
Charles University in Prague

Faculty of Mathematics and Physics

DOCTORAL THESIS

David Hartman

Extension properties of structures

Computer Science Institute of Charles University

Supervisor of the doctoral thesis: Prof. RNDr. Jaroslav Nešetřil, DrSc.
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Abstrakt: Tato práce rozeb́ırá vlastnost relačńıch struktur, která implikuje je-
jich vysokou symetričnost. Strukturu nazveme homogenńı pokud lze libovolné
lokálńı zobrazeńı rozš́ı̌rit na zobrazeńı nad celou strukturou a to pro libovolnou
volbu konečné vzorové množiny. Typ lokálńıho a globálńıho zobrazeńı potom
určuje r̊uzné typy homogenity. Prominentńı mı́sto má ultrahomogenita, která
označuje strukturu, pro kterou libovolný lokálńı isomorfismus nad konečnými
podstrukturami je rozšǐritelný na automorfismus. Na rozd́ıl od graf̊u je klasi-
fikace ultrahomogenńıch relačńıch struktur stále otevřeným problémem. Ćılem
práce je charakterizovat “vzdálenost” od homogenity a to dvěma zp̊usoby. Ne-
jprve zvyšuje “složitost struktury” přidáváńım relaćı a sleduje změny klasifikace
homogenńıch struktur. To vede k několika klasifikaćım homomorfně-homogenńıch
L-obarvitelných graf̊u pro r̊uzné L, kde L-obarvitelný graf je graf, kde vrcholy a
hrany dostávaj́ı množiny barev z částečně uspořádané množiny L. Na to navazuj́ı
výsledky a diskuze nad hierarchíı tř́ıd definovanou skrze r̊uzné typy homogenity s
ohledem na koincidenci jednotlivých tř́ıd. Druhý pohled zkoumá pro dané struk-
tury jak minimálně rozš́ı̌rit jejich jazyk, abychom dosáhli homogenity. Výsledky
se týkaj́ı relačńı komplexity konečných graf̊u a dále jej́ı meze pro nekonečně
spočetné relačńı struktury definované tř́ıdou zakázaných homomorfismů.
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homogeneity. A prominent position belongs to ultrahomogeneity, for which every
local isomorphism can be extended to an automorphism. In contrast to graphs,
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1. Introduction

The mathematical sciences
particularly exhibit order,
symmetry, and limitation; and
these are the greatest forms of the
beautiful.

Aristotle

There is a long-standing effort, albeit not precisely defined, to discover and
explore beauty in mathematical objects of all kinds. The roots of beauty are often
found to be connected with symmetries of the corresponding object. There are
many ways how symmetry can be defined, usually through different representa-
tions of the object under study. Using notions from model theory, an interesting
type of symmetry – and from a specific point of view one of the most fundamen-
tal – is achieved when mathematical objects are studied from the perspective of
“structure-preserving” extensions of morphisms over the structure itself. To be
able to define this kind of symmetry in a more formal way, let us first define the
necessary notions that are required.

A relational structure A is a pair (A,RA), where RA is a tuple (Ri
A : i ∈ I)

of relations such that Ri
A ⊆ Aδi (i.e. Ri

A is a δi-ary relation on A). It should
be mentioned that constant and function symbols can also be defined for general
structures, but we do not consider these here – for more information see [67]. The
underlying set A is called the domain of A, whose cardinality is the corresponding
cardinality of the whole relational structure, i.e. |A| = |A|. Elements of the
domain are usually denoted by a1, a2, . . ., or by x1, x2, . . .. A finite sequence of
elements (a1, a2, . . . , an) or (x1, x2, . . . , xn) is called an n-tuple or simply a tuple,
and denoted by a or x. The signature L of a relational structure A is a set
of n-ary relational symbols given for each separate n. A signature represents a
language from which the relational structure is constructed and it can be usually
assumed to be read simply from the definition of the structure. When there is a
need to specify the language for a particular structure we call such a structure
an L-structure. The class of all (countable) relational structures with signature
L is denoted by Rel(L).

