Information-theoretic inequalities and Correlated sampling of a one-bit message

Contents

Information-processing and log-sum inequalities 1
Pinsker's inequality 2
Correlated sampling of a one-bit message 3

Information-processing and log-sum inequalities

1 Lemma (log-sum inequality). For any pair of sequences p_{1}, \ldots, p_{n} and q_{1}, \ldots, q_{n} of positive real numbers, we have

$$
\sum_{i=1}^{n} p_{i} \log \frac{p_{i}}{q_{i}} \geq p \log \frac{p}{q},
$$

where $p=\sum_{i} p_{i}$ and $q=\sum_{i} q_{i}$.
Proof. The inequality is equivalent to

$$
\sum_{i=1}^{n} p_{i} \log \frac{q p_{i}}{p q_{i}} \geq 0
$$

But since $\log \frac{1}{x} \geq 1-x$ for all positive x, and $\frac{\lambda q_{i}}{p_{i}}$ is positive, given that p_{i}, q_{i} and p / q are positive, then:

$$
\sum_{i=1}^{n} p_{i} \log \frac{p_{i}}{\lambda q_{i}} \geq \sum_{i=1}^{n} p_{i}\left(1-\frac{p q_{i}}{q p_{i}}\right)=\left(p-\frac{p}{q} q\right)=0 .
$$

2 Information Processing Inequality. For any f,

$$
D_{\mathrm{KL}}(f(X), f(Y)) \leq D_{\mathrm{KL}}(X, Y)
$$

Proof. By using the log-sum inequality, we derive:

$$
\begin{aligned}
D_{\mathrm{KL}}(X, Y) & =\sum_{w \in \mathcal{X}} P_{X}(w) \log \frac{P_{X}(w)}{P_{Y}(w)} \\
& =\sum_{i \in f(\mathcal{X})} \sum_{w \in f^{-1}(i)} P_{X}(w) \log \frac{P_{X}(w)}{P_{Y}(w)} \\
& \geq \sum_{i \in f(\mathcal{X})} P_{f(X)}(i) \log \frac{P_{f(X)}(i)}{P_{f(Y)}(i)} \\
& =D_{\mathrm{KL}}(f(X), f(Y))
\end{aligned}
$$

3 Corollary. For any $f, I(X: Y) \geq I(f(X): Y)$.

Pinsker's inequality

4Δ vs $D_{K L}-$ Pinsker's inequality.

$$
\|X-Y\|_{1} \leq \sqrt{2 D_{\mathrm{KL}}(X \| Y)} \quad \text { i.e., } \quad \frac{1}{2}\|X-Y\|_{1}^{2} \leq D_{\mathrm{KL}}(X \| Y)
$$

Proof. Let us first prove it when X, Y are distributions over one bit. Let $p=\operatorname{Pr}[X=0], q=\operatorname{Pr}[Y=0]$. Define $g(q)=D_{\mathrm{KL}}(X \| Y)-\frac{1}{2}\|X-Y\|_{1}^{2}=p \log \frac{p}{q}+(1-p) \log \frac{1-p}{1-q}-2(p-q)^{2}$.

Then g^{\prime} is

$$
\begin{aligned}
g^{\prime}(q) & =-\frac{p}{q}+\frac{1-p}{1-q}+4(p-q)=\frac{(1-p) q-p(1-q)}{q(1-q)}-4(q-p) \\
& =(q-p)\left[\frac{1}{q(1-q)}-4\right]
\end{aligned}
$$

The second factor is always non-negative. Hence $g^{\prime}(q)$ is negative for $q<p$, positive for $q>p$, and 0 for $q=p$. Hence $q=p$ is a minimum for g, but $g(p)=0$, so g is non-negative.

