Does the Polynomial Hierarchy Collapse if Onto Functions are Invertible?

Harry Buhrman¹, Lance Fortnow², Michal Koucký³, John D. Rogers⁴, and Nikolay Vereshchagin⁵

 ¹ CWI, Amsterdam, buhrman@cwi.nl
 ² University of Chicago, fortnow@cs.uchicago.edu
 ³ Institute of Mathematics of Czech Academy of Sciences, mkoucky@cs.mcgill.ca
 ⁴ DePaul University, Chicago, jrogers@cs.depaul.edu
 ⁵ Lomonosov Moscow State University, ver@mech.math.msu.su

Abstract. The class **TFNP**, defined by Megiddo and Papadimitriou, consists of multivalued functions with values that are polynomially verifiable and guaranteed to exist. Do we have evidence that such functions are hard, for example, if **TFNP** is computable in polynomial-time does this imply the polynomial-time hierarchy collapses? By computing a multivalued function in deterministic polynomial-time we mean on every input producing one of the possible values of the function on that input. We give a relativized negative answer to this question by exhibiting an oracle under which **TFNP** functions are easy to compute but the polynomial-time hierarchy is infinite. We also show that relative to this same oracle, $\mathbf{P} \neq \mathbf{UP}$ and **TFNP**^{NP} functions are not computable in polynomial-time with an **NP** oracle.

1 Introduction

Megiddo and Papadimtriou [MP91] defined the class **TFNP**, the class of multivalued functions with values that are polynomially verifiable and guaranteed to exist. A function from **TFNP** is specified by a polynomial time computable binary relation R(x, y) and a polynomial p such that for every string x there is a string y of length at most p(|x|) such that R(x, y) holds. It maps x to the set of y's of length at most p(|x|) such that R(x, y) where in sequel by a value of the function on x we understand any of the y's. This class of functions includes Factoring, Nash Equilibrium, finding solutions of Sperner's Lemma, and finding collisions of hash functions.

Fenner, Fortnow, Naik and Rogers [FFNR03] consider the hypothesis, which they called "Q", that for every function in **TFNP** there is a polynomial-time procedure that will output a value of that function. That is, Proposition Q states that for every R and p defining a **TFNP**-function there is a polynomial time computable function f such that R(x, f(x)) holds for all x.

Fenner et. al. showed that Proposition Q is equivalent to a number of different hypotheses including

- Given an **NP** machine M with $L(M) = \Sigma^*$, there is a polynomial-time computable function f such that f(x) is an accepting computation of M(x).
- Given an honest onto polynomial-time computable function g there is a polynomial-time computable function f such that g(f(x)) = x. (A function g(x) is called honest if there is a polynomial p(n) such that $|x| \leq p(|g(x)|)$ for all x.)
- For all polynomial-time computable subsets S of **SAT** there is a polynomialtime computable function f such that for all ϕ in S, $f(\phi)$ is a satisfying assignment to ϕ .
- For all **NP** machines M such that $L(M) = \mathbf{SAT}$, there is a polynomial-time computable function f such that for every ϕ in **SAT** and accepting path c of $M(\phi)$, $f(\phi, c)$ is a satisfying assignment of ϕ .

Proposition Q is implied by $\mathbf{P} = \mathbf{NP}$ and implies that any pair of disjoint coNP-sets is P-separable (which implies that $NP \cap coNP = P$). Fenner et. al. ask whether we can draw any stronger complexity collapses from Q, in particular whether Q implies that the polynomial-time hierarchy collapses. We give a relativized negative answer to this question by exhibiting an oracle relative to which Q holds and the polynomial-time hierarchy is infinite. Our proof uses a new "Kolmogorov generic" oracle.

Proposition Q naturally generalizes to other levels of the polynomial hierarchy. Namely, define the class $\mathbf{TF}\Sigma_k^p$ as follows. A $\mathbf{TF}\Sigma_k^p$ -function is specified by a binary relation R(x, y) computable in polynomial time with an oracle from Σ_{k-1}^p and a polynomial p such that for every string x there is a string y of length at most p(|x|) such that R(x, y) holds. For $k \ge 1$ we will label $\Sigma_k^p Q$ the statement

For every R and p defining a $\mathbf{TF}\Sigma_k^p$ -function there is a function f computable in polynomial time with an oracle from Σ_{k-1}^p such that R(x, f(x)) holds for all x.

