12TH TUTORIAL ON RANDOMIZED ALGORITHMS

Yao’s minimax principle and its application to lower bounds

1. Searching. Show a lower bound on the expected running time of any Las Vegas
comparison-based algorithm for searching in a sorted array.

2. Sorting. Show a lower bound on the expected running time of any Las Vegas
comparison-based algorithm for sorting n numbers.

3.  Three consecutive 1s. Given a binary string of length n, the goal is to determine
whether or not there are three consecutive 1s. Show a lower bound on the expected
number of steps, where in one step, the algorithm can examine one bit.

4.  Majority element in a query model. Given a list of values vy, ..., v,, the goal is
to find an index i, if one exists, such that the value v; occurs more than n/2 times
in the list. Determine a lower bound on the expected running time of any Las Vegas
algorithm that solves the problem, but is restricted to only ask equality queries; that
is, in each step the algorithm specifies indexes ¢, j and is told whether v; = v; or not.
The algorithm cannot access v;’s in any other way.

5. Perfect matching. Let G be an n-vertex graph for an even n such that we only have
a query access to the edges, namely, we can only ask whether two nodes are connected
or not. Show that Q(n?) queries are needed in expectation for any algorithm that
correctly determines whether G has a perfect matching or not.



