
Does the Polynomial Hierarchy Collapse if Onto
Functions are Invertible?

Harry Buhrman1, Lance Fortnow2, Michal Koucký3, John D. Rogers4, and
Nikolay Vereshchagin5

1 CWI, Amsterdam,
buhrman@cwi.nl

2 University of Chicago,
fortnow@cs.uchicago.edu

3 Institute of Mathematics of Czech Academy of Sciences,
mkoucky@cs.mcgill.ca

4 DePaul University, Chicago,
jrogers@cs.depaul.edu

5 Lomonosov Moscow State University,
ver@mech.math.msu.su

Abstract. The class TFNP, defined by Megiddo and Papadimitriou,
consists of multivalued functions with values that are polynomially verifi-
able and guaranteed to exist. Do we have evidence that such functions are
hard, for example, if TFNP is computable in polynomial-time does this
imply the polynomial-time hierarchy collapses? By computing a multi-
valued function in deterministic polynomial-time we mean on every input
producing one of the possible values of the function on that input.
We give a relativized negative answer to this question by exhibiting
an oracle under which TFNP functions are easy to compute but the
polynomial-time hierarchy is infinite. We also show that relative to this
same oracle, P 6= UP and TFNPNP functions are not computable in
polynomial-time with an NP oracle.

1 Introduction

Megiddo and Papadimtriou [MP91] defined the class TFNP, the class of mul-
tivalued functions with values that are polynomially verifiable and guaranteed
to exist. A function from TFNP is specified by a polynomial time computable
binary relation R(x, y) and a polynomial p such that for every string x there is
a string y of length at most p(|x|) such that R(x, y) holds. It maps x to the set
of y’s of length at most p(|x|) such that R(x, y) where in sequel by a value of
the function on x we understand any of the y’s. This class of functions includes
Factoring, Nash Equilibrium, finding solutions of Sperner’s Lemma, and finding
collisions of hash functions.

Fenner, Fortnow, Naik and Rogers [FFNR03] consider the hypothesis, which
they called “Q”, that for every function in TFNP there is a polynomial-time
procedure that will output a value of that function. That is, Proposition Q states

that for every R and p defining a TFNP-function there is a polynomial time
computable function f such that R(x, f(x)) holds for all x.

Fenner et. al. showed that Proposition Q is equivalent to a number of different
hypotheses including

– Given an NP machine M with L(M) = Σ∗, there is a polynomial-time
computable function f such that f(x) is an accepting computation of M(x).

– Given an honest onto polynomial-time computable function g there is a
polynomial-time computable function f such that g(f(x)) = x. (A function
g(x) is called honest if there is a polynomial p(n) such that |x| ≤ p(|g(x)|)
for all x.)

– For all polynomial-time computable subsets S of SAT there is a polynomial-
time computable function f such that for all φ in S, f(φ) is a satisfying
assignment to φ.

– For all NP machines M such that L(M) = SAT, there is a polynomial-time
computable function f such that for every φ in SAT and accepting path c
of M(φ), f(φ, c) is a satisfying assignment of φ.

Proposition Q is implied by P = NP and implies that any pair of disjoint
coNP-sets is P-separable (which implies that NP∩ coNP = P). Fenner et. al.
ask whether we can draw any stronger complexity collapses from Q, in particu-
lar whether Q implies that the polynomial-time hierarchy collapses. We give a
relativized negative answer to this question by exhibiting an oracle relative to
which Q holds and the polynomial-time hierarchy is infinite. Our proof uses a
new “Kolmogorov generic” oracle.

Proposition Q naturally generalizes to other levels of the polynomial hier-
archy. Namely, define the class TFΣp

k as follows. A TFΣp
k-function is specified

by a binary relation R(x, y) computable in polynomial time with an oracle from
Σp

k−1 and a polynomial p such that for every string x there is a string y of length
at most p(|x|) such that R(x, y) holds. For k ≥ 1 we will label Σp

kQ the statement

For every R and p defining a TFΣp
k-function there is a function f

computable in polynomial time with an oracle from Σp
k−1 such that

R(x, f(x)) holds for all x.