One of the structures that features prominently in the sequel is that of an
undirected graph. An undirected graph, or simply a graph, is a relational struc-
ture with domain V whose elements are called vertices and one binary irreflexive
symmetric relation E. The set of unordered pairs {u, v} such that E(u, v) are are
called edges. Vertices are usually denoted by v1, v2, . . . or u1, u2, . . .. Edges will
be denoted by e1, e2, . . ., or simply by concatenating vertex symbols, so that for
example vivj denotes the edge joining vertices vi and vj. If the undirected nature
of an edge has to be stressed we write {vi, vj} rather than vivj. This kind of
structure is usually abbreviated as G = (V,E). For such a graph loops, i.e. edges
whose endpoints are the same vertex, are not allowed, which follows from the
irreflexive property assumed for the edge relation. A graph with loops allowed is
a graph where the corresponding edge relation is not necessarily irreflexive. The
vertex set of a given graph G is denoted by V (G), and similarly its edge set is
denoted by E(G).
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The source of symmetry within these relational structures lies in a specific
handling of various mappings defined over them. For structures A = (A,RA)
and B = (B,RB) a homomorphism f : A → B is a mapping f : A → B such
that (x1, x2, . . . , xδi) ∈ Ri

A implies (f(x1), f(x2), . . . , f(xδi)) ∈ Ri
B for each i ∈ I.

If f is further one-to-one then f is called a monomorphism. An isomorphism
g : A → B is a bijective mapping g : A → B such that (x1, x2, . . . , xδi) ∈
Ri

A ⇔ (g(x1), g(x2), . . . , g(xδi)) ∈ Ri
B for each i ∈ I. An isomorphism from a

structure to itself is called an automorphism. On the other hand, if the structure
is isomorphically mapped into, but not onto, a different one then it is called
an embedding. Formally an embedding h : A → B is a injective mapping h :
A → B such that for each i ∈ I and each δi-tuple (x1, x2, . . . , xδi) ∈ A it holds
that (x1, x2, . . . , xδi) ∈ Ri

A ⇔ (h(x1), h(x2), . . . , h(xδi)) ∈ Ri
B. Similarly, an

endomorphism is a homomorphism from a structure to itself. The set of all
automorphisms of a structure A form its automorphism group Aut(A).

Let f be a mapping from {x1, x2, . . . , xn} to {y1, y2, . . . , yn} such that f(xi) =
yi. For such a mapping the following shorthand notation is used throughout the
paper:

f =

(
x1 x2 . . . xn
y1 y2 . . . yn

)
.

We call B a substructure of A, in symbols B ⊆ A, when B ⊆ A and the
inclusion map f : B → A is an embedding. We ought to mention here the
following fact. Let A be an L-structure and X the set of its elements. Using [67,
Lemma 1.2.2] it can be easily shown that there is a unique smallest substructure
B ⊆ A such that X ⊆ B. While we are working only with relational structures,
any structure generated in this way from finite X is also finite. See [67, ex. 6,
p.10].

Similarly to relational structures we can define for a given graph G a subgraph
H as a graph on vertex set V (H) ⊆ V (G) having E(H) ⊆ E(G). Note that
this does not correspond with relational structures completely, since we can omit
some edges from consideration while in the case of structures these are induced
automatically from the embedding. For these reasons we can define for a graph
G an induced subgraph H ′ that has V (H ′) ⊆ V (G) and that is an embedding of
H ′ into G. The condition for edges can be equivalently defined as all edges of G
induced by set V (H ′), i.e. E(H ′) =

(
V (G)

2

)
∩ E(G). The notation

(
V (G)

2

)
for the

set of all subsets of V (G) of size 2 will be frequently used in the sequel.
This is an introductory chapter whose purpose is to familiarize the reader

with notions that are used further in the text. It therefore contains virtually
nothing new and most if not all proofs are adapted from the referenced sources,
only adjusted accordingly so as to fit the whole story and notation used here.

1.1 Symmetry of structures

As stated above, the kind of symmetry that this work is interested in deals with
various kinds of morphisms defined on a structure. Roughly speaking, symmetry
of this kind is defined as the ability to extend any existing local morphism of
the structure of an agreed type to a morphism over the whole structure, again
of an agreed (but not necessarily the same) type. One immediate example of

4



such a property is that of vertex transitivity. A vertex transitive graph is a graph
G where for all pairs of vertices x and y there exists an automorphism f ∈
Aut(G) such that y = f(x). This means roughly that all the vertices of a vertex
transitive graph look the same in the sense of their position in the graph. There
are several obvious examples of vertex transitive graphs like complete graphs or
cycles. Another well known example of a graph of this type is the Petersen graph
shown in Fig. 1.1.

