Stationary distributions of finite Markov chains

Recall that a finite Markov chain with n states is represented by a non-negative matrix $P \in \mathbb{R}^{n \times n}$ with column sums equal to 1 . We represent a distribution on the states by a non-negative vector \mathbf{p} with the sum of entries equal to 1 . If \mathbf{p} is a distribution on the n states, then $P \mathbf{p}$ is the distribution after a step of the Markov chain and $P^{k} \mathbf{p}$ is the state after k steps.

Definition 1. A distribution $\boldsymbol{\pi} \in \mathbb{R}^{n}$ is called a stationary distribution of a Markov chain P if $P \boldsymbol{\pi}=\boldsymbol{\pi}$.

Theorem 2. Suppose that P is an irreducible and aperiodic Markov chain. Then there exists a unique stationary distribution $\boldsymbol{\pi}$. Moreover, for every $i, j, \lim _{t \rightarrow \infty} P_{i, j}^{t}$ exists and is equal to π_{i}.

Lemma 3. For P aperiodic and irreducible, there exist $k \geq 1$ and $\delta>0$ such that for all $i, j, P_{i, j}^{k}>\delta$.

Proof. For a given i, let A be the set of all $t \geq 1$ such that $P_{i, i}^{t}>0$. The set A is noempty as P is irreducible and it is closed under addition as $P_{i, i}^{t+t^{\prime}} \geq P_{i, i}^{t} P_{i, i}^{t^{\prime}}$. Furthermore, the aperiodicity of P implies that $\operatorname{gcd}(A)=1$, where $\operatorname{gcd}(A)$ is the createst common divisor of (all the numbers in) A.

An easy number-theoretic fact is that such an A contains all but finitely many natural numbers. Let $a \in A$ be arbitrary. Since $\operatorname{gcd}(A)=1$, we can express 1 as a linear combination of elements of A with integer coefficients (some may be negative). This implies that for some $\alpha \in \mathbb{N}$, we can express $\alpha a+1$ as a linear combination of elements of a with non-negative integer coefficients, simply by adding term $a \cdot b$ for all $b \in A$ with a negative coefficient sufficiently many times. Now for any $\beta \geq \alpha a$ and $\gamma=0, \ldots, a-1$, we can express $\beta a+\gamma$ as γ times the combination for $\alpha a+1$ plus some multiple of a. Thus for any $t \geq \beta a$, we have $t \in A$.

Using the fact above for all i, we can find t_{0} such that for all i and all $t \geq t_{0}, P_{i, i}^{t}>0$. Now we claim that for $k=t_{0}+n$, for all $i, j, P_{i, j}^{k}>0$. Since P is irreducible, there exist $\ell \leq n$ such that $P_{i, j}^{\ell}>0$: consider the shortest path in the underlying graph from state j to i. Then $P_{i, j}^{k} \geq P_{i, i}^{k-\ell} P_{i, j}^{\ell}>0$ as $k-\ell \geq t_{0}$.

Finally, if for $P_{i, j}^{k}>0$ for all i, j, then there also exists $\delta>0$ such that $P_{i, j}^{k}>0$ for all i, j, as the matrix has finitely many elements.

We will work with the l_{1}-norm of vectors, which is just a sum of the absolute values of the entries, i.e., $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$. We will also use the standard decomposition of a vector \mathbf{x} to its positive and negative parts \mathbf{x}^{+}and \mathbf{x}^{-}defined by $x_{i}^{+}=\max \left\{x_{i}, 0\right\}$ and $x_{i}^{-}=\max \left\{-x_{i}, 0\right\}$. Then $\mathbf{x}=\mathbf{x}^{+}-\mathbf{x}^{-}, \mathbf{x}^{+}$and \mathbf{x}^{-}have disjoint support and $\|\mathbf{x}\|_{1}=$ $\left\|\mathbf{x}^{+}\right\|_{1}+\left\|\mathbf{x}^{-}\right\|_{1}$.