For k = 1 we obtain the class TFNP and Proposition Q.
Proposition TFΣp

k implies that PΣp
k−1 = Σp

k ∩Πp
k and is implied by Σp

k−1 =
Σp

k . A natural question is whether, similar to the implication

Σp
k−1 = Σp

k =⇒ Σp
k = Σp

k+1,

Proposition TFΣp
k implies Proposition TFΣp

k+1. We give a relativized negative
answer to this question in the case k = 1: For any Kolmogorov generic G the
Proposition TFΣp,G

2 does not hold.
In addition we show that for any Kolmogorov generic G, PG 6= UPG.

2 Definitions and preliminaries

Let Σ denote the alphabet {0, 1}. The set of all finite-length binary strings is
denoted Σ∗.

2.1 Complexity classes

Our model of computation is the oracle Turing machine, both deterministic
(DTM) and nondeterministic (NTM). Unless otherwise noted, all machines in
this paper run in polynomial time. We assume that the reader is familiar with
the complexity classes P, NP, UP, PSPACE, Σp

k , and Πp
k for k ≥ 0. The class

∆p
k is defined as PΣp

k−1 , and PH =
⋃

k Σp
k stands for the Polynomial hierarchy.

The class F∆p
k is defined as the class of all functions from Σ∗ to Σ∗ that are

computable in polynomial time with an oracle from Σp
k−1.

We say that disjoint sets B and C are P-separable if there is a set D ∈ P
such that B ⊆ D and C ⊆ Σ∗ −D.

Proposition Q and its generalizations Σp
kQ are defined in the Introduction.

It is easy to see that Σp
kQ is equivalent to the following statement:

For every nondeterministic polynomial-time Turing machine M with or-
acle from Σp

k−1 that accepts Σ∗, there is a function f in F∆p
k such that,

for all x, f(x) is an accepting computation of M(x).

It is easy to see the following:

Proposition 1. If Σp
k−1 = Σp

k then Σp
kQ is true. If Σp

kQ is true then ∆p
k =

Σp
k ∩Πp

k .

2.2 Kolmogorov complexity and randomness

An excellent introduction to Kolmogorov complexity can be found in the text-
book by Li and Vitányi [LV97]. We will state here the definitions and results
relevant to our work. Roughly speaking, the Kolmogorov complexity of a binary
string x is the minimal length of a program that generates x; the conditional
complexity C(x|y) of x conditional to y is the minimal length of a program that
produces x with y as input. We provide a precise definition.

A conditional description method is a partial computable function Φ (that
is, a Turing machine) mapping pairs of binary strings to binary strings. A string
p is called a description of x conditional to y with respect to Φ if Φ(p, y) = x.
The complexity of x conditional to y with respect to Φ is defined as the minimal
length of a description of x conditional to y with respect to Φ:

CΦ(x|y) = min{|p| | Φ(p, y) = x}.

A conditional description method Ψ is called universal if for all other conditional
description methods Φ there is a constant k such that

CΨ (x|y) ≤ CΦ(x|y) + k

for all x, y. The Solomonoff–Kolmogorov theorem [Sol64,Kol65] states that uni-
versal methods exist. We fix a universal Ψ and define conditional Kolmogorov
complexity C(x|y) as CΨ (x|y). We call this Ψ the reference universal Turing
machine. The (unconditional) Kolmogorov complexity C(x) is defined as the

Kolmogorov complexity of x conditional to the empty string. Comparing the
universal function Ψ with the function Φ(p, y) = Ψ(p, empty string) we see that
the conditional Kolmogorov complexity does not exceed the unconditional one:

C(x|y) ≤ C(x) + O(1).

Comparing the universal function Ψ with the function Φ(p, y) = p we see that the
Kolmogorov complexity does not exceed the length by no more than a constant:

C(x) ≤ |x|+ k (1)

for some k and all x. For most strings this inequality is close to an equality: the
number of strings x of length n with

C(x) < n−m

is less than 2n−m. Indeed, the total number of descriptions of length less than
n−m is equal to

1 + 2 + · · ·+ 2n−m−1 = 2n−m − 1.