Figure 1.1: Petersen graph is vertex transitive.

It is possible to put the condition of transitivity on edges rather than ver-
tices, which yields an edge transitive graph, i.e. a graph where for every pair of
edges there exists an automorphism that maps one to the other. All the above-
mentioned graphs are also edge transitive. The complete bipartite graph Km,n

where m 6= n is edge transitive but not vertex transitive. Both vertex and edge
transitivity have been studied for a long time and are still a subject of further re-
search – see for example [89]. A central theme of this work is to study symmetries
that generalize these transitivity properties.

1.2 Ultrahomogeneity

For a general relational structure we consider the following symmetry property.

Definition 1.2.1. A relational structure A is called ultrahomogeneous if every
isomorphism between two induced finite substructures of A can be extended to
an automorphism of A.

Ultrahomogeneity describes a high degree of symmetry for relational struc-
tures. Staying in the class of graphs, we can mention complete graphs as an
immediate example. On the other hand, cycles, which are vertex and edge tran-
sitive, are ultrahomogeneous only up to size 5 – see section 1.4. To see that the
cycle of length 6 is not ultrahomogeneous one can simply map two vertices with a
common neighbor to another pair of vertices without such a common neighboring
vertex, which results in the inability of any automorphism to find an image for
this common neighbor, as shown in Fig. 1.2. Similarly for the Petersen graph one
can use an independent set of size 3 to show that it is not ultrahomogeneous.

1.2.1 The Rado graph

For infinite graphs the situation is also interesting. Omitting obvious examples
like infinite complete graphs we mention what is known as the Rado graph. This
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v1

v2

u

(a) C6 is not ultrahomogeneous

v1

v2

v3

u

(b) Petersen is not ultrahomogeneous

Figure 1.2: Examples of non-ultrahomogeneous finite graphs, where an indepen-
dent set composed of vertices vi is mapped by a local isomorphism for which it
is impossible to to find an image for a common neighbor of this set.

graph is defined by a famous theorem of Erdős and Renyi.

Theorem 1.2.1 (Erdős and Renyi [40]). There is a countable graph R with the
property that a random countable graph (edges chosen independently with proba-
bility 1/2) is almost surely isomorphic to R.

When discussing homogeneity of this graph notation and ideas are used from [16],
which is an excellent source of information on the countable random graph. To
show that this graph is ultrahomogeneous one can make use of the following graph
property.

Definition 1.2.2. A graph G has property * if for any finite disjoint sets U and
V of vertices, there exists a vertex z joined to every vertex ui ∈ U and to none
of the vertices vj ∈ V .

A vertex z satisfying the given property is called correctly joined. Obviously,
a graph satisfying this property is infinite. On the other hand finding an infinite
graph meeting this requirement is not immediate. However one can show that
for the infinite random graph the property * holds – see below. This was already
shown by Erdős and Renyi [40]. The following formulation of the result is taken
from [16].

Proposition 1.2.2. With probability 1, a countable random graph satisfies prop-
erty *.

Proof. The statement of the proposition can be proved by showing that property
* fails with probability 0. In other words, the set of graphs for which * fails for
some given set of vertices U = {u1, u2, . . . , um} and V = {v1, v2, . . . , vn} is a null
set. There are only countably many m and n and consequently countably many
choices of U and V so that it suffices to prove the previously mentioned claim for
a fixed choice of U and V , the union of countably many null sets being a null set.

The remaining step is to calculate the probability of this event, namely the
probability that for any z1, z2, . . . , zN distinct from u1, u2, . . . , um and v1, v2, . . . , vn
it is the case that all the zi are not correctly joined. For a particular zi this can
be expressed as:

1− 1

2m+n
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and since the corresponding events are independent the resulting formula for
probability that none of z1, z2, . . . , zN are correctly joined is(

1− 1

2m+n

)N
Finally, this is easily seen to tend to 0 as N →∞.

