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Introduction

Linear programming

Three basic forms of linear programs

f (A, b, c) ≡ min cT x subject to Ax = b, x ≥ 0,

f (A, b, c) ≡ min cT x subject to Ax ≤ b,

f (A, b, c) ≡ min cT x subject to Ax ≤ b, x ≥ 0.

Notation

An interval matrix

A := [A,A] = {A ∈ R
m×n | A ≤ A ≤ A}.

The center and radius matrices

Ac :=
1

2
(A+ A), A∆ :=

1

2
(A− A).
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Introduction

Interval linear programming

Family of linear programs with A ∈ A, b ∈ b, c ∈ c, in short

f (A,b, c) ≡ min cT x subject to Ax
(≤)
= b, (x ≥ 0).

A realization is a concrete linear program in this family.

The three forms are not transformable between each other!

Goals

determine the optimal value range;

determine a tight enclosure to the optimal solution set.
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Introduction

Applications

real-life problems affected by uncertainties

economics (portfolio selection,. . . )
environmental management (water resource and waste mng. planning)
logistic
. . .

technical tool in constraint programming and global optimization

others

interval matrix games
measure of sensitivity of linear programs
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Example

Example (An interval polyhedron)

5 10−5−10

5

10

−5

−10

0 x1

x2






−[2, 5] −[7, 11]
[1, 13] −[4, 6]
[5, 8] [−2, 1]
−[1, 4] [5, 9]
−[5, 6] −[0, 4]






x ≤







[61, 63]
[19, 20]
[15, 22]
[24, 25]
[26, 37]







union of all feasible
sets in light gray,

intersection of all
feasible sets in dark
gray,
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Complexity of basic problems

Ax = b, x ≥ 0 Ax ≤ b Ax ≤ b, x ≥ 0

strong feasibility co-NP-hard polynomial polynomial

weak feasibility polynomial NP-hard polynomial

strong
unboundedness

co-NP-hard polynomial polynomial

weak
unboundedness

suff. / necessary
conditions only

suff. / necessary
conditions only

polynomial

strong
optimality co-NP-hard co-NP-hard polynomial

weak optimality
suff. / necessary
conditions only

suff. / necessary
conditions only

suff. / necessary
conditions only

optimal value
range

f polynomial
f NP-hard

f NP-hard
f polynomial

polynomial
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Optimal value range

Definition

f := min f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c,

f := max f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c.

Theorem (Rohn, 2006)

We have for type (Ax = b, x ≥ 0)

f = min cT x subject to Ax ≤ b, Ax ≥ b, x ≥ 0,

f = max
p∈{±1}m

f (Ac − diag(p)A∆, bc + diag(p) b∆, c).

Theorem (Vajda, 1961)

We have for type (Ax ≤ b, x ≥ 0)

f = min cT x subject to Ax ≤ b, x ≥ 0,

f = min cT x subject to Ax ≤ b, x ≥ 0.

M. Hlad́ık (CUNI) Basis stability in interval LP 7 / 19



Optimal value range

Algorithm (Optimal value range [f , f ])

1 Compute

f := inf cTc x − cT∆ |x | subject to x ∈ M,

where M is the primal solution set.

2 If f = ∞, then set f := ∞ and stop.

3 Compute

ϕ := sup bTc y + bT∆|y | subject to y ∈ N ,

where N is the dual solution set.

4 If ϕ = ∞, then set f := ∞ and stop.

5 If the primal problem is strongly feasible, then set f := ϕ;
otherwise set f := ∞.
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Optimal solution set

The optimal solution set

Denote by S(A, b, c) the set of optimal solutions to

min cT x subject to Ax = b, x ≥ 0,

Then the optimal solution set is defined

S :=
⋃

A∈A, b∈b, c∈c

S(A, b, c).

Goal

Find a tight enclosure to S.
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Basis stability

Definition

The interval linear programming problem

min cT x subject to Ax = b, x ≥ 0,

is B-stable if B is an optimal basis for each realization.

Theorem

B-stability implies that the optimal value bounds are

f = min cTB x subject to ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0,

f = max cTB x subject to ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0.

Under the unique B-stability, the set of all optimal solutions reads

ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0, xN = 0.
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Basis stability

Non-interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B

b ≥ 0;

C3. cTN − cTB A−1
B

AN ≥ 0T .

Interval case

The problem is B-stable iff C1–C3 holds for each A ∈ A, b ∈ b, c ∈ c.

Condition C1

C1 says that AB is regular;

co-NP-hard problem;

sufficient condition: ρ
(

|((Ac )B)
−1|(A∆)B

)

< 1.
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Basis stability

Non-interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B

b ≥ 0;

C3. cTN − cTB A−1
B AN ≥ 0T .

Interval case

The problem is B-stable iff C1–C3 holds for each A ∈ A, b ∈ b, c ∈ c.

Condition C2

C2 says that the solution set to ABxB = b lies in R
n
+;

polynomial problem under assumption C1;

sufficient condition: check of some enclosure to ABxB = b.
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Basis stability

Non-interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B b ≥ 0;

C3. cTN − cTB A−1
B AN ≥ 0T .

Interval case

The problem is B-stable iff C1–C3 holds for each A ∈ A, b ∈ b, c ∈ c.

Condition C3

C2 says that AT
Ny ≤ cN , AT

B y = cB is strongly feasible;

co-NP-hard problem;

sufficient condition:
(AT

N )y ≤ cN , where y is an enclosure to AT
B y = cB .
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Basis stability

Theorem

Condition C3 holds true if and only if for each q ∈ {±1}m the polyhedral
set described by

((Ac)
T
B − (A∆)

T
B diag(q))y ≤ cB ,

−((Ac)
T
B + (A∆)

T
B diag(q))y ≤ −cB ,

diag(q) y ≥ 0

lies inside the polyhedral set

((Ac)
T
N + (A∆)

T
N diag(q))y ≤ cN , diag(q) y ≥ 0.
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Example

Example

Consider an interval linear program

max ([5, 6], [1, 2])T x s.t.

(

−[2, 3] [7, 8]
[6, 7] −[4, 5]
1 1

)

x ≤

(

[15, 16]
[18, 19]
[6, 7]

)

, x ≥ 0.

1 2 3 4 5

1

2

3

4

0 x1

x2 union of all feasible
sets in light gray,

intersection of all
feasible sets in dark
gray,

set of optimal
solutions in dotted
area
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Basis stability – interval right-hand side

Interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B b ≥ 0 for each b ∈ b.

C3. cTN − cTB A−1
B

AN ≥ 0T .

Condition C1

C1 and C3 are trivial

C2 is simplified to
A−1
B b ≥ 0,

which is easily verified by interval arithmetic

overall complexity: polynomial
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Basis stability – interval objective function

Interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B

b ≥ 0;

C3. cTN − cTB A−1
B

AN ≥ 0T for each c ∈ c

Condition C1

C1 and C2 are trivial

C3 is simplified to
AT
Ny ≤ cN , AT

B y = cB

or,

(AT
NA

−T
B )cB ≤ cN .

overall complexity: polynomial
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Conclusion

Open problems

A sufficient and necessary condition for weak unboundedness, strong
boundedness and weak optimality.

A method for determining the image of the optimal value function.

A sufficient and necessary condition for duality gap to be zero for
each realization.

A method to test if a basis B is optimal for some realization.

Tight enclosure to the optimal solution set.
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