For k = 1 we obtain the class **TFNP** and Proposition Q. Proposition $\mathbf{TF}\Sigma_k^p$ implies that $\mathbf{P}^{\Sigma_{k-1}^p} = \Sigma_k^p \cap \Pi_k^p$ and is implied by $\Sigma_{k-1}^p = \mathbf{P}_k^p$. Σ_k^p . A natural question is whether, similar to the implication

$$\Sigma_{k-1}^p = \Sigma_k^p \Longrightarrow \Sigma_k^p = \Sigma_{k+1}^p,$$

Proposition $\mathbf{TF}\Sigma_k^p$ implies Proposition $\mathbf{TF}\Sigma_{k+1}^p$. We give a relativized negative answer to this question in the case k = 1: For any Kolmogorov generic G the Proposition $\mathbf{TF} \Sigma_2^{p,G}$ does not hold.

In addition we show that for any Kolmogorov generic $G, \mathbf{P}^G \neq \mathbf{U}\mathbf{P}^G$.

$\mathbf{2}$ Definitions and preliminaries

Let Σ denote the alphabet $\{0,1\}$. The set of all finite-length binary strings is denoted Σ^* .

2.1 Complexity classes

Our model of computation is the oracle Turing machine, both deterministic (DTM) and nondeterministic (NTM). Unless otherwise noted, all machines in this paper run in polynomial time. We assume that the reader is familiar with the complexity classes \mathbf{P} , \mathbf{NP} , \mathbf{UP} , \mathbf{PSPACE} , Σ_k^p , and Π_k^p for $k \ge 0$. The class Δ_k^p is defined as $\mathbf{P}^{\Sigma_{k-1}^p}$, and $\mathbf{PH} = \bigcup_k \Sigma_k^p$ stands for the Polynomial hierarchy. The class $\mathbf{F}\Delta_k^p$ is defined as the class of all functions from Σ^* to Σ^* that are computable in polynomial time with an oracle from Σ_{k-1}^p .

We say that disjoint sets B and C are **P**-separable if there is a set $D \in \mathbf{P}$ such that $B \subseteq D$ and $C \subseteq \Sigma^* - D$.

Proposition Q and its generalizations $\Sigma_k^p Q$ are defined in the Introduction. It is easy to see that $\Sigma_k^p Q$ is equivalent to the following statement:

For every nondeterministic polynomial-time Turing machine M with oracle from Σ_{k-1}^p that accepts Σ^* , there is a function f in $\mathbf{F}\Delta_k^p$ such that, for all x, f(x) is an accepting computation of M(x).

It is easy to see the following:

Proposition 1. If $\Sigma_{k-1}^p = \Sigma_k^p$ then $\Sigma_k^p Q$ is true. If $\Sigma_k^p Q$ is true then $\Delta_k^p = \Sigma_k^p \cap \Pi_k^p$.

2.2 Kolmogorov complexity and randomness

An excellent introduction to Kolmogorov complexity can be found in the textbook by Li and Vitányi [LV97]. We will state here the definitions and results relevant to our work. Roughly speaking, the Kolmogorov complexity of a binary string x is the minimal length of a program that generates x; the conditional complexity C(x|y) of x conditional to y is the minimal length of a program that produces x with y as input. We provide a precise definition.

A conditional description method is a partial computable function Φ (that is, a Turing machine) mapping pairs of binary strings to binary strings. A string p is called a *description of x conditional to y* with respect to Φ if $\Phi(p, y) = x$. The complexity of x conditional to y with respect to Φ is defined as the minimal length of a description of x conditional to y with respect to Φ :

$$C_{\Phi}(x|y) = \min\{|p| \mid \Phi(p,y) = x\}.$$

A conditional description method Ψ is called *universal* if for all other conditional description methods Φ there is a constant k such that

$$C_{\Psi}(x|y) \le C_{\Phi}(x|y) + k$$

for all x, y. The Solomonoff-Kolmogorov theorem [Sol64,Kol65] states that universal methods exist. We fix a universal Ψ and define *conditional Kolmogorov* complexity C(x|y) as $C_{\Psi}(x|y)$. We call this Ψ the reference universal Turing machine. The (unconditional) Kolmogorov complexity C(x) is defined as the

Kolmogorov complexity of x conditional to the empty string. Comparing the universal function Ψ with the function $\Phi(p, y) = \Psi(p, \text{empty string})$ we see that the conditional Kolmogorov complexity does not exceed the unconditional one:

$$C(x|y) \leq C(x) + O(1).$$

Comparing the universal function Ψ with the function $\Phi(p, y) = p$ we see that the Kolmogorov complexity does not exceed the length by no more than a constant:

$$C(x) \le |x| + k \tag{1}$$

for some k and all x. For most strings this inequality is close to an equality: the number of strings x of length n with

$$C(x) < n - m$$

is less than 2^{n-m} . Indeed, the total number of descriptions of length less than n-m is equal to

$$1 + 2 + \dots + 2^{n-m-1} = 2^{n-m} - 1.$$

In particular, for every n there is a string x of length n and complexity at least n. Such strings are called *incompressible*, or random.

