Basis stability in interval linear programming

Milan Hladík

Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

workshop of CMI (UNCE) April 26, 2012

Linear programming

Three basic forms of linear programs

$$f(A, b, c) \equiv \min c^{T} x \text{ subject to } Ax = b, x \ge 0,$$

$$f(A, b, c) \equiv \min c^{T} x \text{ subject to } Ax \le b,$$

$$f(A, b, c) \equiv \min c^{T} x \text{ subject to } Ax \le b, x \ge 0.$$

Notation

An interval matrix

$$\mathbf{A} := [\underline{A}, \overline{A}] = \{ A \in \mathbb{R}^{m \times n} \mid \underline{A} \le A \le \overline{A} \}.$$

The center and radius matrices

$$A_c := rac{1}{2}(\overline{A} + \underline{A}), \quad A_\Delta := rac{1}{2}(\overline{A} - \underline{A}).$$

M. Hladík (CUNI)

Interval linear programming

Family of linear programs with $A \in \mathbf{A}$, $b \in \mathbf{b}$, $c \in \mathbf{c}$, in short

$$f(\mathbf{A}, \mathbf{b}, \mathbf{c}) \equiv \min \mathbf{c}^T x$$
 subject to $\mathbf{A} x \stackrel{(\leq)}{=} \mathbf{b}, \ (x \ge 0).$

A realization is a concrete linear program in this family.

The three forms are not transformable between each other!

Goals

- determine the optimal value range;
- determine a tight enclosure to the optimal solution set.

Applications

- real-life problems affected by uncertainties
 - economics (portfolio selection,...)
 - environmental management (water resource and waste mng. planning)
 - logistic
 - ...
- technical tool in constraint programming and global optimization
- others
 - interval matrix games
 - measure of sensitivity of linear programs

Example (An interval polyhedron)

$$\begin{pmatrix} -[2,5] & -[7,11] \\ [1,13] & -[4,6] \\ [5,8] & [-2,1] \\ -[1,4] & [5,9] \\ -[5,6] & -[0,4] \end{pmatrix} X \leq \begin{pmatrix} [61,63] \\ [19,20] \\ [15,22] \\ [24,25] \\ [26,37] \end{pmatrix}$$

- union of all feasible sets in light gray,
- intersection of all feasible sets in dark gray,

Complexity of basic problems

	$\mathbf{A}x = \mathbf{b}, \ x \ge 0$	$\mathbf{A}x \leq \mathbf{b}$	$\mathbf{A}x \leq \mathbf{b}, \ x \geq 0$
strong feasibility	co-NP-hard	polynomial	polynomial
weak feasibility	polynomial	NP-hard	polynomial
strong unboundedness	co-NP-hard	polynomial	polynomial
weak unboundedness	suff. / necessary conditions only	suff. / necessary conditions only	polynomial
strong optimality	co-NP-hard	co-NP-hard	polynomial
weak optimality	suff. / necessary conditions only	suff. / necessary conditions only	suff. / necessary conditions only
optimal value range	<u>f</u> polynomial f NP-hard	<u>f</u> NP-hard f polynomial	polynomial

Optimal value range

Definition

$$\underline{f}:=\min f(A,b,c) \hspace{0.2cm} ext{subject to} \hspace{0.2cm} A\in oldsymbol{\mathsf{A}}, \hspace{0.2cm} b\in oldsymbol{\mathsf{b}}, \hspace{0.2cm} c\in oldsymbol{\mathsf{c}},$$

 $\overline{f} := \max f(A, b, c)$ subject to $A \in \mathbf{A}, b \in \mathbf{b}, c \in \mathbf{c}$.

Theorem (Rohn, 2006)

We have for type $(\mathbf{A}x = \mathbf{b}, x \ge 0)$

$$\frac{f}{f} = \min \underline{c}^T x \quad subject \ to \quad \underline{A}x \leq \overline{b}, \ \overline{A}x \geq \underline{b}, \ x \geq 0,$$
$$\overline{f} = \max_{p \in \{\pm 1\}^m} f(A_c - \operatorname{diag}(p) A_\Delta, b_c + \operatorname{diag}(p) b_\Delta, \overline{c}).$$

Theorem (Vajda, 1961)

We have for type ($\mathbf{A}x \leq \mathbf{b}, x \geq 0$)

$$\underline{f} = \min \underline{c}^{\mathsf{T}} x \text{ subject to } \underline{A} x \leq \overline{b}, \ x \geq 0,$$

$$\overline{f} = \min \overline{c}^{\mathsf{T}} x \text{ subject to } \overline{A} x \leq \underline{b}, \ x \geq 0.$$

Optimal value range

Algorithm (Optimal value range $[\underline{f}, \overline{f}]$)

Compute

$$\underline{f} := \mathsf{inf} \ c_c^{\mathsf{T}} x - c_\Delta^{\mathsf{T}} |x| \ \mathsf{subject to} \ x \in \mathcal{M},$$

where ${\cal M}$ is the primal solution set.

2 If
$$\underline{f} = \infty$$
, then set $\overline{f} := \infty$ and stop.

Compute

$$\overline{\varphi} := \sup \ b_c^T y + b_\Delta^T |y| \ \text{ subject to } \ y \in \mathcal{N},$$

where ${\cal N}$ is the dual solution set.

- If $\overline{\varphi} = \infty$, then set $\overline{f} := \infty$ and stop.
- If the primal problem is strongly feasible, then set *f* := *φ*; otherwise set *f* := ∞.

