Vector chromatic number — where graph
theory meets semidefinite programming

Robert Samal

Computer Science Institute, Charles University, Prague

UNCE seminar — Apr 26, 2012



Outline

@ Intro — SDP, def's

Q why

Q My point of view



Intro — SDP, def’s

Semidefinite programming (SDP)

X = 0 & X is positive semidefinite (PSD)
« there are vectors vy, ..., vy so that X ; = v,.ij (X is Gram
matrix)

® SDP:infCe X : (Vi) A e X =bj, X = 0,X € R™%"



Intro — SDP, def’s

Semidefinite programming (SDP)

X = 0 & X is positive semidefinite (PSD)
« there are vectors vy, ..., vy so that X ; = v,.ij (X is Gram
matrix)

® SDP:infCe X : (Vi) A e X =bj, X = 0,X € R™%"

@ when all matrices are diagonal, we get classical linear
programming



Intro — SDP, def’s

Semidefinite programming (SDP)

X = 0 & X is positive semidefinite (PSD)
« there are vectors vy, ..., vy so that X ; = v,.ij (X is Gram
matrix)

@ SDP:infCe X : (Vi) Aje X =b;, X =0,X € R™"

@ when all matrices are diagonal, we get classical linear
programming

o effectively solvable — for every £ > 0 one can in time

polynomial to the size of the input and log g approximate
solution with precision ¢.



Intro — SDP, def’s

Semidefinite programming (SDP)

X = 0 & X is positive semidefinite (PSD)
« there are vectors vy, ..., vy so that X ; = v,.ij (X is Gram
matrix)

@ SDP:infCe X : (Vi) Aje X =b;, X =0,X € R™"

@ when all matrices are diagonal, we get classical linear
programming

o effectively solvable — for every £ > 0 one can in time

polynomial to the size of the input and log g approximate
solution with precision ¢.

@ in most cases, duality holds, similarly as for LP
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Intro — SDP, def’s

Vector coloring

— usual coloring of Cs
— vector coloring of Cs

We are trying to assign unit vectors to vertices of the graph,
so that that adjacent vertices are far apart.

— (variant: strict vector coloring — all edges have to be of the
same length)
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Vector coloring — definition

Definition (Karger, Motwani and Sudan, 1998)

Given: graph G with n vertices
Find: minimal t < 0 s.t. 3f : V(G) — R”

@ |f(v) =1 Vv € V(G) and
o (f(u),f(v)) <t Vuve E(G).
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xv(G) = @ ... Vector chromatic number
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Vector coloring — definition

Definition (Karger, Motwani and Sudan, 1998)

Given: graph G with n vertices
Find: minimal t < 0 s.t. 3f : V(G) — R”

@ |f(v) =1 Vv € V(G) and
e (f(u),f(v))=t  VYuv e E(G).
t(G) := minimal such t.

xsv(G) =1— ﬁ ... Strict vector chromatic number

Xsv(G) = 9(G) =: J(G)
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Problem: ©(Cs) =7.




Original motivation — ©

Definition (Shannon, 1940’s)

Shannon capacity — communication capacity of a channel

9(G) = Im {/a(GRGK - X G)

n—oo

Problem: ©(Cs) =7.

Theorem (Lovasz, 1979)

There is a graph parameter ¥(G), such that
@ J(G) > a(G)
@ J(GXH)=9(G)W(H) = J(G)>06(G)
@ ¥(Cs) can be computed easily

. in fact 9(G) can be computed for any G in a polynomial time



Approximating chromatic number

Theorem (Karger, Motwani, Sudan, 1998)
XV(G) < kK = X(G) < A172/k+0(1)

assuming k constant, A = A(G).
Moreover, such coloring can be found in a polynomial time.

Theorem (Feige, Langberg, Schachtman, 2004)
This is basically best possible.
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polynomial time (provided pn > ck?).




Approximating chromatic number

Theorem (Coja-Oghlan, 2005)

Existence of a k-coloring of G(n, p) can be tested in average
polynomial time (provided pn > ck?).

Idea: The probability that x, will not provide the desired bound
is exponentially small. Thus in such case we can use some
algorithm with exponential running time.

Required ingredience: understanding of the behaviour of
xv(G(n, p)) and ¥(Gn,).



Approximating cubical chromatic number

Theorem (S., 2010+)
For every graph G we have

(G < xq(G) < 5xv(G).

Here x4 is the cubical chromatic number.



My point of view

Vector chromatic number as a worthy graph parameter

Observation

G—oH = xv(G) <xv(H)

(And the same is true for xs, = ¥.)

Thus yy is a “coloring-type” parameter and we may understand
it as a mean to understand the homomorphism structure of
graphs.

Compared to other such parameters (x, x¢, ¢, ---) this one is
computationally tractable (there is a polynomial-time algorithm
to approximate it).
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Example 1: values for random graph

Coja-Oghlan — concentrated on an interval of width one
Computational evidence: converges to a normal distribution, if
p = const.

xsv(G(100,.5))




My point of view

Example 1: values for random graph

Coja-Oghlan — concentrated on an interval of width one
Computational evidence: converges to a normal distribution, if
p = const.

However, if p = o(1), it seems that x,(G(n, p)) converges to a
two-point distribution, rather surprising phenomenon.
xsv(G(200,.1))




My point of view

Example 2: product (Hedetniemi) conjecture

Observation

GxH—G
GxH-—-H
Thus: x(G x H) < min{x(G), x(H)}.

Conjecture (Hedetniemi, 1966)
X(G x H) = min{x(G), x(H)}.

Note: a simple exercise is to show that
x(GOH) = max{x(G), x(H)}: we have G,H — GOH and it is
not hard to actually provide the coloring.



My point of view

Example 2: product conjecture for ¢

Observation

GxH—G
GxH-—-H
Thus: 5(6 x H) < min{@(G),fE‘(H)}.

Conijecture (S., 2011)
(G x H) = min{d(G), J(H)}.
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Example 2: product conjecture for 9 — approach

Compared to the normal chromatic number, we can use SDP
duality — so that we have a certificate for x,(G) > ¢ (whereas
for normal coloring one only has certificate for x(G) < ¢ -
namely a coloring using c colors).

Using this idea and some variants of 1, one can find that

As 9(GOH) > max{J(G), J(H)}, it's enough to show also the

U
reverse inequality for ¥(GOH).



My point of view

Example 2: product conjecture for ¢ — matrix
completion

...it's enough to show also the reverse inequality for J( GOH)
(this was trivial for x).
It leads to the following conjecture about matrices:

Conjecture (S., 2012)
Let A, B be PSD matrices with 1’s on diagonals. Then

I B+A®I-1® 1

can be completed to a PSD matrix.



My point of view

Example 3 — graphs on surfaces?

@ Can you show that x,(G) < 5 for every planar graph G?
@ Can you show version of the Hadwiger conjecture?
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