Let f(x, y) be a computable function mapping strings to strings. To describe the string f(x, y) it is enough to concatenate x and y. Thus we obtain:

$$C(f(x,y)) \le 2|x| + |y| + k.$$
(2)

where k depends on f and on the reference universal machine but not on x, y. We have the extra factor of 2, as we need to separate x from y. To this end we write the former in a self-delimiting form. As a self-delimiting encoding of a string u we take the string \bar{u} obtained from u by doubling all its bits and appending the pattern 01. For instance, $\overline{001} = 00001101$. A similar inequality holds for computable functions of more than 2 strings:

$$C(f(x_1, x_2, \dots, x_n)) \leq 2|x_1| + 2|x_2| + \dots + 2|x_{n-1}| + |x_n| + O(1).$$
(3)

2.3 Kolmogorov-generic oracles

In order to create a relativized world where proposition Q holds but the polynomialtime hierarchy is infinite we develop a new type of oracle, we call a Kolmogorov generic.

We create a set of allowable strings U of indexed independently random strings as follows:

For each n fix a binary string Z_n of length $n2^n$ that is incompressible, that is, $C(Z_n) \geq |Z_n|$. Divide Z_n into substrings z_1, \ldots, z_{2^n} , each of length n. Let Y_n be the set $\{\langle i, z_i \rangle | i \in \{0, 1\}^n\}$. (Here we identify i with the integer binary represented by i. A pair $\langle u, v \rangle$ is encoded be the string $\bar{u}v$, where \bar{u} stands for the self-delimiting encoding of u defined in Section 2.2.) Let U be the set of all subsets of $\bigcup Y_n$, where the union is over all tower n, i.e., n can be expressed as a tower of twos.

A condition $\alpha : U \to \{0, 1, *\}$ indicates which strings we have forced in or out of our generic G where $\alpha(x) = 0$ if we guarantee that x is not in G and $\alpha(x) = 1$ if we guarantee that x is in G. In this paper, we only consider conditions that force a finite number of strings of G, i.e., the set $\alpha^{-1}(\{0,1\})$ is finite.

An interval U_{α} is a set of subsets of U consistent with α . Suppose we have a property P(A) on sets A. We say P(A) is dense within U if for all α there is a β such that for all sets G, if $G \in U_{\beta} \subseteq U_{\alpha}$ then P(G) is true.

For example, let $P_k(A)$ be the property that A has at least k strings. This is a dense property property by choosing k strings in $\alpha^{-1}(*)$ and setting $\beta(x) = 1$ for these strings.

Let α_0 map every x in U to *. Define α_k so that $U_{\alpha_k} \subset U_{\alpha_{k-1}}$ and every G in U_{α_k} has property P_k , i.e., has at least k ones. Note that $\cap_k U_{\alpha_k}$ is non-empty and any G in that set must be infinite.

The same argument holds for any countable collection of dense properties. Fix a logical system Γ strong enough to define every property described in this paper and let \mathcal{P} be the set of dense properties defined in Γ . By the argument above, there exists sets G such that P(G) holds for every $P \in \mathcal{P}$. We call such G Kolmogorov-generic.

When proving that a certain property holds for a Kolmogorov generic oracle G we use the fact that every two different lengths of strings in G are exponentially far apart. When discussing a particular polynomial-time computation, we only have to worry about strings at exactly one length in the oracle. Longer strings cannot be queried by the computation and so cannot affect it. Shorter strings can all be queried and found by the computation.

3 Results

Theorem 1. Relative to a generic oracle in $U \oplus PSPACE$ -complete (a Kolmogorovgeneric oracle), Proposition Q is true.

We provide a sketch of the argument first. First, we relativize to a **PSPACE**complete set H so that we are able to answer queries in \mathbf{P}^{H} about **PSPACE**^H. Although later we relativize further to a Kolmogorov generic oracle $G \in U$, thus considering $(P^{H})^{G} = P^{G \oplus H}$ computation, we will only need to be able to answer queries computable in **PSPACE**^H.

