
INTRO TO APPROXIMATION, CLASS 7
Leftovers: 3-wise independent variables, parallel algorithms, and matching

3-wise independent bits

From the last time:
D: A set of random variables X1, . . . Xn is k-wise independent if for any subset I ⊆ {1, . . . , n} with
|I| ≤ k and any possible outcome values ci, the multiplication property for independence holds:

Pr[
∧
i∈I

(Xi = ci)] =
∏
i∈I

Pr[Xi = ci].

Exercise one We know that k bits are sufficient for generating O(2k) many random
pairwise-independent variables. The question now is: how many do we need for 3-wise independent
variables?
Surprisingly, you can generate 2k−1 of them using again just k bits. Suggest a generator and prove
that the result are 3-wise independent random bits.

Parallel algorithms

Exercise two Design a deterministic parallel algorithm, which, given a graph G = (V,E)
and some subset X ⊆ V , is able to determine whether X is a inclusion-wise maximal independent
set in time O(log |E|) and with O(|E|) processors.

Exercise three An inclusion-wise maximal matching in a graph is any matching which
cannot be improved by just adding an edge (without any removals).
Design a parallel randomized Las Vegas algorithm which can find such a matching.

Exercise four Design a parallel randomized Las Vegas algorithm which generates a uni-
formly random permutation on n elements. This will be a very different algorithm compared to the
ones we have seen at the lecture, so let us break the task into steps:
a) One possible solution is built upon injective functions. Suppose we have some set X = {1, . . . n}

and Y = {1, . . . ,m},m ≥ n. What is the probability that a uniformly random function f : X → Y
is injective?

b) Suppose that I give you a uniformly random injective function f : X → Y at the start of the
algorithm. Can you create a uniformly random permutation out of it?

c) Can you quickly test in parallel that a given function f : X → Y is injective?
d) Can you now generate a uniformly random permutation using the above?



Perfect matchings

Exercise five Prove that the rank of the Edmonds matrix of a bipartite graph G is equal
to the size of the largest matching in G.
The Edmonds matrix of a bipartite graph G = (U, V,E) with partites U = {u1, . . . , un} and V =
{v1, . . . , vn} is defined as a matrix B of polynomials of size n× n such that

Bij =

{
xij if (vi, vj) ∈ E

0 otherwise

A similar result holds for general graphs: the rank of the Tutte matrix of a graph G is equal to two
times the size of the largest matching in G.
The Tutte matrix of a graph G = (V,E) with n vertices is defined as a matrix T of polynomials of
size n× n such that

Bij =


xij if (vi, vj) ∈ E, i < j

−xji if (vi, vj) ∈ E, i > j

0 otherwise

That is, Tij = xij and Tji = −xij for i < j.