In particular, for every n there is a string x of length n and complexity at least
n. Such strings are called incompressible, or random.

Let f(x, y) be a computable function mapping strings to strings. To describe
the string f(x, y) it is enough to concatenate x and y. Thus we obtain:

C(f(x, y)) ≤ 2|x|+ |y|+ k. (2)

where k depends on f and on the reference universal machine but not on x, y.
We have the extra factor of 2, as we need to separate x from y. To this end
we write the former in a self-delimiting form. As a self-delimiting encoding of
a string u we take the string ū obtained from u by doubling all its bits and
appending the pattern 01. For instance, 001 = 00001101. A similar inequality
holds for computable functions of more than 2 strings:

C(f(x1, x2, . . . , xn)) ≤ 2|x1|+ 2|x2|+ · · ·+ 2|xn−1|+ |xn|+ O(1). (3)

2.3 Kolmogorov-generic oracles

In order to create a relativized world where proposition Q holds but the polynomial-
time hierarchy is infinite we develop a new type of oracle, we call a Kolmogorov
generic.

We create a set of allowable strings U of indexed independently random
strings as follows:

For each n fix a binary string Zn of length n2n that is incompressible, that
is, C(Zn) ≥ |Zn|. Divide Zn into substrings z1, . . . , z2n , each of length n. Let
Yn be the set {〈i, zi〉|i ∈ {0, 1}n}. (Here we identify i with the integer binary
represented by i. A pair 〈u, v〉 is encoded be the string ūv, where ū stands for
the self-delimiting encoding of u defined in Section 2.2.) Let U be the set of all

subsets of
⋃

Yn, where the union is over all tower n, i.e., n can be expressed as
a tower of twos.

A condition α : U → {0, 1, ∗} indicates which strings we have forced in or out
of our generic G where α(x) = 0 if we guarantee that x is not in G and α(x) = 1
if we guarantee that x is in G. In this paper, we only consider conditions that
force a finite number of strings of G, i.e., the set α−1({0, 1}) is finite.

An interval Uα is a set of subsets of U consistent with α. Suppose we have
a property P (A) on sets A. We say P (A) is dense within U if for all α there is
a β such that for all sets G, if G ∈ Uβ ⊆ Uα then P (G) is true.

For example, let Pk(A) be the property that A has at least k strings. This is
a dense property property by choosing k strings in α−1(∗) and setting β(x) = 1
for these strings.

Let α0 map every x in U to ∗. Define αk so that Uαk
⊂ Uαk−1 and every G

in Uαk
has property Pk, i.e., has at least k ones. Note that ∩kUαk

is non-empty
and any G in that set must be infinite.

The same argument holds for any countable collection of dense properties.
Fix a logical system Γ strong enough to define every property described in this
paper and let P be the set of dense properties defined in Γ . By the argument
above, there exists sets G such that P (G) holds for every P ∈ P. We call such
G Kolmogorov-generic.

When proving that a certain property holds for a Kolmogorov generic oracle
G we use the fact that every two different lengths of strings in G are exponentially
far apart. When discussing a particular polynomial-time computation, we only
have to worry about strings at exactly one length in the oracle. Longer strings
cannot be queried by the computation and so cannot affect it. Shorter strings
can all be queried and found by the computation.

3 Results

Theorem 1. Relative to a generic oracle in U⊕PSPACE-complete (a Kolmogorov-
generic oracle), Proposition Q is true.

We provide a sketch of the argument first. First, we relativize to a PSPACE-
complete set H so that we are able to answer queries in PH about PSPACEH .
Although later we relativize further to a Kolmogorov generic oracle G ∈ U , thus
considering (PH)G = PG⊕H computation, we will only need to be able to answer
queries computable in PSPACEH .