If X, Y are not one bit, then define $f(w)=1$ if $P_{X}(w) \leq P_{Y}(w)$ and $f(w)=0$ otherwise. Then by what we just proved,

$$
D_{\mathrm{KL}}\left(f(X)\left\|f(Y) \geq \frac{1}{2}\right\| f(X)-f(Y) \|_{1}^{2}\right.
$$

But also:

$$
\begin{aligned}
\|X-Y\|_{1} & =\sum_{w}\left|P_{X}(w)-P_{Y}(w)\right| \\
& =\sum_{w \in f^{-1}(0)}\left(P_{X}(w)-P_{Y}(w)\right)+\sum_{w \in f^{-1}(1)}\left(P_{Y}(w)-P_{X}(w)\right) \\
& =\operatorname{Pr}[f(X)=0]-\operatorname{Pr}[f(Y)=0]+\operatorname{Pr}[f(Y)=1]-\operatorname{Pr}[f(X)=1] \\
& =\|f(X)-f(Y)\|_{1}
\end{aligned}
$$

The result for any (not-necessarily 1-bit) distribution now follows from the information-processing inequality $D_{\mathrm{KL}}(f(X) \| f(Y)) \leq D_{\mathrm{KL}}(X \| Y)$.

Correlated sampling of a one-bit message

5 Correlated sampling of a one-bit message. Suppose Alice has input X and Bob Y. Alice wants to send a 1-bit message $M=M\left(X, R_{a}\right)$ to Bob, and this message reveals little information about X to Bob, i.e. $I=I(M: X \mid Y)$ is close to zero. Let us show how to do this with zero communication, and error probability $\sqrt{\frac{1}{2} I}$ (which is also close to zero, if not quite as close as I).

6 How Alice samples M. We can think of M as being sampled in the following way. To each possible input $X=x$ corresponds a value $p_{x}=$ $\operatorname{Pr}[M=0 \mid X=x]$. Alice will pick a uniformly-random real-number $v \in[0,1]$, and set $M=0$ if $v \leq p_{x}$ and set $M=1$ if $v>p_{x}$.
7. Bob doesn't know p_{X} because he doesn't know X, but to the extent that X and Y are correlated, Bob will have some estimate of what X is, and hence some estimate for p_{x}. His best guess for p_{x} is the value

$$
q_{y}=\operatorname{Pr}[M=0 \mid Y=y]=\mathrm{E}_{X \mid Y=y}\left[q_{x}\right] .
$$

How close are q_{y} and q_{x} ? It turns out that because $I(X: M \mid Y)$ is small, we can expect them to be pretty close.
8. Indeed, the distributions of M when one knows x versus M when one knows only y are close, in terms of KL-divergence, because:

$$
I=I(X: M \mid Y)=\underset{Y}{\mathrm{E}}\left[\underset{X}{\mathrm{E}}\left[D_{\mathrm{KL}}\left(\left.M\right|_{x, y} \|\left. M\right|_{y}\right)\right]\right]
$$

(and we think of I as being small). Because $M=M(x)$, it follows that $\left.M\right|_{x, y}=\left.M\right|_{x}$. Let us define

$$
I_{x, y}=D_{\mathrm{KL}}\left(\left.M\right|_{x} \|\left. M\right|_{y}\right)
$$

9. Now from the Pinsker inequality, it follows that

$$
\sqrt{2 I_{x, y}} \geq\left\|\left.M\right|_{x}-\left.M\right|_{y}\right\|_{1}=2\left|p_{x}-q_{y}\right| .
$$

And so $\left|p_{x}-q_{y}\right| \leq \sqrt{\frac{1}{2} I_{x, y}}$, which is small on average.
10 The correlated sampling protocol. So here is a strategy for jointly sampling the bit M without communication: Alice and Bob use shared randomness to sample v, Alice chooses M as before, and Bob assumes that $M=0$ if $v \leq q_{y}$, and that $M=1$ otherwise.

The only case when he is wrong is when v happens to be greater than p_{x} but smaller than q_{y} (if $p_{x} \leq q_{y}$, or the other way around if $p_{x}>q_{y}$). So he will be wrong, on inputs x, y, with probability exactly $\left|p_{x}-q_{y}\right|$.

Over the input distributions X and Y, the probability that Bob is wrong about M is

$$
\underset{X, Y}{\mathrm{E}}\left[\left|p_{x}-q_{y}\right|\right] \leq \underset{X, Y}{\mathrm{E}}\left[\sqrt{2 I_{x, y}}\right] \leq \sqrt{2 \underset{X, Y}{\mathrm{E}}\left[I_{x, y}\right]}=\sqrt{2 I},
$$

where the last inequality follows from the concavity of the square-root.

