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1. Show that if f1(n) = O(g1(n)) and f2(n) = O(g2(n)) then f1(n) + f2(n) = O(g1(n) + g2(n))
and f1(n)f2(n) = O(g1(n)g2(n)).

Express in words the statements f(n) = O(1), g(n) = Ω(1) and h(n) = nO(1).
f(n) = O(1) says that f is bounded (by a constant): |f(n)| ≤ C for some constant C.
g(n) = Ω(1) says that g is bounded away from 0: |g(n)| ≥ C for some constant C > 0.
h(n) = nO(1) says that h grows no faster than a polynomial: |h(n)| ≤ nC for some constant

C (so h = O(nd) for d = dCe, i.e., no faster than a polynomial of degree d, for some d).

(a) Prove that nα = O(nβ) for α ≤ β.

(b) Prove that nγ = O(an) for any a > 1.

We show that the sequence (n
γ

an ) is decreasing for sufficiently large n, say n ≥ m, from
which it follows that nγ

an ≤
mγ

am , i.e. nγ ≤ mγ

am · a
n for n ≥ m. To see this, consider the

quotient of successive terms,

(n+ 1)γ/an+1

nγ/an
=

(
n+ 1

n

)γ 1

a
,

which, since 1
a < 1 and

(
n+1
n

)γ → 1 as n→∞, is less than 1 for n ≥ m for suitable choice
of m. From this point on the sequence (n

γ

an ) decreases.

An alternative way to show nγ = O(an) is to show the stronger statement that nγ

an → 0 as
n→∞, i.e. nγ = o(an), from which it follows that nγ < an for sufficiently large n. (There
are many ways to prove that nγ

an → 0, for example using L’Hôpital’s rule from calculus to
show that xγ

ax → 0 as x → ∞ for real variable x; we choose a proof avoiding the need to
move into calculus of a real variable.)

We may assume γ ≥ 1 (since nγ ≤ n otherwise and nγ

an ≤
n
an so once we prove the result

for γ = 1 then we are done). Taking the γth root of nγ

an ,

n

an/γ
=

n

bn
,

where b = a1/γ > 1. Thus it suffices to prove that n
bn → 0 for b > 1. Let b = 1 + c (in

which c > 0). By the Binomial Theorem, for n ≥ 2,

bn = (1 + c)n ≥ 1 + cn+ n(n− 1)c2/2 > c2n(n− 1)/2.

Hence
n

bn
<

n

c2n(n− 1)/2
=

2

c2(n− 1)
→ 0 as n→∞.



(c) Deduce from (b) that (lnn)γ = O(nα) for any α > 0.

Lemma. Let f, g : (0,∞) → R and let h : (0,∞) → R be monotone increasing. If
f(x) = O(g(x)) then f(h(x)) = O(g(h(x))).

Proof. If |f(x)| ≤ Cg(x) for x ≥ x0 and h is increasing then h(x) ≥ h(x0) ≥ x0 for x ≥ x0
so that |f(h(x))| ≤ Cg(h(x)) for x ≥ x0.
The function ln : (0,∞) → R is monotone increasing. By the previous lemma and
(b) extended from n to a real variable x (i.e. xγ = O(ax) for any a > 1) we have
(lnn)γ = O(alnn) for any a > 1. With

alnn = (eln a)lnn = eln a lnn = (elnn)ln a = nln a,

set α = ln a, which can be made arbitrarily close to 0 by taking a arbitrarily close to 1.

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, section 3.4, Fact 3.4.3 and exercise 3.4.6.]

5.

(a) Prove the arithmetic-geometric mean inequality
√
ab ≤ 1

2(a+ b).

(b) Prove by induction on n and using (a) that for n ≥ 1 we have

2
√
n+ 1− 2 <

n∑
k=1

1√
k
≤ 2
√
n− 1.

[This can alternatively be obtained by integration as in question 3(b).]

Base case n = 1:

2
√

2− 2 = 2(
√

2− 1) < 2(
1

2
) = 1 =

1√
1
≤ 2
√

1− 1 = 1,

where we use
√

2− 1 < 1
2 , which follows from 2 < (32)2 = 9

4 .

