INTRO TO APPROXIMATION, CLASS 7

Leftovers: 3-wise independent variables, parallel algorithms, and matching

3-wise independent bits

From the last time:

D: A set of random variables X, ... X, is k-wise independent if for any subset I C {1,...,n} with
|I| <k and any possible outcome values ¢;, the multiplication property for independence holds:

Pri\(X; = ;)] = [ [ PriX; = ci].
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EXERCISE ONE We know that k bits are sufficient for generating O(2%) many random
pairwise-independent variables. The question now is: how many do we need for 3-wise independent
variables?

Surprisingly, you can generate 2¥~! of them using again just k bits. Suggest a generator and prove
that the result are 3-wise independent random bits.

Parallel algorithms

EXERCISE TWO Design a deterministic parallel algorithm, which, given a graph G = (V| F)
and some subset X C V' is able to determine whether X is a inclusion-wise maximal independent
set in time O(log|E|) and with O(|E|) processors.

EXERCISE THREE An inclusion-wise maximal matching in a graph is any matching which
cannot be improved by just adding an edge (without any removals).

Design a parallel randomized Las Vegas algorithm which can find such a matching.

EXERCISE FOUR Design a parallel randomized Las Vegas algorithm which generates a uni-
formly random permutation on n elements. This will be a very different algorithm compared to the
ones we have seen at the lecture, so let us break the task into steps:

a) One possible solution is built upon injective functions. Suppose we have some set X = {1,...n}
andY = {1,...,m}, m > n. What is the probability that a uniformly random function f : X — Y
is injective?

b) Suppose that I give you a uniformly random injective function f : X — Y at the start of the
algorithm. Can you create a uniformly random permutation out of it?

¢) Can you quickly test in parallel that a given function f : X — Y is injective?

d) Can you now generate a uniformly random permutation using the above?



Perfect matchings

EXERCISE FIVE Prove that the rank of the Edmonds matrix of a bipartite graph G is equal
to the size of the largest matching in G.

The Edmonds matrix of a bipartite graph G = (U, V, E) with partites U = {uy,...,u,} and V =
{v1,...,v,} is defined as a matrix B of polynomials of size n x n such that

Tij if (Uz‘,?]j) ek
B;; = )
0 otherwise

A similar result holds for general graphs: the rank of the Tutte matrix of a graph G is equal to two
times the size of the largest matching in G.

The Tutte matrix of a graph G = (V, E) with n vertices is defined as a matrix T' of polynomials of
size n X n such that
xy; i (vi,v5) € Eyi < j
Bij = —x;; if (v,v;) € E)i >
0 otherwise

That is, T;; = x;; and Tj; = —x;; for ¢ < j.