So we want to show that relative to a Kolmogorov generic oracle G and simultaneously relative to H, Property Q holds. We look on each nondeterministic polynomial time machine M independently. For a given interval of U if we can find a sub-interval of U that makes M not to accept all the inputs then we pick this sub-interval of U for our Kolmogorov generic oracle G; Property Q will be trivially satisfied for M then. If that is not the case so we cannot dispose of M so easily we will show how to find accepting paths of M efficiently for all the oracles in the given interval of U. We have the power of **PSPACE** at our disposal so we could search for accepting paths of M if M were not relativized to G or if it were relativized to a simple enough G so that we could pass the description of the oracle or its relevant part to our **PSPACE** search procedure. Since strings of different lengths in G are exponentially far apart the relevant part of G is quite restricted although, still possibly large in size. However, iteratively we can find a small (polynomial size) portion of G that is truly relevant for our search. We use the Kolmogorov properties of G for that. Once we know the relevant part of G we find the accepting path of M in **PSPACE**. The actual proof is next.

Proof. We first assume that $\mathbf{P} = \mathbf{PSPACE}$ and prove that Proposition Q is true under a generic oracle $G \in U$.

As explained in the section on generic oracles it suffices to show that for every polynomial-time oracle NTM M and relative to a Kolmogorov-generic oracle,

If M accepts Σ^* then there is a polynomial time machine finding for each input an accepting computation of M.

(4)

Fix M. Without loss of generality, M on an input x runs in time $|x|^k + k$, for some constant k independent of its oracle. Indeed, for each oracle nondeterministic Turing machine M (not necessarily polynomial time) and natural k we can construct an NTM that acts as M supplied with a clock that prevents it from running more than in $|x|^k + k$ steps. If M^A runs in polynomial time then for some k the machine M^A supplied with the clock $|x|^k + k$ is equivalent to M^A .

We will show that the set of oracles satisfying (4) is dense. Let $I = U_{\alpha}$ be an interval in U. We need to construct a sub-interval J of I such that (4) is true for all $G \in J$. Consider two cases.

Case 1. There is a sub-interval of I such that for all A in that sub-interval, M^A does not accept Σ^* . Then let J be equal to that sub-interval of I.

Case 2. There is no such sub-interval. Consider the following polynomialtime deterministic algorithm A that, given an input x of length at least two, finds an accepting path of the computation $M^G(x)$. Let n be the largest tower number smaller or equal to $4|x|^{2k}$. The algorithm A will try to collect enough information about the oracle G so that it can find an accepting path of $M^G(x)$. The algorithm A starts by asking the value of G on all the strings in Y_i for $i \leq \log n$. This can be done in time polynomial in |x|.

After that it iteratively builds a set Q of strings from $G \cap Y_n$ starting from an empty set Q. Using the assumption that $\mathbf{P} = \mathbf{PSPACE}$ and the information about G collected so far, the algorithm finds the lexicographically first accepting path of M^G on x under the assumption that $G \cap \{\langle i, u \rangle | i, u \in \{0, 1\}^n\} = Q$. (Note, M on x cannot query any string in Y_m , for m > n so in **PSPACE** we can find such an accepting path given $x, Y_{\leq \log n}$ and Q.) Such path does exist, as otherwise, the sub-interval J of I, consisting of all G' with $G' \cap \{\langle i, u \rangle | i, u \in \{0, 1\}^n\} = Q$ and $G' \cap Y_i = G \cap Y_i$ for all $i \leq \log n$ would qualify for case (1).

If this path is indeed an accepting path of the computation $M^G(x)$, A is done. If not then there is a string $w \in (G \cap \{\langle i, u \rangle | i, u \in \{0, 1\}^n\}) \setminus Q$ that is queried along this path. Clearly such w is from Y_n . The algorithm picks the first such w, adds it to the set Q and iterates the process. Clearly, A eventually finds a correct accepting path of $M^G(x)$. We claim that A will find it within polynomially many iterations.

Observe, given M, x, $G \cap Y_{\leq \log n}$ and the first i - 1 strings of Q, the *i*th string added to Q can be described by $k \log |x|$ bits by its order number among the queries of M on x on the accepting path found under the assumption that $G \cap Y_n = \{\text{the first } i - 1 \text{ strings of } Q\}$. The set $G \cap Y_{\leq \log n}$ has at most $n + \log \log n + \log \log n + \ldots$ strings, each of length at most $\log n$. Thus $G \cap Y_{\leq \log n}$ can be described in at most $O(n \log n)$ bits. Hence if Q reaches size ℓ , we can describe Q by $\ell k \log |x| + O(n \log n) + 2|x| + O(1)$ bits (by Equation (3) and the fact that we need to specify the length of $k \log |x|$ -bit strings only once).

Recall that all of the strings in Y_n are derived from Z_n . Because of the way Y_n is defined any set A of ℓ strings from Y_n has Kolmogorov complexity at least $\ell n/2 - O(1)$.

