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Charles University, Prague

Beroun 2011
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Goal

Design efficient algorithms
polynomial-time
approximation
FPT
. . .

for hard problems, when restricted to sparse graphs.
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What are sparse graphs?

whatever turns out to be useful
generally tend to have few edges
often bounded expansion or nowhere-dense
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Properties of (some) sparse graphs

structural decompositions
obstructions to tree-width
small separators
“almost” bounded tree-width
quasi-wideness
generalizations of degeneracy
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Structural decompositions: Example

Theorem (Robertson and Seymour)

For every H there exists k such that if H is not a minor of G,
then there exist graphs G1, . . . , Gn and sets Si ⊆ V (Gi) (apex
vertices) such that

G can be obtained from G1, . . . , Gn by clique-sums,
|Si | ≤ k,
Gi − Si is embedded with at most k vortices of depth at
most k in a surface Σi such that H cannot be drawn in Σi .
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Related results

Strengthenings in special cases:
H has one crossing: only planar pieces without vortices or
apex vertices, and pieces of bounded size (Demaine,
Hajiaghayi and Thilikos)
H is apex: apex vertices only attach to quasivortices
(Demaine, Hajiaghayi and Kawarabayashi)

Generalizations:
odd minors: pieces may also be arbitrary bipartite graphs
(Demaine, Hajiaghayi and Kawarabayashi)
topological minors: pieces may be bounded degree graphs
(Grohe, Kawarabayashi, Marx and Wollan)

Other settings: perfect graphs, claw-free graphs, . . .
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Applications

implies other properties
direct algorithms; e.g., additive approximation for chromatic
number

OPT + k − 2 for Kk -minor-free (Demaine, Hajiaghayi and
Kawarabayashi)
OPT + 2 for H-minor-free, where H is apex (Demaine,
Hajiaghayi and Kawarabayashi)
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Tree-width and its uses

Theorem

Every problem can be solved in linear time for graphs with
tree-width bounded by a constant, unless it cannot.

Theorem (Courcelle)

Any problem expressible in Monadic Second-Order Logic can
be solved in linear time for graphs with tree-width bounded by a
constant.
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Obstructions to tree-width

Theorem

There exists f such that if tw(G) > f (k), then G contains k × k
wall as a topological minor.

f exists (Robertson and Seymour)
f (k) ≤ 400k5

(Robertson, Seymour and Thomas)
if G avoids a fixed minor, then f is linear (Demaine and
Hajiaghayi)
unless G contains a big clique minor, the wall is flat
under further assumptions, grid-like graphs can be
obtained only by contractions
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Basic idea

Either tree-width is small (and we can solve the problem),
or
we have a big wall (and obtain a contradiction, or it can be
reduced, or . . .)
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Example: crossing number is FPT (Grohe)

Does G have crossing number at most k?
if tw(G) is small, then solvable in linear time (expressible in
MSOL)
if G contains a big clique minor, then its crossing number is
greater than k
if G contains a big flat wall, then we find a vertex v such
that cr(G − v) ≤ k iff cr(G) ≤ k .
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Example: FPT for dominating set in graphs of
bounded genus

Does G (embedded in a fixed surface Σ) contain a dominating
set of size at most k?

Let t = 3
√

k + 2.
if tw(G) ≤ f (t), then solvable in linear time
otherwise, G can be contracted to a t × t partially
triangulated grid and a single apex attaching to its
boundary⇒ no dominating set of size at most k .
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Bidimensional properties

Definition

A property is bidimensional if
non-increasing on contractions (and possibly edge/vertex
deletions)
unbounded for “grid-like” graphs
can be determined in polynomial-time for graphs of
bounded tree-width
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Consequences of bidimensionality

FPT on appropriate classes of graphs (cf. “grid-like”)
with some additional assumptions, PTAS’s
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Separators in planar graphs

Definition

(A,B) is a separator in G if G = A ∪ B, E(A) ∩ E(B) = ∅ and
|V (A)|, |V (B)| ≥ |V (G)/3. Its order is |V (A) ∩ V (B)|.

Theorem (Lipton and Tarjan)

Every planar graph on n vertices has a separator of order
O(
√

n).
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Generalizations

Kk -minor free graphs have separators of order O(
√

n)
(Alon, Seymour and Thomas)
graph classes with subexponential expansion have
sublinear separators (Plotkin and Rao; Nešetřil and
Ossona de Mendez).
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Applications

Enumeration: if G has separators of order O(n/ log2 n),
then it contains only 2O(n)n! labelled graphs on n vertices
(D. and Norine)
Approximation:

separators of order O(n1−ε) and degeneracy imply PTAS
for independent set
PTAS for bidimensional problems with further assumptions
(good behavior with respect to separators)

Subexponential algorithms: independent set, chromatic
number, . . .
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Neighborhoods in planar graphs

Theorem (Robertson and Seymour)

A planar graph of radius r has tree-width O(r).

Corollary

If G is planar and v ∈ V (G), the subgraph of G induced by
vertices in distance at most r from v has tree-width O(r).