So we want to show that relative to a Kolmogorov generic oracle G and si-
multaneously relative to H, Property Q holds. We look on each nondeterministic
polynomial time machine M independently. For a given interval of U if we can
find a sub-interval of U that makes M not to accept all the inputs then we pick
this sub-interval of U for our Kolmogorov generic oracle G; Property Q will be
trivially satisfied for M then. If that is not the case so we cannot dispose of M so
easily we will show how to find accepting paths of M efficiently for all the oracles
in the given interval of U . We have the power of PSPACE at our disposal so we

could search for accepting paths of M if M were not relativized to G or if it were
relativized to a simple enough G so that we could pass the description of the
oracle or its relevant part to our PSPACE search procedure. Since strings of
different lengths in G are exponentially far apart the relevant part of G is quite
restricted although, still possibly large in size. However, iteratively we can find
a small (polynomial size) portion of G that is truly relevant for our search. We
use the Kolmogorov properties of G for that. Once we know the relevant part of
G we find the accepting path of M in PSPACE. The actual proof is next.
Proof. We first assume that P = PSPACE and prove that Proposition Q is
true under a generic oracle G ∈ U .

As explained in the section on generic oracles it suffices to show that for every
polynomial-time oracle NTM M and relative to a Kolmogorov-generic oracle,

If M accepts Σ∗ then there is a polynomial time machine
finding for each input an accepting computation of M .

(4)

Fix M . Without loss of generality, M on an input x runs in time |x|k +k, for
some constant k independent of its oracle. Indeed, for each oracle nondetermin-
istic Turing machine M (not necessarily polynomial time) and natural k we can
construct an NTM that acts as M supplied with a clock that prevents it from
running more than in |x|k + k steps. If MA runs in polynomial time then for
some k the machine MA supplied with the clock |x|k + k is equivalent to MA.

We will show that the set of oracles satisfying (4) is dense. Let I = Uα be an
interval in U . We need to construct a sub-interval J of I such that (4) is true
for all G ∈ J . Consider two cases.

Case 1. There is a sub-interval of I such that for all A in that sub-interval,
MA does not accept Σ∗. Then let J be equal to that sub-interval of I.

Case 2. There is no such sub-interval. Consider the following polynomial-
time deterministic algorithm A that, given an input x of length at least two,
finds an accepting path of the computation MG(x). Let n be the largest tower
number smaller or equal to 4|x|2k. The algorithm A will try to collect enough
information about the oracle G so that it can find an accepting path of MG(x).
The algorithm A starts by asking the value of G on all the strings in Yi for
i ≤ log n. This can be done in time polynomial in |x|.

After that it iteratively builds a set Q of strings from G ∩ Yn starting from
an empty set Q. Using the assumption that P = PSPACE and the information
about G collected so far, the algorithm finds the lexicographically first accepting
path of MG on x under the assumption that G ∩ {〈i, u〉|i, u ∈ {0, 1}n} = Q.
(Note, M on x cannot query any string in Ym, for m > n so in PSPACE we
can find such an accepting path given x, Y≤log n and Q.) Such path does exist,
as otherwise, the sub-interval J of I, consisting of all G′ with G′ ∩ {〈i, u〉|i, u ∈
{0, 1}n} = Q and G′ ∩ Yi = G ∩ Yi for all i ≤ log n would qualify for case (1).

If this path is indeed an accepting path of the computation MG(x), A is
done. If not then there is a string w ∈ (G ∩ {〈i, u〉|i, u ∈ {0, 1}n}) \ Q that is
queried along this path. Clearly such w is from Yn. The algorithm picks the
first such w, adds it to the set Q and iterates the process. Clearly, A eventually

finds a correct accepting path of MG(x). We claim that A will find it within
polynomially many iterations.

Observe, given M , x, G ∩ Y≤log n and the first i − 1 strings of Q, the ith
string added to Q can be described by k log |x| bits by its order number among
the queries of M on x on the accepting path found under the assumption that
G ∩ Yn = {the first i − 1 strings of Q}. The set G ∩ Y≤log n has at most n +
log n + log log n + . . . strings, each of length at most log n. Thus G ∩ Y≤log n

can be described in at most O(n log n) bits. Hence if Q reaches size `, we can
describe Q by `k log |x|+ O(n log n) + 2|x|+ O(1) bits (by Equation (3) and the
fact that we need to specify the length of k log |x|-bit strings only once).