Using the property * of the countable random graph R one can show that the
Rado graph is in fact ultrahomogeneous.

Proposition 1.2.3. The countable random graph R is ultrahomogeneous.

Proof. The countable random graph R satisfies property * by Proposition 1.2.2.
Now let f be any isomorphism from a finite set of vertices X = {x1, x2, . . . , xn}
to R and let xn+1 ∈ V (R) be another vertex outside X. The task is to show that
f can be extended so that its domain is X∪{xn+1}. Let U be the set of neighbors
of xn+1 in X and V = X \U the set of non-neighbors of xn+1 in X. Now f(xn+1)
has to be connected to all the vertices from f(U) and none of the vertices from
f(V ). Using property * we know that such a vertex exists, so we can extend f
by mapping xn+1 to this vertex. In this way any given local isomorphism can be
extended by one vertex.

U V

x`

fk(U) fk(V )

fk+1(x`)

fk = fk+1|X

fk+1

fk
X

U V

f−1
k+1(x`)

fk(U) fk(V )

x`f−1
k+1

f−1
k

X

forth back

Figure 1.3: Extending local isomorphism fk using the back-and-forth construc-
tion. Solid lines represents edges and dashed lines non-edges.

In the second part of the proof the previously mentioned process is used to
construct an automorphism that extends the given local isomorphism f by using
a back-and-forth argument [75, 20]. Enumerate the vertices of R as {x1, x2, . . .}.
Assume that f0 = ∅ is a finite isomorphism. Let us construct finite isomorphisms
fk, k ∈ N, as follows. Suppose that fk has been constructed. The next step
depends on the value of k, where even values are used for the forward construction
and odd values for the backward. If k is even, extend fk to fk+1 by adding a vertex
x` to the domain of fk, where ` = min{i : xi ∈ V (R) and xi /∈ domain of f}. On
the other hand, if k is odd then extend fk to fk+1 by adding a vertex x` to
the range of fk, where ` = min{j : xj ∈ V (R) and xj /∈ range of fk}. Finally,
to obtain the required isomorphism, take f to be the union of all these partial
isomorphisms, where the back-and-forth construction ensures that all the vertices
of R are in both the range and the domain of f .

To explore different structures than graphs, let us consider partial orders,
where an interesting example of an ultrahomogeneous structure is (Q, <), where
< stands for usual order on rationals. The homogeneity of this structure can be
for example shown by applying the same back-and-forth mechanism described in
the proof of Proposition 1.2.3 for the case of the countable random graph R.
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1.2.2 The Fräıssé method

Ultrahomogeneity is tightly connected with results of Roland Fräıssé, who pro-
vided a simple construction of countable ultrahomogeneous structures. Following
his work, we can define the age of relational structure A, denoted by Age A, as
the class of all finite structures that can be embedded in A. Since we are only
interested in structures up to isomorphism we can consider the age of A to be
the set of all finite substructures of A. We say that structure A is younger than
structure B when Age(A) ⊆ Age(B). To describe the age of a relational structure
more deeply it is valuable to consider the following properties of a set of finite
relational structures.

Definition 1.2.3. A class of finite relational structures K has

1. the hereditary property (abbreviated as HP) if for any A ∈ K and B a
finite substructure of A there exists C ∈ K that is isomorphic to B;

2. the joint embedding property (abbreviated as JEP) if for any A,B ∈ K
there exists C such that both A and B are embeddable in C;

A

B

C

3. the amalgamation property (abbreviated as AP) if for any A,B1,B2 ∈
K and embeddings fi : A → Bi (for i = 1, 2), there exist a relational
structure C and embeddings gi : Bi → C (for i = 1, 2) such that g1 ◦ f1 =
g2 ◦ f2.

A

B1

B2

f1

f2

g1

g2

g1 ◦ f1
g2 ◦ f2

C
B1

B2

CA

f1

f2

g1

g2

It is a simple observation that a class K that is the age of some relational
structure has both HP and JEP. To prove the converse, i.e. that any class of
finite structures having HP and JEP is the age of some relational structure,
requires further machinery.