Lemma 4. Suppose that vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ are non-negative and moreover all entries are at least α. Then $\|\mathbf{v}-\mathbf{w}\|_{1} \leq\|\mathbf{v}\|_{1}+\|\mathbf{w}\|_{1}-2 \alpha n$.

Proof. Direct calculation using the fact that for each coordinate $\left|v_{i}-w_{i}\right|=\max \left\{v_{i}, w_{i}\right\}-$ $\min \left\{v_{i}, w_{i}\right\}=v_{i}+w_{i}-2 \min \left\{v_{i}, w_{i}\right\} \leq v_{i}+w_{i}-2 \alpha$.

Lemma 5. Let $D \in \mathbb{R}^{n \times n}$ be a matrix with all entries at least δ for some $\delta>0$ and column sums equal to 1. Let \mathbf{x} be decomposed to $\mathbf{x}=\mathbf{x}^{+}-\mathbf{x}^{-}$as described above. Then
(i) $\|D \mathbf{x}\|_{1} \leq\|\mathbf{x}\|_{1}-2 \delta n \min \left\{\left\|\mathbf{x}^{+}\right\|_{1},\left\|\mathbf{x}^{-}\right\|_{1}\right\}$.
(ii) If \mathbf{x} has both positive and negative entries, then $D \mathbf{x} \neq \mathbf{x}$.
(iii) If $\sum_{i=1}^{n} x_{i}=0$ then $\|D \mathbf{x}\|_{1} \leq(1-\delta n)\|\mathbf{x}\|_{1}$.

Proof. (i): Consider the vectors $\mathbf{v}=D \mathbf{x}^{+}$and $\mathbf{w}=D \mathbf{x}^{-}$; both \mathbf{v} and \mathbf{w} are non-negative as D, \mathbf{x}^{+}, and \mathbf{x}^{-}are all non-negative. Since D has the column sums equal to 1 and $\mathbf{x}^{+}, \mathbf{x}^{-}$are non-negative, $\|\mathbf{v}\|_{1}=\left\|\mathbf{x}^{+}\right\|_{1}$ and $\|\mathbf{w}\|_{1}=\left\|\mathbf{x}^{-}\right\|_{1}$, thus $\|\mathbf{v}\|_{1}+\|\mathbf{w}\|_{1}=\|\mathbf{x}\|_{1}$. Since D has all the entries at least $\delta>0$ and $x_{j}^{+} \geq 0$, we have $v_{i} \geq \delta \sum_{i=1}^{n} x_{i}^{+}=\delta\left\|\mathbf{x}^{+}\right\|_{1}$. Similarly $w_{i} \geq \delta \sum_{i=1}^{n} x_{i}^{-}=\delta\left\|\mathbf{x}^{-}\right\|_{1}$. Now we use Lemma 4 with $\alpha=\delta \min \left\{\left\|\mathbf{x}^{+}\right\|_{1},\left\|\mathbf{x}^{-}\right\|_{1}\right\}$ to conclude that

$$
\begin{aligned}
\|D \mathbf{x}\|_{1} & =\|\mathbf{v}-\mathbf{w}\|_{1} \\
& \leq\|\mathbf{v}\|_{1}+\|\mathbf{w}\|_{1}-2 \delta n \min \left\{\left\|\mathbf{x}^{+}\right\|_{1},\left\|\mathbf{x}^{-}\right\|_{1}\right\}=\|\mathbf{x}\|_{1}-2 \delta n \min \left\{\left\|\mathbf{x}^{+}\right\|_{1},\left\|\mathbf{x}^{-}\right\|_{1}\right\} .
\end{aligned}
$$

(ii): The assumption implies $\min \left\{\left\|\mathbf{x}^{+}\right\|_{1},\left\|\mathbf{x}^{-}\right\|_{1}\right\}>0$. Then (i) implies $\|D \mathbf{x}\|_{1}<\|\mathbf{x}\|_{1}$ and $D \mathbf{x} \neq \mathbf{x}$ follows.
(iii): The assumption implies $\left\|\mathbf{x}^{+}\right\|_{1}=\left\|\mathbf{x}^{-}\right\|_{1}=\|\mathbf{x}\|_{1} / 2$. Thus (i) implies $\|D \mathbf{x}\|_{1} \leq$ $\|\mathbf{x}\|_{1}-\delta n| | \mathbf{x}\left\|_{1}=(1-\delta n)\right\| \mathbf{x} \|_{1}$.