Recall that all of the strings in Yn are derived from Zn. Because of the way
Yn is defined any set A of ` strings from Yn has Kolmogorov complexity at least
`n/2−O(1).

Indeed, each element of Yn is a pair 〈i, y〉. Let p denote the concatenation of
all y’s from all pairs 〈i, y〉 outside A arranged according to the order on i’s. The
length of p is n(2n−`). The initial string Zn can be obtained from p by inserting
the second components of pairs from A, their first components specifying the
places where to insert. Thus given p and the shortest description q of A we can
find Zn, and Equation (2) implies

n2n ≤ C(Zn) ≤ |p|+ 2|q|+ O(1) = n(2n − `) + 2C(A) + O(1).

Since 2+2k log |x| < n ≤ 4|x|2k, the Kolmogorov complexity of ` strings from
Yn is at least `k log |x|+ `−O(1). Thus Q cannot grow bigger than O(n log n)+
2|x| = O(|x|2k log |x|).

We can remove the hypothesis that P = PSPACE by first relativizing to
an oracle making P = PSPACE. It is known that relative to every PSPACE-
complete set H we have P = PSPACE. Thus, relative to H, Q-property holds
relative to a generic oracle in U . So we first relativize to H and then to G which
is no different than relativizing to G⊕H. ut

The following theorem implies that relative to a Kolmogorov generic oracle
the Polynomial Hierarchy is infinite.

Theorem 2. Relative to a generic oracle in U⊕PSPACE-complete (a Kolmogorov-
generic oracle), for all k ≥ 0 we have Σp

k 6= Σp
k+1.

To establish the theorem we use the technique of Sipser [Sip83] together with
the result of H̊astad [H̊as89] that there are functions computable by polynomial
size depth-k circuits consisting of unbounded fan-in AND and OR gates that
are not computable by depth-(k− 1) circuits of polynomial size. Sipser observes
that the output of a Σp,G

k−1 computation on a fixed input can be computed by
an appropriate size depth-(k − 1) circuit consisting of unbounded fan-in AND
and OR gates that takes as its input the characteristic sequence of G (or its
beginning segment). The proof follows.

Proof. Meyer and Stockmeyer [MS72] show that if Σp
k = Σp

k+1 then Σp
k = Σp

j

for all j ≥ k and the proof of this relativizes. So it is sufficient for us to show

that Σp
k−2 6= Σp

k+1 for all k ≥ 3 relative to a Kolmogorov generic oracle G⊕H,
where H is an arbitrary set.

We use the Sipser [Sip83] functions as defined by H̊astad [H̊as89]. The func-
tion fm

k is represented by a depth k alternating circuit tree with an OR gate
at the top with fan-in

√
m/ log m, bottom fan-in

√
km log m/2 and all other

fan-ins are m. Each variable occurs just once at each leaf.

Theorem 3 (H̊astad). Depth k − 1 circuits computing fm
k are of size at least

2Ω(
√

m/(k log m)).

Pick a tower n. Set mn = 2dn/ke. The number of variables of fmn

k is mk−1
n

√
k/2 <

2n for large n. For each of the variables of this formula assign a unique i ∈ {0, 1}n

so we can in polynomial-time find i from the variable and vice-versa.
Now consider the language Lk(G) ⊆ {1}∗:

1n is in Lk(G) iff fmn

k is true if we set the variables corresponding to i to
one when 〈i, zi〉 is in G and to zero otherwise.

We will show relative to a Kolmogorov generic oracle G ⊕ H, Lk(G) ∈
Σp,G⊕H

k+1 −Σp,G⊕H
k−2 .