Proposition 1.2.4 (Theorem 6.1.1 in [67]). Let K be a finite or countable set of
finite relational structures which has HP and JEP. Then K is the age of some
finite or countable relational structure.
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Proof. Let (Ai)i<ω be a list of all structures in K. Define corresponding structures
Bi as follows. First set B0 = A0. Suppose Bi has already been defined. Then
use JEP to find a structure Bi+1 into which both Bi and Ai+1 are embeddable.

B1 B2A0 = B0

A1

JEP

A2

JEP

. . .

Finally put B =
⋃
i<ω Bi. Following the construction, each Ai has an embed-

ding into B and moreover B is at most countable. Therefore K is contained in
the age of B. Moreover any finite substructure of B is a finite substructure of
some Bi and therefore of B by HP.

The above statement with the previous observation provide a way to handle
the ages of relational structures, however uniqueness of the resulting structure is
still not ensured. For this to be the case, more properties have to be defined. One
property that ensures uniqueness of the corresponding structure is the following.

Definition 1.2.4. A structure D has the extension property (abbreviated as EP)
if for any A and B belonging to Age(D) such that A ⊆ B and every embedding
f : A→ D, there is an embedding g : B→ D which extends f .

∀f

D

B

∃g

A

Age(D)

Figure 1.4: Structure D having the extension property.

One immediate observation is that ultrahomogeneous structures have the ex-
tension property. The other way round is not so direct.

Lemma 1.2.5 (adapted from [67]). Let D be a countable structure with the ex-
tension property. Then the following hold.

1. If there exists a countable structure C with the extension property having
Age(D) = Age(C) then C is isomorphic to D.

2. D is ultrahomogeneous.

Proof. (sketch) To prove 1. we need to build an isomorphism between C and
D, which can be done using the extension property of both structures. Recalling
ideas from the proof of Proposition 1.2.4, express both structures as the union
of chains (Ci)i<ω and (Di)i<ω of finite substructures and iteratively construct
isomorphisms fi whose union is an isomorphism between C and D.
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Let f0 : C0 → D0 be an isomorphism of finite substructures of C and D, where
C0 and D0 can be arbitrary substructures for which this holds. Furthermore let
fi : Ci → Di be given. The next step depends on value of i. If i is odd, then
since Age(C) = Age(D) there is an isomorphism gi+1 : Ci+1 → Di+1 and Di+1 is
embeddable in D which means that there exists an embedding hi+1 : Di+1 → D.
Now fi ◦ g−1

i+1 embeds gi+1(Ci) into D. Moreover, using the extension property
of D, this embedding extends to an embedding hi+1. Now let fi+1 : Ci+1 → D
be hi+1 ◦ gi+1, for which we have fi ⊆ fi+1. For even i the process is similar but
reverse using the fact that fi+1 has Di+1 in its image. This provides a chain of
maps (fi)i<ω whose union is the desired isomorphism.

To prove 2. it is sufficient to use previous proof with C = D and start with
any predefined isomorphism f0.

Using the forth mechanism from the proof of Lemma 1.2.5 part 1 it is possible
to show that into a structure D having EP one can embed any younger struc-
ture [67]. A structure having this property is called universal. Rather than going
deep into this proof, which is similar to that given above, we shall show that the
countable random graph R is universal. This is actually one of the reasons why
Rado was interested in this graph and why sometimes this graph is also called
the Rado graph [131].

Proposition 1.2.6 (Appeared in [16]). Any finite or countable graph can be
embedded as an induced subgraph of R.

Proof. Let G be any finite or countable graph. The task is to find an embedding
of this graph into R. The construction is iterative, however unlike the proof of
Proposition 1.2.3 only the forth step is used since property * (see Definition 1.2.2)
cannot be generally assumed in G. Let us denote the set of vertices of G by
X = {x1, x2, . . .} and let Xk = {x1, x2, . . . , xk}. Assume further that there is a
mapping fk : X → R that is an isomorphism of the induced subgraph on Xk.
The task is to find an image z of the next vertex xk+1 ∈ X such that extending
the domain of fk to include the vertex xk+1 again gives an isomorphism, call it
fk+1, this time on the induced substructure on vertex set Xk+1. The union of
these partial isomorphisms f =

⋃
fk is the required embedding. The existence

of the vertex z is ensured by the * property of R.

