfies

a(x)—1—z—2*= m[a(xl):;_:d—ﬁ[a(:n)—l],

from which, after a little algebra,
a(x)1 =2z + 2> — 2% =1 -z,
and the g.f. for (a,) is thus
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[Alternative derivation: for n > 3, a, = ap—1+an—3+(an—1—an—2) = 2a4p—1—an_2+an_3,
from which a(z) — 1 — 2 — 22 = 2z[a(z) — 1 — 2] — 22[a(z) — 1] + 23a(z), and this yields
the same formula for a(z).]

1
The denominator does not factorize easily as polynomial in x, but rather in 22 as difference
of two squares:
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We find then that . )

2a(z) = =+ .
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Expanding the two series of the form (1 — y)~! with y = x(1 4+ x%),

from which

in which the range of summation can in fact be restricted to 0 < ¢ < |n/3] since the
binomial coefficient is zero when 2i > n — i. As a check,
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[Matousek & Nesetfil, Invitation to Discrete Mathematics, section 12.3, exercise 12.3.6.]



4. Express the sum
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21 in a suitable power series. Find a simple formula for S,,.

as the Coofﬁcion‘r of x
[Use 2#(1 4 2z)k = SOk 2 (é) xF ) sum over integers k, and set k +i = 2n to pick out the
requisite coefficient.] [Matousek & Nesetiil, Invitation to Discrete Mathematics, section 12.3, exercise

12.3.7 ]

! = iazk(l +22)F = ii? <k> ki
12— 222 k=0 k=0 i=0 L
UL -(m—z) m
= 2 ™,

in which the range in the inner summation can in fact be restricted to 0 < i < [m/2] since
(™7*) =0 for i > m — i. Taking m = 2n,
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Check: () =1=So=1(1+2) and () +2(}) =3 =51 = (1 +8).

5.

(a) Show that the number (1 + v/2)" + 3(1 — v/2)" is an integer for all n > 1. [Find the
generating function for the sequence; equivalently, the recurrence it satisfies.]

Let a(z) be the g.f. for the sequence (a,) defined by a, = (1 + v2)" + (1 — V2)".
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The initial terms are ag = 1,a; = 1. Since
a(z) =1 -z + 2za(z) + z%a(z),

we have
a(z) — 1 —z = 2zfa(z) — 1] + 22a(x),

from which, for n > 2,
ap = 2ap—1 + ap-2.

Remark: Here we use the fact that a(z) — ap — aiz is the g.f. for (ap)n>2, z[a(x) — ag] is
the g.f. for (ap—1)n>2 and r?a(x) is the g.f. for (an—2)n>2.



Since ag = 1 = a1 are integers and the recurrence a,, = 2a,—1 + a,—9 is an integer linear
combination, it follows that a, is an integer for all n.

Alternatively, a direct appeal to the binomial theorem gives

%(1 +V2)" + %(1 —V2)" = % <Z (Z’) 2/2(1 + (—1)1'))

1=0
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which is a sum of postive integers.
(b) Show that the decimal expansion of (6 + /37)%Y has at least 999 zeros following the
decimal point.

[Show that a,, = (6++/37)"+(6—+/37)" satisfies an+o = 12a,41+a, with initial conditions
ap = 2, a; = 12, and hence is an integer for alln > 1. Use the fact that /37 —6 < 0-1.]

[Matousek & Nesetfil, Invitation to Discrete Mathematics, section 12.3, exercises 12.3.9 and 12.3.10.]

Let a, = (6 + v/37)" + (6 — v/37)" have g.f. a(z). Then

a@):;[@*ﬁ) + 6=V et T e
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=122

Calculating ag = 2,a; = 12, and
a(r) =2 — 12z + 12za(x) + 2%a(z),

a(x) — 2 — 12z = 12z[a(x) — 2] + z2a(z),

we deduce that, for n > 2,
ap = 12a,,_1 + ap—2.

It follows that (a,) is an integer sequence.

Giventhat0<¢37—6:ﬁ<%<%,Wehave (6 +/37)" = a, — (6 — v/37)". When

n is odd,

0 < —(6-V37)" = (V3T —6)" < 107",

so that (6 ++/37)" is equal to the integer a,, plus a positive number with at least n zeroes after
the decimal point.