Indeed, each element of Y_n is a pair $\langle i, y \rangle$. Let p denote the concatenation of all y's from all pairs $\langle i, y \rangle$ outside A arranged according to the order on i's. The length of p is $n(2^n - \ell)$. The initial string Z_n can be obtained from p by inserting the second components of pairs from A, their first components specifying the places where to insert. Thus given p and the shortest description q of A we can find Z_n , and Equation (2) implies

$$n2^{n} \le C(Z_{n}) \le |p| + 2|q| + O(1) = n(2^{n} - \ell) + 2C(A) + O(1).$$

Since $2+2k \log |x| < n \le 4|x|^{2k}$, the Kolmogorov complexity of ℓ strings from Y_n is at least $\ell k \log |x| + \ell - O(1)$. Thus Q cannot grow bigger than $O(n \log n) + 2|x| = O(|x|^{2k} \log |x|)$.

We can remove the hypothesis that $\mathbf{P} = \mathbf{PSPACE}$ by first relativizing to an oracle making $\mathbf{P} = \mathbf{PSPACE}$. It is known that relative to every \mathbf{PSPACE} complete set H we have $\mathbf{P} = \mathbf{PSPACE}$. Thus, relative to H, Q-property holds relative to a generic oracle in U. So we first relativize to H and then to G which is no different than relativizing to $G \oplus H$.

The following theorem implies that relative to a Kolmogorov generic oracle the Polynomial Hierarchy is infinite.

Theorem 2. Relative to a generic oracle in $U \oplus PSPACE$ -complete (a Kolmogorovgeneric oracle), for all $k \ge 0$ we have $\Sigma_k^p \ne \Sigma_{k+1}^p$.

To establish the theorem we use the technique of Sipser [Sip83] together with the result of Håstad [Hås89] that there are functions computable by polynomial size depth-k circuits consisting of unbounded fan-in AND and OR gates that are not computable by depth-(k-1) circuits of polynomial size. Sipser observes that the output of a $\sum_{k=1}^{p,G}$ computation on a fixed input can be computed by an appropriate size depth-(k-1) circuit consisting of unbounded fan-in AND and OR gates that takes as its input the characteristic sequence of G (or its beginning segment). The proof follows.

Proof. Meyer and Stockmeyer [MS72] show that if $\Sigma_k^p = \Sigma_{k+1}^p$ then $\Sigma_k^p = \Sigma_j^p$ for all $j \ge k$ and the proof of this relativizes. So it is sufficient for us to show

that $\Sigma_{k-2}^p \neq \Sigma_{k+1}^p$ for all $k \ge 3$ relative to a Kolmogorov generic oracle $G \oplus H$, where H is an arbitrary set.

We use the Sipser [Sip83] functions as defined by Håstad [Hås89]. The function f_k^m is represented by a depth k alternating circuit tree with an OR gate at the top with fan-in $\sqrt{m/\log m}$, bottom fan-in $\sqrt{km \log m/2}$ and all other fan-ins are m. Each variable occurs just once at each leaf.

Theorem 3 (Håstad). Depth k-1 circuits computing f_k^m are of size at least $2^{\Omega(\sqrt{m/(k \log m)})}$

Pick a tower n. Set $m_n = 2^{\lceil n/k \rceil}$. The number of variables of $f_k^{m_n}$ is $m_n^{k-1}\sqrt{k/2} < 2^n$ for large n. For each of the variables of this formula assign a unique $i \in \{0, 1\}^n$ so we can in polynomial-time find i from the variable and vice-versa.

Now consider the language $L_k(G) \subseteq \{1\}^*$:

 1^n is in $L_k(G)$ iff $f_k^{m_n}$ is true if we set the variables corresponding to i to one when $\langle i, z_i \rangle$ is in G and to zero otherwise.

We will show relative to a Kolmogorov generic oracle $G \oplus H$, $L_k(G) \in \Sigma_{k+1}^{p,G \oplus H} - \Sigma_{k-2}^{p,G \oplus H}$.

First notice that $L_k(G) \in \Sigma_{k+1}^{p,G \oplus H}$ for all $G \in U$: Consider an alternating Turing machine that uses k alternations to simulate the circuit. To determine whether a variable corresponding to *i* is true the machine makes the **NP** query "is there a *z* such that $\langle i, z \rangle$ is in *G*." This gives us a $\Sigma_k^{\mathbf{NP},G} = \Sigma_{k+1}^{p,G}$ machine accepting $L_k(G)$.

