Flag algebra method in extremal combinatorics

> Dan Král' joint work with Oleg Pikhurko

QUASIRANDOMNESS

- When does a graph look as $G_{n,1/2}$?
- seminal paper by Chung, Graham, Wilson (1989) the density of every subgraph is as in $G_{n,1/2}$ this is equivalent to the density of K_2 and C_4 as well as to many other statements
- Is the same true for permutations? yes, the densities of 4-point subpermutations subpermutation: $453216 \longrightarrow 213$

FLAG ALGEBRAS

- flag algebra framework [Razborov, 2010] graph limits [Lovász, Szegedy, 2006] and [Borgs, Chayes, Lovász, Sós, Vesztergombi, 2008]
- $p(\sigma, \Pi)$ is the probability that random $|\sigma|$ points of Π induce σ
- consider a sequence Π_1, Π_2, \ldots
- there always exists a subsequence such that for every σ the sequence $p(\sigma, \Pi_1), p(\sigma, \Pi_2), \ldots$ converges
- the limit object is a function q from permutations to reals in fact, q yields a homomorphism from an algebra of formal linear combinations of permutations to reals

BASIC PROPERTIES

- linear extension: $q(\alpha\sigma + \alpha'\sigma') := \alpha q(\sigma) + \alpha' q(\sigma')$
- lifting up: $q(12) = q\left(\frac{3}{3}123 + \frac{2}{3}132 + \frac{2}{3}213 + \frac{1}{3}231 + \frac{1}{3}312\right)$
- product:

 $q(12) \times q(21) = q\left(\frac{1}{6}1243 + \frac{1}{6}1324 + \frac{2}{6}1342 + \frac{2}{6}1423 + \frac{3}{6}1432 + \cdots\right)$ $12 \times 21 := \frac{1}{6}1243 + \frac{1}{6}1324 + \frac{2}{6}1342 + \frac{2}{6}1423 + \frac{3}{6}1432 + \cdots$

LIMIT OBJECT

- Can we describe the limit in analytic terms?
- for graphs: a measurable function $[0,1]^2 \rightarrow [0,1]$ for limits: probabilistic measure on $[0,1]^2$ with unit marginals $\mu_q([a,b] \times [0,1]) = \mu_q([0,1] \times [a,b]) = b - a$

• similar approach by Hoppen et al.

ROOTED HOMOMORPHISMS

- consider a "large" permutation Π consistent with q
- fix a set S of points consider subpermutations induced by supersets of Swe get a mapping q^S depending on the choice of S
- random distribution of such mappings q^S
- averaging argument: $q(12) = \mathbb{E}_1 q^1 (12 + 12)$
- homomorphism q uniquely determines corresponding random distributions for all choices of roots S
- possible to define multiplication

RELATION TO THE LIMIT

• a close relation between the limit measure and qin our case: correct density of 4-point permutations but $\mu_q \neq \mu_u$

• suppose
$$f(x, y) = q^1(\sigma)$$
 if $1 = (x, y)$
 $\int f(x, y) d\mu_q = \mathbb{E}_1 q^1(\sigma) = q(\llbracket \sigma \rrbracket_1)$

• example:
$$f(x, y) = x = q^1(12 + 21)$$

 $\int x^2 d\mu_q = q \left(\left[(12 + 21) \times (12 + 21) \right]_1 \right)$

Can we integrate based on the uniform measure μ_u?
Yes! Choose two points according to μ_u.
one determines x and the other y

$$\begin{aligned} \text{THE PROOF} \\ \frac{1}{81} &= \left(\int \alpha(x,y)xy \, \mathrm{d}\mu_q \right)^2 \leq \left(\int \alpha(x,y)^2 \, \mathrm{d}\mu_q \right) \cdot \left(\int x^2 y^2 \, \mathrm{d}\mu_q \right) \\ &= \frac{1}{9} \left(4 \cdot \int_{[0,1]^2} \alpha(x,y)xy \, \mathrm{d}\mu_u - \int (1-x^2-y^2) \, \mathrm{d}\mu_q \right) \\ &= \frac{1}{9} \left(4 \cdot \int \alpha(x,y)xy \, \mathrm{d}\mu_u - \frac{1}{3} \right) \\ &\leq \frac{4}{9} \sqrt{\int \alpha(x,y)^2 \, \mathrm{d}\mu_u} \sqrt{\int x^2 y^2 \, \mathrm{d}\mu_u} - \frac{1}{27} = \frac{1}{81} \\ &\mu_q \text{ is the limit and } \alpha(x,y) = \mu_q([0,x] \times [0,y]) \end{aligned}$$

Thank you for your attention!