First notice that Lk(G) ∈ Σp,G⊕H
k+1 for all G ∈ U : Consider an alternating

Turing machine that uses k alternations to simulate the circuit. To determine
whether a variable corresponding to i is true the machine makes the NP query
“is there a z such that 〈i, z〉 is in G.” This gives us a ΣNP,G

k = Σp,G
k+1 machine

accepting Lk(G).
Let M be an alternating Σp

k−2 oracle Turing machine that runs in time nj .
Let I = Uα be an interval in U . We need to construct a sub-interval J of I such
that MG⊕H does not accept L(G) for all G ∈ J . Along the lines of Sipser [Sip83]
we can convert the computation to a circuit of depth k−1 and size 2O(nj) whose
input variables correspond to queries to G. Hardwire the queries not of the form
〈i, zi〉 to one if they belong to H and to zero otherwise. This way we obtain a
circuit whose variables are the same as those in fmn

k in the definition of Lk(G)
on 1n. By Theorem 3 for sufficiently large n this circuit cannot compute fmn

k

so there must be some setting of the variables where the circuit and fmn

k have
different outputs. Add to the condition α the requirement 〈i, zi〉 ∈ G if variable
i is assigned 1 in this setting and the requirement 〈i, zi〉 6∈ G otherwise. For
all G ∈ U satisfying the resulting condition, MG⊕H(1n) accepts iff 1n is not in
L(G). ut

We can also show that one-way functions exist relative to G.

Theorem 4. Relative to a Kolmogorov generic oracle G⊕H, P 6= UP.

Proof. Define the relativized language LX as {〈i, 0n〉 : (∃z)|z| = n & 〈i, z〉 ∈ X}.
For a string z of length n, there is at most one string of the form 〈i, z〉 in G
so the language is in UPG. A simple argument demonstrates that LG is not in
PG⊕H . ut

Can the proof that Property Q holds relative to a Kolmogorov-generic be
lifted to show that Σp

kQ holds and thus we get the collapse of ∆p
k and Σp

k ∩Πp
k?

The answer is no for k = 2 and the proof of this shows that this is true for a
broad class of finite extension oracles.

To show that Σp
2Q fails relative to a Kolmogorov-generic oracle G, let fG be

a function from Σ∗ to Σ∗ where for every x of length n

fG(x) = y1 . . . yn−1

and
yj = 1 ⇐⇒ (∃u, z) |u| = n, |z| = 2n + dlog ne, 〈xju, z〉 ∈ G.

No matter what strings are in G, the pigeonhole principle tells us that, for
all n, there will always be a collision, that is, two different strings x1 and x2 of
length n such that fG(x1) = fG(x2).

Let M be a Σp,G
2 machine that on any input of length n guesses two different

strings of length n in its existential step and then accepts iff those strings collide
on fG. It is clear from the definition of fG that M can find these collisions
and that it accepts Σ∗. A PNPG

machine that finds an accepting path of M
could be modified to output the two colliding strings found by M on that path
so, without loss of generality, we will assume it does just that. (Because of the
inner working of M which we designed by ourselves, the two colliding strings are
directly determined by certain well defined bits in the nondeterministic choices
of M .)

Theorem 5. For an arbitrary oracle H, relative to a Kolmogorov generic oracle
G ⊕ H, no PNP machine can find an accepting path of the computation M(x)
for every x.

Again in the proof we will look on each PNP machine independently and
show that relative to a Kolmogorov generic oracle G the machine fails to find
an accepting path of M , i.e., it fails to output a collision in fG. We will do it
by imposing certain conditions on G that will fix the computation of the PNP

machine while still allowing us to define fG on most of its domain in a suitable
way. The conditions will be imposed iteratively for each additional query of the
PNP machine to its NP oracle. Indeed our goal will be to fix the computation
of the NP oracle machine on the queries it receives. We will do it by imposing
additional constraints on G in a way that does not produce observable collisions
in fG. Once the PNP machine outputs the pair of strings forming a presumable
collision we constrain G as not give a collision of fG on that pair of strings.
Proof. Let 〈R,N〉 be an arbitrary pair consisting of an oracle polynomial time
DTM R and an oracle polynomial time NTM N . We will show that the set of
all oracles G such that R with oracle NG⊕H does not find any collision of fG is
dense in U .

