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1. Show that if fi(n) = O(g1(n)) and fa(n) = O(g2(n)) then fi(n)+ fa(n) = O(g1(n) + g2(n))
and fi(n)fa2(n) = O(g1(n)g2(n)).

Express in words the statements f(n) = O(1), g(n) = (1) and h(n) = n®W),

f(n) = O(1) says that f is bounded (by a constant): |f(n)| < C for some constant C.

g(n) = Q(1) says that g is bounded away from 0: |g(n)| > C for some constant C' > 0.

h(n) = n°M says that h grows no faster than a polynomial: |h(n)| < n® for some constant
C (so h = O(n?) for d = [C7, i.e., no faster than a polynomial of degree d, for some d).

(a) Prove that n® = O(n”) for a < .

(b) Prove that n” = O(a") for any a > 1.

We show that the sequence (%) is decreasing for sufficiently large n, say n > m, from

which it follows that Z—Z < ;”—m, ile. nY < 2”—,2 -a”™ for n > m. To see this, consider the
quotient of successive terms,
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which, since % < 1and ("TH)AY — 1 asn — o0, is less than 1 for n > m for suitable choice
of m. From this point on the sequence (%) decreases.

An alternative way to show n? = O(a") is to show the stronger statement that Z—Z — 0 as
n — 00, i.e. 7 = o(a™), from which it follows that n? < a™ for sufficiently large n. (There
are many ways to prove that Z—Z — 0, for example using L’Hopital’s rule from calculus to
show that z—z — 0 as ¢ — oo for real variable x; we choose a proof avoiding the need to
move into calculus of a real variable.)
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We may assume 7y > 1 (since n? < n otherwise and Z—n < % so once we prove the result
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for v =1 then we are done). Taking the yth root of 77,
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where b = a/7 > 1. Thus it suffices to prove that g — 0for b>1. Let b=1+c (in
which ¢ > 0). By the Binomial Theorem, for n > 2,

V'=(1+c)">1+cn+n(n—1)c?/2 > c*n(n—1)/2.

Hence
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(¢) Deduce from (b) that (Inn
Lemma. Let f,g

: (0,
£(@) = O(g(a)) then f(h
Proof. If | f(x)| < Cg(z) for x > xy and h is increasing then h(x) > h(zg) > z¢ for = > xg
so that |f(h(x))| < Cg(h(x)) for x > xy.
The function In : (0,00) — R is monotone increasing. By the previous lemma and

(b) extended from n to a real variable x (i.e. z7 = O(a®) for any a > 1) we have
(Inn)Y = O(a™") for any a > 1. With

)Y = O(n®) for any a > 0.
o0) — R and let h : (0,00) — R be monotone increasing. If
)

(x)) = O(g(h(x))).
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set & = Ina, which can be made arbitrarily close to 0 by taking a arbitrarily close to 1.

[Matousek & Nesetril, Invitation to Discrete Mathematics, section 3.4, Fact 3.4.3 and exercise 3.4.6.]

(a) Prove the arithmetic-geometric mean inequality vab < 5 ((1 +0).

(b) Prove by induction on n and using (a) that for n > 1 we have
n 1
Wntl-2<y — <2y/n—1.

[This can alternatively be obtained by integration as in question 3(b).]

Base case n = 1:

<2/1-1=1,

2\f—2=2(f2—1)<2(%):1 7

where we use v/2 — 1 < 1, which follows from 2 < (3)? =

[

Assume true for given n > 1, i.e. that

and

Then the left-hand side of inequality (1) with n + 1 in place of n is equal to
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where we use the induction hypothesis for the first inequality and for the last inequality

we apply (a) to find that
2y/(n+1)(n+2) <2n+3.

This establishes the induction step for inequality (1).
Similarly, the left-hand side of inequality (2) with n + 1 in place of n is equal to
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where we use the induction hypothesis for the first inequality and for the last inequality
we apply (a) to find that
2y/n(n+1) <2n+ 1.

This establishes the induction step for inequality (2).

(c) Use the inequality 1+ < e” and induction to prove the inequality in 3(a). The inequality
in 3(a) is that, for n > 1,

n
1
In(n+1) <Z% <lnn+1.
k=1

Thus we wish to prove
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Forn=1wehave In2 <1<1.

Assume as inductive hypothesis the inequalities (3) and (4) for given n > 1; we wish to
show they hold for n + 1 as well.

The left-hand side of (3) with n + 1 in place of n is
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in which the first inequality is by the induction hypothesis and the second is by the

inequality 1+ x < e* with z = which by taking logarithms gives In(1 + L

+1’ n+1) = ntl1°



The left-hand side of (4) with n + 1 in place of n is
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and to complete the proof of the induction step for equation (4) we require the inequality
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To show this we prove the equivalent inequality 1 + % > en+1, This follows from
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[Matousek & Nesettil, Invitation to Discrete Mathematics, section 3.5, exercises 3.5.12 and 3.5.13.]