Let M be an alternating Σ_{k-2}^p oracle Turing machine that runs in time n^j . Let $I = U_\alpha$ be an interval in U. We need to construct a sub-interval J of I such that $M^{G \oplus H}$ does not accept L(G) for all $G \in J$. Along the lines of Sipser [Sip83] we can convert the computation to a circuit of depth k-1 and size $2^{O(n^j)}$ whose input variables correspond to queries to G. Hardwire the queries not of the form $\langle i, z_i \rangle$ to one if they belong to H and to zero otherwise. This way we obtain a circuit whose variables are the same as those in $f_k^{m_n}$ in the definition of $L_k(G)$ on 1^n . By Theorem 3 for sufficiently large n this circuit cannot compute $f_k^{m_n}$ have different outputs. Add to the condition α the requirement $\langle i, z_i \rangle \in G$ if variable i is assigned 1 in this setting and the requirement $\langle i, z_i \rangle \notin G$ otherwise. For all $G \in U$ satisfying the resulting condition, $M^{G \oplus H}(1^n)$ accepts iff 1^n is not in L(G).

We can also show that one-way functions exist relative to G.

Theorem 4. Relative to a Kolmogorov generic oracle $G \oplus H$, $\mathbf{P} \neq \mathbf{UP}$.

Proof. Define the relativized language L^X as $\{\langle i, 0^n \rangle : (\exists z) | z | = n \& \langle i, z \rangle \in X\}$. For a string z of length n, there is at most one string of the form $\langle i, z \rangle$ in G so the language is in \mathbf{UP}^G . A simple argument demonstrates that L^G is not in $\mathbf{P}^{G \oplus H}$.

Can the proof that Property Q holds relative to a Kolmogorov-generic be lifted to show that $\Sigma_k^p Q$ holds and thus we get the collapse of Δ_k^p and $\Sigma_k^p \cap \Pi_k^p$? The answer is no for k = 2 and the proof of this shows that this is true for a broad class of finite extension oracles.

To show that $\Sigma_2^p Q$ fails relative to a Kolmogorov-generic oracle G, let f^G be a function from Σ^* to Σ^* where for every x of length n

$$f^G(x) = y_1 \dots y_{n-1}$$

and

$$y_j = 1 \iff (\exists u, z) |u| = n, |z| = 2n + \lceil \log n \rceil, \langle xju, z \rangle \in G.$$

No matter what strings are in G, the pigeonhole principle tells us that, for all n, there will always be a *collision*, that is, two different strings x_1 and x_2 of

an *n*, there will always be a contract, that is, two different strings x_1 and x_2 of length *n* such that $f^G(x_1) = f^G(x_2)$. Let *M* be a $\Sigma_2^{p,G}$ machine that on any input of length *n* guesses two different strings of length *n* in its existential step and then accepts iff those strings collide on f^G . It is clear from the definition of f^G that *M* can find these collisions and that it accepts Σ^* . A $\mathbf{P}^{\mathbf{NP}^G}$ machine that finds an accepting path of *M* could be modified to output the two colliding strings found by M on that path so, without loss of generality, we will assume it does just that. (Because of the inner working of M which we designed by ourselves, the two colliding strings are directly determined by certain well defined bits in the nondeterministic choices of M.)

Theorem 5. For an arbitrary oracle H, relative to a Kolmogorov generic oracle $G \oplus H$, no **P**^{NP} machine can find an accepting path of the computation M(x)for every x.

Again in the proof we will look on each $\mathbf{P}^{\mathbf{NP}}$ machine independently and show that relative to a Kolmogorov generic oracle G the machine fails to find an accepting path of M, i.e., it fails to output a collision in f^G . We will do it by imposing certain conditions on G that will fix the computation of the $\mathbf{P}^{\mathbf{NP}}$ machine while still allowing us to define f^G on most of its domain in a suitable way. The conditions will be imposed iteratively for each additional query of the $\mathbf{P}^{\mathbf{NP}}$ machine to its \mathbf{NP} oracle. Indeed our goal will be to fix the computation of the NP oracle machine on the queries it receives. We will do it by imposing additional constraints on G in a way that does not produce *observable* collisions in f^{G} . Once the **P**^{NP} machine outputs the pair of strings forming a presumable collision we constrain G as not give a collision of f^G on that pair of strings.

Proof. Let $\langle R, N \rangle$ be an arbitrary pair consisting of an oracle polynomial time DTM R and an oracle polynomial time NTM N. We will show that the set of all oracles G such that R with oracle $N^{G \oplus H}$ does not find any collision of f^G is dense in U.

Without loss of generality we can assume that there are polynomial upper bounds of the running time of R and N that do not depend on their oracles. Let p_R and p_N stand for those polynomials, respectively.