Proposition 1.2.6 has the interesting consequence that R contains an infinite
clique and an infinite independent set, both of which are further examples of
ultrahomogeneous structures – their homogeneity is obvious. A general variant of
Proposition 1.2.6 also shows that a countable structure possessing EP is universal
for its age.

Proposition 1.2.7 (Appeared in [19]). An ultrahomogeneous structure is uni-
versal.

We shall now see what happens when we take the amalgamation property
into consideration. The following famous theorem shows that a structure with
corresponding age is ultrahomogeneous and moreover unique.

Theorem 1.2.8 (Fräıssé theorem [44, 67]).
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(a) Let D be an ultrahomogeneous relational structure. Then Age(D) has the
amalgamation property AP.

(b) Let K be a non-empty finite or countable set of finite relational structures
which has HP, JEP and AP. Then there is an ultrahomogeneous relational
structure D, unique up to isomorphism, whose age is K.

Proof. (Sketch) For part (a) consider the relational structures A, B1 and B2 and
mappings f1 and f2 defined as for use in property AP. We may assume that both
sets Bi for i = 1, 2 are substructures of D. Without loss of generality we take the
mapping f1 to be the identity on A. Since D is ultrahomogeneous, the isomor-
phism f2 can be extended to an automorphism. Let us call this automorphism
g. Now define g1 to be the automorphism g restricted to B1 and g2 to be the
identity on B2. This gives us an amalgamation since g1 ◦ f1 = g2 ◦ f2 on the set
g(B1) ∪B2.

A

B1

B2

f1 = idA f2

g2 = idB2

B2 ⊇ C ⊆ g(B1)

CA ⊇ B1

f1 = idA

f2

g1 = g|B1

g ∈ Aut(G) g|B1

g ∈ Aut(G)

B′
2

For the proof of part (b) it is enough to show that there exists D that has
the extension property and whose age is K. The homogeneity and uniqueness
of D is ensured by Lemma 1.2.5. D is again constructed using the union of a
chain of finite substructures Di. For this, a countable number of joint embeddings
defined by the JEP for K are used in order to make Age(D) = K, together with a
countable number of amalgamations defined by the AP for K for the construction
of each particular Di.

This theorem can be used as a tool for finding ultrahomogeneous structures.
The identification proceeds as follows. Imagine that you have a countable class
K of structures. Usually it is not an onerous task to show that this class is
isomorphism-closed and meets the requirements of HP. While JEP is usually a
special case of AP, this is not generally true – e.g. for fields [67].

Since amalgamation class is a central term in the theory of infinite ultrahomo-
geneous structures, and sometimes it is reasonable to study particular substruc-
tures that are “amalgamated”, there are several corresponding notions that it is
useful to define. Let A,B1,B2 be relational structures and f1, f2 embeddings like
those in Definition 1.2.3 of property AP. An amalgamation of (B1,B2,A, f1, f2) is
any triple (C, g1, g2), where C is a relational structure, g1 an embedding B1 → C
and g2 an embedding B2 → C, such that g1 ◦f1 = g2 ◦f2. Less formally, an amal-
gamation “glues together” the structures B1 and B2 into a single substructure
C such that the copies of A coincide. A class K of finite relational structures is
called an amalgamation class if it has each of the properties HP, JEP and AP.
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A structure A is generic for the class K if it is universal for K and ultrahomoge-
neous.

From Theorem 1.2.8 it follows that every countable ultrahomogeneous struc-
ture is universal. The converse is not true. Consider for example the countable
infinite random bipartite graph. This is a countably infinite bipartite graph with
both bipartitions infinite and with the property that for any finite subsets U
and V of one of the parts one can always find a vertex z in the other part such
that every vertex from U and none from V are adjacent to z. Using a simple
modification of the argument in the proof of Proposition 1.2.6 one can show that
this graph is universal for all finite bipartite graphs. However, it is not ultraho-
mogeneous. Due to the property of graph just mentioned, there has to exist a
subgraph similar to that shown in Figure 1.5.

x

y

v

z

Figure 1.5: A local isomorphism on a subgraph of the random bipartite graph
that cannot be extended to an automorphism of the whole graph.