Lm,k (v) . . . the set of vertices in distance m (mod k) from v

Corollary

For every k, m, a planar graph G and v ∈ V (G), the tree-width
of G − Lm,k (v) is O(k).
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Locally bounded tree-width

Definition

A class of graphs G has locally bounded tree-width if there
exists f such that for every G ∈ G, v ∈ V (G) and r > 0, the
subgraph of G induced by vertices in distance at most r from v
has tree-width at most f (r).

Examples:
bounded maximum degree
minor-closed classes avoiding an apex graph (Eppstein)
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Applications of locally bounded tree-width

Theorem (Frick and Grohe)

For every ε > 0, any problem expressible in First Order Logic
can be solved in O(n1+ε) for any class of graphs with locally
bounded tree-width.

Example: Does G have a dominating set of size at most k?

find a maximal set S of vertices in pairwise distance at
least three.
if |S| > k , then the answer is no
otherwise, radius of each component of G is O(k), and G
has bounded tree-width.
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Bounded tree-width covers

Definition

A class G has bounded tree-width covers if there exists f such
that for every G ∈ G and k > 0, there exists a partition
V (G) = V1∪̇ . . . ∪̇Vk such that tw(G − Vi) ≤ f (k) for 1 ≤ i ≤ k .

locally bounded tree-width + minor-closed⇒ bounded
tree-width cover.
implies bounded expansion, sublinear separators
holds for proper minor-closed classes (Demaine,
Hajiaghayi and Kawarabayashi)
proper minor-closed classes have also the analogical
property for contractions (Demaine, Hajiaghayi and Mohar)
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Applications of bounded tree-width covers

factor 2 approximation for chromatic number
PTAS’s for many problems

implies FPT

subexponential algorithms
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Example: PTAS for largest independent set

Suppose that V (G) = V1∪̇ . . . ∪̇Vk , and let S be an independent
set in G of size α(G).

for 1 ≤ i ≤ k , we have α(G − Vi) ≤ α(G)

there exists i ∈ {1, . . . , k} such that |S ∩ Vi | ≤ |S|/k .
Therefore, (1− 1/k)α(G) ≤ max1≤i≤k α(G − Vi) ≤ α(G).
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Open Problem

Problem

Characterize classes of graphs that have bounded tree-width
covers.

Or, for the fractional version (there exist sets V1, . . . , Vn, such
that each vertex is in at most n/k of them, and G − Vi has
bounded tree-width for 1 ≤ i ≤ n)?
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Big scattered sets

Definition

A (d , r)-width of G is the maximum size of a set A such that the
distance between every two vertices of A in G − S is at least d ,
for some set S ⊆ V (G) of size at most r .

Definition

A class of graphs G is quasi-wide if there exists f such that for
each d and m, only finitely many graphs in G have
(d , f (d))-width at most m.
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Quasi-wide classes

bounded maximum degree⇒ quasi-wide, with f (d) = 0
Kk -minor-free classes are quasi-wide, with f (d) = k − 1
(Atserias, Dawar and Kolaitis)
hereditary graph class is quasi-wide iff it is nowhere dense
(Nešetřil and Ossona de Mendez)

Applications: FPT for domination number (and variations).
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Degeneracy (coloring number)

Definition

A graph G is d-degenerate if every subgraph of G contains a
vertex of degree at most d .

Equivalently,

Definition

A graph G is d-degenerate if there exists a linear ordering of
V (G) such that every vertex has at most d neighbors before it
in the ordering.

Coloring number col(G) = d + 1, where d is the smallest such
that G is d-degenerate.
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Generalizations

Given a linear ordering < of V (G) and vertices u < v ,
u is weakly k-reachable from v if there exists a path P
between u and v of length at most k , whose internal
vertices are > u,
u is k-reachable from v if the internal vertices are > v
the k-backconnectivity of v is the maximum number of
disjoint (≤ k)-paths from v to vertices < v .

Let
weak k -coloring number wcolk (G, <) =
1 + maxv∈V (G) |{vertices weakly k -reachable from v}|
k -coloring number
colk (G, <) = 1+maxv∈V (G) |{vertices k -reachable from v}|
k -admissibility
admk (G, <) = maxv∈V (G) k -backconnectivity of v

Define wcolk (G), colk (G) and admk (G) as minimum over all
linear orderings < of V (G).
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Properties of generalized coloring numbers

admk (G) ≤ colk (G) ≤ wcolk (G) ≤ (admk (G) + 1)k2

col2(G) bounds acyclic chromatic number
wcol2(G) bounds star chromatic number
bounded col2(G)⇒ linear Ramsey number (Chen and
Schelp)
for a class of graphs G, colk (G) is bounded for every k iff G
has bounded expansion
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Determining generalized coloring numbers

admk (G) ≤ t can be tested in O(nkt+2)

admk (G) can be approximated within factor of k
in a class of graphs with bounded expansion, admk (G) can
be determined in linear time

Problem

Can colk (G) and wcolk (G) be determined exactly, or at least
approximated within constant factor, in polynomial time?
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Application: approximation of domination number

Theorem

Given an ordering < of vertices of G with wcol2(G) ≤ c, one
can find in linear time

a dominating set D and
a set A of vertices in pairwise distance at least three,

such that |D| ≤ c2|A|.

Observation: every dominating set in G has size at least |A|,
thus |D| ≤ c2OPT.
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Low tree-depth colorings

Tomorrow.
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