Let I_{α} be an interval in U. We will show that for some n there is an interval $I_{\beta} \subset I_{\alpha}$ such that for all $G \in I_{\beta}$, $\mathbb{R}^{N^{G \oplus H}}(0^n)$ does not find two strings that collide on f^G .

We pick a large enough n so that the rest of the argument would go through. In particular, n should be such that $2n + \lceil \log n \rceil$ is a tower number and it should be bigger than the maximal length of strings in the domain of α . (We call the set of all y such that α contains a condition $y \in G$ or $y \notin G$ the domain of α and use the notation dom α for the domain of α .)

Note that the outcome of $\mathbb{R}^{N^{G\oplus H}}$ on input 0^n depends only on membership in G of strings of length at most $p_N(p_R(n))$. First we add to α the requirements $y \notin G$ for all strings $y \notin Y_{2n+\lceil \log n \rceil} \cup \operatorname{dom} \alpha$ of length at most $p_N(p_R(n))$ and denote by β_0 the resulting condition. The condition β is obtained from β_0 in at most $p_R(n)$ iterations. In *i*th iteration we define a condition β_i obtained from β_{i-1} by adding some requirements of the form $y \in G$ and $y \notin G$ for $y \in Y_{2n+\lceil \log n \rceil}$.

Let us explain this in more detail. For $x \in \Sigma^n$ and j = 1, ..., n-1 let

$$B_{xj} = \{ \langle xju, z_{xju} \rangle \mid u \in \Sigma^n \}.$$

We call the set $B_x = \bigcup_{j=1}^{n-1} B_{xj}$ the *bag* corresponding to x. The value $f^G(x)$ depends only on $B_x \cap G$. More specifically, *j*th bit of $f^G(x)$ is 0 if the set $B_{xj} \cap G$ is empty.

In each iteration we choose a set $D \subset \Sigma^n$ of cardinality at most $p_N(p_R(n))$ and *set* oracle's value on the set $\bigcup_{x \in D} B_x$. This means that for every y in this set we include in β_i either the condition $y \notin G$, or the condition $y \in G$. The notation D_i will refer to the set of all strings x such that oracle's value is set on B_x during iterations $s = 1, \ldots, i$. We will keep the following statement invariant:

 f^G is injective on D_i for all $G \in I_{\beta_i}$.

Additionally, in the *i*th iteration we choose the *desired* answer a_i of $N^{G \oplus H}$ to the *i*th query to $N^{G \oplus H}$ in the run of R on input 0^n .

In *i*th iteration we run R on input 0^n assuming the answers a_1, \ldots, a_{i-1} to oracle queries until R makes *i*th query q_i to the oracle or outputs a result. If the first option happens, we choose the desired answer of $N^{G \oplus H}$ on q_i as follows.

Assume that $G \in I_{\beta_{i-1}}$ and C is an accepting computation of $N^{G \oplus H}$ on input q_i . We say that $\langle G, C \rangle$ is a *good pair* if the following holds. Let D be the set of all $x \in \Sigma^n$ such that computation C queries a string in the bag of x. The pair $\langle G, C \rangle$ is good if f^G is injective on the set $D \cup D_{i-1}$.

Assume first that there is a good pair $\langle G, C \rangle$. In this case we pick a good pair $\langle \tilde{G}, \tilde{C} \rangle$, define D as explained above and choose YES as the desired answer to *i*th query. The condition β_i is obtained from β_{i-1} by adding the requirements $y \in G$ for all $y \in \bigcup_{x \in D} B_x \cap \tilde{G}$ and the requirements $y \notin G$ for all $y \in \bigcup_{x \in D} B_x \setminus \tilde{G}$. Note that $N^{G \oplus H}(q_i) = 1$ for all $G \in I_{\beta_i}$.

If there is no good pair $\langle G, C \rangle$ then we choose NO as the desired answer to *i*th query and set $\beta_i = \beta_{i-1}$, $D_i = D_{i-1}$.

On some iteration $k \leq p_R(n)$, R makes no new queries and outputs two strings x_1 and x_2 , where f^G presumably collides. At this point we set oracle's value on all remaining strings in $Y_{2n+\lceil \log n \rceil}$ as follows. Pick any oracle $\tilde{G} \in I_{\beta_{k-1}}$ such that $f^{\tilde{G}}$ is injective on the set $D_k = D_{k-1} \cup \{x_1, x_2\}$ and such that for all $x \in \Sigma^n \setminus D_k$, $f^{\tilde{G}}(x) = 00...0$. As n is large enough there is such \tilde{G} . Indeed, the length of q_i is at most $p_R(n)$ and thus every computation of $N^{\tilde{G} \oplus H}$ on input q_i runs in time $p_N(p_R(n))$. Hence $|D_k|$ is bounded by the polynomial $p_R(n)p_N(p_R(n)) + 2$. If 2^{n-1} is bigger than this bound then there are enough strings in the range of f to avoid collision in D_k .