Without loss of generality we can assume that there are polynomial upper
bounds of the running time of R and N that do not depend on their oracles. Let
pR and pN stand for those polynomials, respectively.

Let Iα be an interval in U . We will show that for some n there is an interval
Iβ ⊂ Iα such that for all G ∈ Iβ , RNG⊕H

(0n) does not find two strings that
collide on fG.

We pick a large enough n so that the rest of the argument would go through.
In particular, n should be such that 2n+dlog ne is a tower number and it should
be bigger than the maximal length of strings in the domain of α. (We call the
set of all y such that α contains a condition y ∈ G or y 6∈ G the domain of α
and use the notation dom α for the domain of α.)

Note that the outcome of RNG⊕H

on input 0n depends only on membership
in G of strings of length at most pN (pR(n)). First we add to α the requirements
y /∈ G for all strings y /∈ Y2n+dlog ne ∪ dom α of length at most pN (pR(n)) and
denote by β0 the resulting condition. The condition β is obtained from β0 in
at most pR(n) iterations. In ith iteration we define a condition βi obtained
from βi−1 by adding some requirements of the form y ∈ G and y /∈ G for
y ∈ Y2n+dlog ne.

Let us explain this in more detail. For x ∈ Σn and j = 1, . . . , n− 1 let

Bxj = {〈xju, zxju〉 | u ∈ Σn}.

We call the set Bx =
⋃n−1

j=1 Bxj the bag corresponding to x. The value fG(x)
depends only on Bx∩G. More specifically, jth bit of fG(x) is 0 if the set Bxj∩G
is empty.

In each iteration we choose a set D ⊂ Σn of cardinality at most pN (pR(n))
and set oracle’s value on the set

⋃
x∈D Bx. This means that for every y in this

set we include in βi either the condition y /∈ G, or the condition y ∈ G. The
notation Di will refer to the set of all strings x such that oracle’s value is set on
Bx during iterations s = 1, . . . , i. We will keep the following statement invariant:

fG is injective on Di for all G ∈ Iβi
.

Additionally, in the ith iteration we choose the desired answer ai of NG⊕H

to the ith query to NG⊕H in the run of R on input 0n.
In ith iteration we run R on input 0n assuming the answers a1, . . . , ai−1 to

oracle queries until R makes ith query qi to the oracle or outputs a result. If the
first option happens, we choose the desired answer of NG⊕H on qi as follows.

Assume that G ∈ Iβi−1 and C is an accepting computation of NG⊕H on
input qi. We say that 〈G, C〉 is a good pair if the following holds. Let D be the
set of all x ∈ Σn such that computation C queries a string in the bag of x. The
pair 〈G, C〉 is good if fG is injective on the set D ∪Di−1.

Assume first that there is a good pair 〈G, C〉. In this case we pick a good pair
〈G̃, C̃〉, define D as explained above and choose YES as the desired answer to ith
query. The condition βi is obtained from βi−1 by adding the requirements y ∈ G
for all y ∈

⋃
x∈D Bx ∩ G̃ and the requirements y /∈ G for all y ∈

⋃
x∈D Bx \ G̃.

Note that NG⊕H(qi) = 1 for all G ∈ Iβi .
If there is no good pair 〈G, C〉 then we choose NO as the desired answer to

ith query and set βi = βi−1, Di = Di−1.

On some iteration k ≤ pR(n), R makes no new queries and outputs two
strings x1 and x2, where fG presumably collides. At this point we set oracle’s
value on all remaining strings in Y2n+dlog ne as follows. Pick any oracle G̃ ∈ Iβk−1

such that f G̃ is injective on the set Dk = Dk−1 ∪ {x1, x2} and such that for all
x ∈ Σn \ Dk, f G̃(x) = 00 . . . 0. As n is large enough there is such G̃. Indeed,
the length of qi is at most pR(n) and thus every computation of N G̃⊕H on
input qi runs in time pN (pR(n)). Hence |Dk| is bounded by the polynomial
pR(n)pN (pR(n)) + 2. If 2n−1 is bigger than this bound then there are enough
strings in the range of f to avoid collision in Dk.