Assume true for given n ≥ 1, i.e. that

n∑
k=1

1√
k
− 2
√
n+ 1 + 2 > 0 (1)

and

2
√
n− 1−

n∑
k=1

1√
k
≥ 0. (2)

Then the left-hand side of inequality (1) with n+ 1 in place of n is equal to

n+1∑
k=1

1√
k
− 2
√
n+ 2 + 2 =

1√
n+ 1

+

n∑
k=1

1√
k
− 2
√
n+ 2 + 2

>
1√
n+ 1

+ 2
√
n+ 1− 2 − 2

√
n+ 2 + 2

=
1√
n+ 1

+ 2(
√
n+ 1−

√
n+ 2)

=
1 + 2(n+ 1)− 2

√
(n+ 1)(n+ 2)√

n+ 1

≥ 0,



where we use the induction hypothesis for the first inequality and for the last inequality
we apply (a) to find that

2
√

(n+ 1)(n+ 2) ≤ 2n+ 3.

This establishes the induction step for inequality (1).

Similarly, the left-hand side of inequality (2) with n+ 1 in place of n is equal to

2
√
n+ 1− 1−

n+1∑
k=1

1√
k

= 2
√
n+ 1− 1− 1√

n+ 1
−

n∑
k=1

1√
k

≥ 2
√
n+ 1− 1− 1√

n+ 1
− 2
√
n+ 1

= 2(
√
n+ 1−

√
n)− 1√

n+ 1

=
2(n+ 1)− 2

√
n(n+ 1)− 1√

n+ 1
=

2n+ 1− 2
√
n(n+ 1)√

n+ 1

≥ 0,

where we use the induction hypothesis for the first inequality and for the last inequality
we apply (a) to find that

2
√
n(n+ 1) ≤ 2n+ 1.

This establishes the induction step for inequality (2).

(c) Use the inequality 1+x ≤ ex and induction to prove the inequality in 3(a). The inequality
in 3(a) is that, for n ≥ 1,

ln(n+ 1) <

n∑
k=1

1

k
≤ lnn+ 1.

Thus we wish to prove
n∑
k=1

1

k
− ln(n+ 1) > 0 (3)

and

ln(n) + 1−
n∑
k=1

1

k
≥ 0. (4)

For n = 1 we have ln 2 < 1 ≤ 1.

Assume as inductive hypothesis the inequalities (3) and (4) for given n ≥ 1; we wish to
show they hold for n+ 1 as well.

The left-hand side of (3) with n+ 1 in place of n is

n+1∑
k=1

1

k
− ln(n+ 2) =

1

n+ 1
+

n∑
k=1

1

k
− ln(n+ 1) + ln(n+ 1)− ln(n+ 2)

>
1

n+ 1
+ ln(n+ 1)− ln(n+ 2) =

1

n+ 1
− ln

n+ 2

n+ 1

=
1

n+ 1
− ln(1 +

1

n+ 1
)

≥ 0,

in which the first inequality is by the induction hypothesis and the second is by the
inequality 1 + x ≤ ex with x = 1

n+1 , which by taking logarithms gives ln(1 + 1
n+1) ≤ 1

n+1 .



The left-hand side of (4) with n+ 1 in place of n is

ln(n+ 1) + 1−
n+1∑
k=1

1

k
= ln(n+ 1) + ln(n) + 1−

n∑
k=1

1

k
− 1

n+ 1
− ln(n)

≥ ln(n+ 1)− 1

n+ 1
− ln(n)

= ln(1 +
1

n
)− 1

n+ 1

and to complete the proof of the induction step for equation (4) we require the inequality

ln(1 +
1

n
) ≥ 1

n+ 1
.

To show this we prove the equivalent inequality 1 + 1
n ≥ e

1
n+1 . This follows from

1 +
1

n
=
n+ 1

n
=

1

1− 1
n+1

≥ 1

e−
1

n+1

= e
1

n+1 .

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, section 3.5, exercises 3.5.12 and 3.5.13.]