We let β be the condition containing the requirements $y \in G$ for all $y \in \tilde{G}$ of length at most $p_N(p_R(n))$ and the requirements $y \notin G$ for all $y \notin \tilde{G}$ of length at most $p_N(p_R(n))$.

We claim that for all $G \in I_{\beta}$, $R^{N^{G \oplus H}}$ on 0^n computes the way how we determined. Indeed, if R computes differently for some $G \in I_{\beta}$ then there must be a query answered in the opposite way than we desire. Let q_i be the first such query. Note that q_i coincides with the *i*th query in our construction, as all the previous queries are answered by $N^{G \oplus H}$ as we desire. If we have chosen YES as the desired answer to *i*th query then by construction $N^{G \oplus H}(q_i) = 1$ and thus the desired answer is correct. Therefore this may happen only if we have chosen NO as the *i*th answer and $N^{G \oplus H}(q_i) = 1$.

By way of contradiction, assume that this is the case. Pick then an accepting computation C of $N^{G \oplus H}$ on q_i . We will show that there is $G' \in I_{\beta_{i-1}}$ such that $\langle G', C \rangle$ is a good pair. Let D be the set of all $x \in \Sigma^n$ such that computation C queries a string in the bag of x. Note that by construction f^G is injective on D_k . (However, f^G may be not injective on $D_{i-1} \cup D$ thus $\langle G, C \rangle$ may be not a good pair.)

We will add to G some strings from $\bigcup_{x \in D \setminus D_k} B_x$ so that for the resulting oracle G' the pair $\langle G', C \rangle$ is good. We may assume that 2^n , the cardinality of every set B_{xj} , is greater than the number of queries along C. For every $x \in D \setminus D_k$ and every j we can change jth bit of $f^G(x)$ to 1 by adding to G a non-queried string from B_{xj} . All of the 2^{n-1} values in the range of f can be obtained in this way as we did not set any string in B_x for any $x \in D \setminus D_k$. Thus we can change $f^G(x)$ for all $x \in D \setminus D_k$ one by one so that for the resulting oracle G', C is an accepting computation and $f^{G'}(x)$ is injective on $D \cup D_k$ and hence on $D \cup D_{i-1}$.

4 Conclusion and open problems

Is there an oracle relative to which the polynomial-time hierarchy is proper and $\Sigma_k^p Q$ is true for all k? As a corollary we would get a relativized world where the hierarchy is proper and $\Delta_k^p = \Sigma_k^p \cap \Pi_k^p$. The second statement remains open even relative to Kolmogorov generics and, if true, would give a relativized version of the polynomial-time hierarchy that acts like the arithmetic hierarchy.

Acknowledgments

We thank Steve Fenner and Marcus Schaefer for helpful discussions. The work of N. Vereshchagin was in part supported by RFBR grant 06-01-00122 and the work of M. Koucký was supported in part by grant GA ČR 201/07/P276, project No. 1M0021620808 of MŠMT ČR and Institutional Research Plan No. AV0Z10190503.

References

- [FFNR03] S. Fenner, L. Fortnow, A. Naik, and J. Rogers. Inverting onto functions. Information and Computation, 186:90–103, 2003.
- [Hås89] J. Håstad. Almost optimal lower bounds for small depth circuits. Advances in Computing Research, 5:143–170, 1989.
- [Kol65] A.N. Kolmogorov. Three approaches to the quantitative definition of information. Problems of Information Transmission, 1(1):1–7, 1965.
- [LV97] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications. Graduate Texts in Computer Science. Springer, New York, second edition, 1997.
- [MP91] N. Megiddo and C. Papadimitriou. On total functions, existence theorems and computational complexity. *Theoretical Computer Science*, 81(2):317– 324, 1991.
- [MS72] A. Meyer and L. Stockmeyer. The equivalence problem for regular expressions with squaring requires exponential space. In *Proceedings of the 13th IEEE Symposium on Switching and Automata Theory*, pages 125–129. IEEE, New York, 1972.
- [Sip83] M. Sipser. Borel sets and circuit complexity. In Proceedings of the 15th ACM Symposium on the Theory of Computing, pages 61–69. ACM, New York, 1983.
- [Sol64] R.J. Solomonoff. A formal theory of inductive inference, part 1 and part 2. Information and Control, 7:1–22, 224–254, 1964.