We let β be the condition containing the requirements y ∈ G for all y ∈ G̃
of length at most pN (pR(n)) and the requirements y /∈ G for all y /∈ G̃ of length
at most pN (pR(n)).

We claim that for all G ∈ Iβ , RNG⊕H

on 0n computes the way how we
determined. Indeed, if R computes differently for some G ∈ Iβ then there must
be a query answered in the opposite way than we desire. Let qi be the first such
query. Note that qi coincides with the ith query in our construction, as all the
previous queries are answered by NG⊕H as we desire. If we have chosen YES as
the desired answer to ith query then by construction NG⊕H(qi) = 1 and thus
the desired answer is correct. Therefore this may happen only if we have chosen
NO as the ith answer and NG⊕H(qi) = 1.

By way of contradiction, assume that this is the case. Pick then an accepting
computation C of NG⊕H on qi. We will show that there is G′ ∈ Iβi−1 such that
〈G′, C〉 is a good pair. Let D be the set of all x ∈ Σn such that computation
C queries a string in the bag of x. Note that by construction fG is injective on
Dk. (However, fG may be not injective on Di−1 ∪D thus 〈G, C〉 may be not a
good pair.)

We will add to G some strings from
⋃

x∈D\Dk
Bx so that for the resulting

oracle G′ the pair 〈G′, C〉 is good. We may assume that 2n, the cardinality of
every set Bxj , is greater than the number of queries along C. For every x ∈ D\Dk

and every j we can change jth bit of fG(x) to 1 by adding to G a non-queried
string from Bxj . All of the 2n−1 values in the range of f can be obtained in
this way as we did not set any string in Bx for any x ∈ D \ Dk. Thus we can
change fG(x) for all x ∈ D \Dk one by one so that for the resulting oracle G′,
C is an accepting computation and fG′

(x) is injective on D ∪Dk and hence on
D ∪Di−1. ut

4 Conclusion and open problems

Is there an oracle relative to which the polynomial-time hierarchy is proper and
Σp

kQ is true for all k? As a corollary we would get a relativized world where the
hierarchy is proper and ∆p

k = Σp
k∩Πp

k . The second statement remains open even
relative to Kolmogorov generics and, if true, would give a relativized version of
the polynomial-time hierarchy that acts like the arithmetic hierarchy.

Acknowledgments

We thank Steve Fenner and Marcus Schaefer for helpful discussions. The work
of N. Vereshchagin was in part supported by RFBR grant 06-01-00122 and the
work of M. Koucký was supported in part by grant GA ČR 201/07/P276, project
No. 1M0021620808 of MŠMT ČR and Institutional Research Plan No. AV0Z10190503.

References

[FFNR03] S. Fenner, L. Fortnow, A. Naik, and J. Rogers. Inverting onto functions.
Information and Computation, 186:90–103, 2003.

[H̊as89] J. H̊astad. Almost optimal lower bounds for small depth circuits. Advances
in Computing Research, 5:143–170, 1989.

[Kol65] A.N. Kolmogorov. Three approaches to the quantitative definition of infor-
mation. Problems of Information Transmission, 1(1):1–7, 1965.

[LV97] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its
Applications. Graduate Texts in Computer Science. Springer, New York,
second edition, 1997.

[MP91] N. Megiddo and C. Papadimitriou. On total functions, existence theorems
and computational complexity. Theoretical Computer Science, 81(2):317–
324, 1991.

[MS72] A. Meyer and L. Stockmeyer. The equivalence problem for regular expres-
sions with squaring requires exponential space. In Proceedings of the 13th
IEEE Symposium on Switching and Automata Theory, pages 125–129. IEEE,
New York, 1972.

[Sip83] M. Sipser. Borel sets and circuit complexity. In Proceedings of the 15th
ACM Symposium on the Theory of Computing, pages 61–69. ACM, New
York, 1983.

[Sol64] R.J. Solomonoff. A formal theory of inductive inference, part 1 and part 2.
Information and Control, 7:1–22, 224–254, 1964.