Proof of Theorem 2. Fix k and δ as in Lemma 3.
The system of equations $\mathbf{x}=P \mathbf{x}$ is homogeneous and its rank is at most $n-1$: the column sums of P are equal to 1 , so summing all the inequalities yields a trivial equality $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} x_{i}$. Thus there exists a non-trivial solution \mathbf{x}.

We claim that any such \mathbf{x} has all entries non-negative or all the entries non-positive. Otherwise Lemma 5(ii) for $D=P^{k}$ implies $P^{k} \mathbf{x} \neq \mathbf{x}$, which is a contradiction with $P \mathbf{x}=\mathbf{x}$.

Since \mathbf{x} is non-trivial and has no entries with opposite signs, a scaled vector $\boldsymbol{\pi}=$ $\mathbf{x} /\left(\sum_{i=1}^{n} x_{i}\right)$ is a distribution. Since $\boldsymbol{\pi}=P \boldsymbol{\pi}, \boldsymbol{\pi}$ is a stationary distribution. Furthermore, it is unique: For any stationary distribution $\boldsymbol{\pi}^{\prime} \neq \boldsymbol{\pi}$, the vector $\mathbf{y}=\boldsymbol{\pi}-\boldsymbol{\pi}^{\prime}$ would be a non-trivial solution of the system of equations $\mathbf{y}=P \mathbf{y}$ with both positive and negative entries and we have already excluded the existence of such a solution.

Now consider an arbitrary initial distribution \mathbf{p}. We prove that $\lim _{t \rightarrow \infty} P^{t} \mathbf{p}=\pi$. Considering \mathbf{p} equal to the j th standard basis vector, this implies that for each $i, j, P_{i, j}^{t}$ converges to π_{i}.

Consider an arbitrary distribution \mathbf{q}. For $s=0,1,2, \cdots$, consider the vectors $\mathbf{v}^{(s)}=$ $P^{s k} \mathbf{q}-\boldsymbol{\pi}$. We first prove that $\lim _{s \rightarrow \infty} \mathbf{v}^{(s)}=0$. Since $\boldsymbol{\pi}$ is a stationary distribution, we have $\mathbf{v}^{(s)}=P^{s k} \mathbf{q}-\boldsymbol{\pi}=P^{s k}(\mathbf{q}-\boldsymbol{\pi})$ and $\mathbf{v}^{(s+1)}=P^{k} \mathbf{v}^{(s)}$. Note that the coordinates of each of $\mathbf{v}^{(s)}$ sum to 0 . Using also the fact that $P_{i, j}^{k}>\delta$ by Lemma 3, we can apply Lemma 5 (iii) to obtain

$$
\left\|\mathbf{v}^{(s+1)}\right\|_{1}=\left\|P^{k} \mathbf{v}^{(s)}\right\|_{1} \leq(1-\delta n)\left\|\mathbf{v}^{(s)}\right\|_{1} .
$$

Thus

$$
\left\|\mathbf{v}^{(s)}\right\|_{1} \leq(1-\delta n)^{s}\left\|\mathbf{v}^{(0)}\right\|_{1}
$$

which converges to 0 . Thus $\mathbf{v}^{(s)}$ converges to $\mathbf{0}$ and $P^{s k} \mathbf{q}$ converges to $\boldsymbol{\pi}$ for $s \rightarrow \infty$.
Now consider $\mathbf{q}=P^{\ell} \mathbf{p}$ for $\ell=0, \ldots, k-1$. The previous paragraph implies that for each ℓ, the sequence $P^{s k} \mathbf{q}=P^{s k+\ell} \mathbf{p}$ converges to $\boldsymbol{\pi}$ for $s \rightarrow \infty$. This implies that also $P^{t} \mathbf{p}$ converges to $\boldsymbol{\pi}$ for $t \rightarrow \infty$.

