3-wise independent bits

From the last time:
D: A set of random variables $X_{1}, \ldots X_{n}$ is k-wise independent if for any subset $I \subseteq\{1, \ldots, n\}$ with $|I| \leq k$ and any possible outcome values c_{i}, the multiplication property for independence holds:

$$
\operatorname{Pr}\left[\bigwedge_{i \in I}\left(X_{i}=c_{i}\right)\right]=\prod_{i \in I} \operatorname{Pr}\left[X_{i}=c_{i}\right] .
$$

EXERCISE ONE We know that k bits are sufficient for generating $O\left(2^{k}\right)$ many random pairwise-independent variables. The question now is: how many do we need for 3 -wise independent variables?
Surprisingly, you can generate 2^{k-1} of them using again just k bits. Suggest a generator and prove that the result are 3 -wise independent random bits.

Parallel algorithms

EXERCISE TWO Design a deterministic parallel algorithm, which, given a graph $G=(V, E)$ and some subset $X \subseteq V$, is able to determine whether X is a inclusion-wise maximal independent set in time $O(\log |E|)$ and with $O(|E|)$ processors.

EXERCISE THREE An inclusion-wise maximal matching in a graph is any matching which cannot be improved by just adding an edge (without any removals).
Design a parallel randomized Las Vegas algorithm which can find such a matching.
EXERCISE FOUR Design a parallel randomized Las Vegas algorithm which generates a uniformly random permutation on n elements. This will be a very different algorithm compared to the ones we have seen at the lecture, so let us break the task into steps:
a) One possible solution is built upon injective functions. Suppose we have some set $X=\{1, \ldots n\}$ and $Y=\{1, \ldots, m\}, m \geq n$. What is the probability that a uniformly random function $f: X \rightarrow Y$ is injective?
b) Suppose that I give you a uniformly random injective function $f: X \rightarrow Y$ at the start of the algorithm. Can you create a uniformly random permutation out of it?
c) Can you quickly test in parallel that a given function $f: X \rightarrow Y$ is injective?
d) Can you now generate a uniformly random permutation using the above?

Perfect matchings

EXERCISE FIVE Prove that the rank of the Edmonds matrix of a bipartite graph G is equal to the size of the largest matching in G.
The Edmonds matrix of a bipartite graph $G=(U, V, E)$ with partites $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and $V=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ is defined as a matrix B of polynomials of size $n \times n$ such that

$$
B_{i j}= \begin{cases}x_{i j} & \text { if }\left(v_{i}, v_{j}\right) \in E \\ 0 & \text { otherwise }\end{cases}
$$

A similar result holds for general graphs: the rank of the Tutte matrix of a graph G is equal to two times the size of the largest matching in G.
The Tutte matrix of a graph $G=(V, E)$ with n vertices is defined as a matrix T of polynomials of size $n \times n$ such that

$$
B_{i j}= \begin{cases}x_{i j} & \text { if }\left(v_{i}, v_{j}\right) \in E, i<j \\ -x_{j i} & \text { if }\left(v_{i}, v_{j}\right) \in E, i>j \\ 0 & \text { otherwise }\end{cases}
$$

That is, $T_{i j}=x_{i j}$ and $T_{j i}=-x_{i j}$ for $i<j$.