The optimal solution set

Denote by S(A, b, c) the set of optimal solutions to

min
$$c^T x$$
 subject to $Ax = b$, $x \ge 0$,

Then the optimal solution set is defined

$$\mathcal{S} := \bigcup_{A \in \mathbf{A}, \ b \in \mathbf{b}, \ c \in \mathbf{c}} \mathcal{S}(A, b, c).$$

Goal

Find a tight enclosure to \mathcal{S} .

Definition

The interval linear programming problem

min
$$\mathbf{c}^T x$$
 subject to $\mathbf{A} x = \mathbf{b}, \ x \ge 0$,

is B-stable if B is an optimal basis for each realization.

Theorem

B-stability implies that the optimal value bounds are

Under the unique B-stability, the set of all optimal solutions reads

$$\underline{A}_B x_B \leq \overline{b}, \ -\overline{A}_B x_B \leq -\underline{b}, \ x_B \geq 0, \ x_N = 0.$$

Basis stability

Non-interval case

Basis B is optimal iff

C1. A_B is non-singular; C2. $A_B^{-1}b \ge 0$; C3. $c_N^T - c_B^T A_B^{-1} A_N \ge 0^T$.

Interval case

The problem is B-stable iff C1–C3 holds for each $A \in \mathbf{A}$, $b \in \mathbf{b}$, $c \in \mathbf{c}$.

Condition C1

- C1 says that **A**_B is regular;
- co-NP-hard problem;
- sufficient condition: $\rho\left(|((A_c)_B)^{-1}|(A_{\Delta})_B\right) < 1.$

Basis stability

Non-interval case

Basis B is optimal iff

- C1. A_B is non-singular;
- C2. $A_B^{-1}b \ge 0;$
- C3. $c_N^T c_B^T A_B^{-1} A_N \ge 0^T$.

Interval case

The problem is B-stable iff C1–C3 holds for each $A \in \mathbf{A}, b \in \mathbf{b}, c \in \mathbf{c}$.

Condition C2

- C2 says that the solution set to $\mathbf{A}_B x_B = \mathbf{b}$ lies in \mathbb{R}^n_+ ;
- polynomial problem under assumption C1;
- sufficient condition: check of some enclosure to $\mathbf{A}_B x_B = \mathbf{b}$.

Basis stability

Non-interval case

Basis B is optimal iff

C1. A_B is non-singular;

C2.
$$A_B^{-1}b \ge 0;$$

C3. $c_N^T - c_B^T A_B^{-1} A_N \ge 0^T$

Interval case

The problem is B-stable iff C1–C3 holds for each $A \in \mathbf{A}$, $b \in \mathbf{b}$, $c \in \mathbf{c}$.

Condition C3

- C2 says that $\mathbf{A}_N^T y \leq \mathbf{c}_N$, $\mathbf{A}_B^T y = \mathbf{c}_B$ is strongly feasible;
- co-NP-hard problem;
- sufficient condition: $(\mathbf{A}_N^T)\mathbf{y} \leq \underline{c}_N$, where \mathbf{y} is an enclosure to $\mathbf{A}_B^T \mathbf{y} = \mathbf{c}_B$.

Theorem

Condition C3 holds true if and only if for each $q \in \{\pm 1\}^m$ the polyhedral set described by

$$egin{aligned} &((A_c)_B^{T}-(A_{\Delta})_B^{T}\operatorname{diag}(q))y\leq\overline{c}_B,\ &-((A_c)_B^{T}+(A_{\Delta})_B^{T}\operatorname{diag}(q))y\leq-\underline{c}_B,\ &\mathrm{diag}(q)\,y\geq0 \end{aligned}$$

lies inside the polyhedral set

$$((A_c)_N^T + (A_\Delta)_N^T \operatorname{diag}(q))y \leq \underline{c}_N, \ \operatorname{diag}(q)y \geq 0.$$

Example

Example

Consider an interval linear program

$$\max \left([5,6], [1,2] \right)^{\mathcal{T}} x \text{ s.t. } \begin{pmatrix} -[2,3] & [7,8] \\ [6,7] & -[4,5] \\ 1 & 1 \end{pmatrix} x \leq \begin{pmatrix} [15,16] \\ [18,19] \\ [6,7] \end{pmatrix}, \ x \geq 0.$$

- union of all feasible sets in light gray,
- intersection of all feasible sets in dark gray,
- set of optimal solutions in dotted area

Interval case

Basis B is optimal iff

- C1. A_B is non-singular;
- C2. $A_B^{-1}b \ge 0$ for each $b \in \mathbf{b}$.

C3.
$$c_N^T - c_B^T A_B^{-1} A_N \ge 0^T$$
.

Condition C1

- C1 and C3 are trivial
- C2 is simplified to

$$\underline{A_B^{-1}\mathbf{b}} \ge 0,$$

which is easily verified by interval arithmetic

• overall complexity: polynomial

Basis stability - interval objective function

Interval case

Basis B is optimal iff

C1. A_B is non-singular;

C2.
$$A_B^{-1}b \ge 0$$
;
C3. $c_N^T - c_B^T A_B^{-1} A_N \ge 0^T$ for each $c \in \mathbf{c}$

Condition C1

- C1 and C2 are trivial
- C3 is simplified to

$$A_N^T y \leq \mathbf{c}_N, \ A_B^T y = \mathbf{c}_B$$

or,

$$(A_N^T A_B^{-T}) \mathbf{c}_B \leq \underline{c}_N.$$

• overall complexity: polynomial

M. Hladík (CUNI)

Open problems

- A sufficient and necessary condition for weak unboundedness, strong boundedness and weak optimality.
- A method for determining the image of the optimal value function.
- A sufficient and necessary condition for duality gap to be zero for each realization.
- A method to test if a basis B is optimal for some realization.
- Tight enclosure to the optimal solution set.