This means that there exist vertices x, y from one part and vertices v, z from
the other part where the only adjacent pairs are {x, y} and {y, v}. In this case
one can map the subset {x, y} onto {y, z} using a local isomorphism as indicated
in Figure 1.5. This isomorphism cannot be extended to an automorphism, from
which we conclude the graph is not ultrahomogeneous.

1.3 Combinatorial definitions

This section contains some basic combinatorial definitions needed for later sec-
tions providing classifications of graphs and partially ordered sets as well as for
the remainder of the work. This section contains virtually no interesting infor-
mation and may be skipped and referred to only in future whenever notation is
not fully understandable.

1.3.1 Graph-theoretic definitions

At the beginning of this chapter we defined an undirected graph G as a pair
G = (V,E) consisting of vertices V and edges E, where edges connect together
pairs of vertices. We also defined subgraph and induced subgraph. Similarly
homomorphisms and all other mappings are defined accordingly in case of graphs
as for relational structures more generally – see also [62].

It is useful to have some notation for several important classes of graphs. The
complete graph Kn is a graph on |V | = n vertices with all possible edges, i.e.
E =

(
V
2

)
. For a graph G = (V,E) its complement G is the graph with vertex
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set V and edges
(
V
2

)
\ (
(
V
2

)
∩ E). The complement of a complete graph is called

an empty graph. We define the degree degG(v) of a vertex v in a graph G as the
number of edges of G that contain the vertex v. These edges are usually called
incident edges. Sometimes it is necessary to work with all the vertices connected
to a given vertex v by an edge: the neighborhood Γ(v) is defined as set of all
u ∈ V (G) such that vu ∈ E(G).

A frequent situation encountered within graphs is the need to connect vertices
by a sequence of edges. We can construct a graph Pn, called a path on vertices
V = {v1, v2, . . . , vn}, using edges E = {v1v2, v2v3, . . . , vn−1vn}. We say for vertices
x and y that there exists a path of size k connecting vertices x and y of G if there
is an injective homomorphism f from the path Pk with vertex set {v1, v2, . . . , vk}
into G such that f(v1) = x and f(vk) = y. For a graph G and vertices vi, vj ∈
V (G) there can exist many paths connecting those vertices. If there exists at
least one such path, we can define the set of paths joining vi and vj that have
the shortest length. Paths from this set are called shortest paths and their length
determine the distance di,j between vertices vi and vj. A matrix with all these
values defined as D = (di,j)

n
i,j=1 is called distance matrix. Moreover we can define

the eccentricity εG(v) of vertex v in the graph G as the maximum distance of
any u ∈ V (G) from v. Taking maximum eccentricity over all vertices defines the
diameter diam(G) = maxv∈V (G){εG(v)}.

We call vertices x, y ∈ V (G) connected if there exists k such that there is a path
of length k connecting x and y. The whole graph G is connected if each pair of
distinct vertices of G are connected, othewise the graph is disconnected. A graph
G has a decomposition into connected subgraphs that are maximal with respect
to this property [108]. These subgraphs are called the connected components of
G. The term subgraph can be used in two different senses here. First we say that
graph G has graph H as a subgraph if there exists homomorphism f : H → G.
Alternatively a graph G has graph H as an induced subgraph when there exists
an embedding g : H → G. In particular, if there is an embedding f : Kn → G we
call this subgraph f(Kn) a clique of G and if there is an embedding g : Kn → G
we call g(Kn) an independent set of G.

A graph G = (V,E) is bipartite if its vertex set V can be decomposed into
sets V1 and V2 such that V = V1 ∪ V2 and for each edge e = {x, y} we have either
x ∈ V1 and y ∈ V2, or x ∈ V2 and y ∈ V1. We call these parts partites. Note
that paths are bipartite graphs, although the situation can change when paths
are slightly modified. When ends of paths are identified the resulting graphs
are called cycles, i.e. the cycle Cn of size n on vertex set V = {v1, v2, . . . , vn}
has edge set E = {{vi, vi+1} : i = 1, 2, . . . , n − 1} ∪ {vn, v1}. Only cycles of
even size are bipartite – see e.g. [108]. The girth of a graph G is the length of
the shortest cycle in G. The extremal graph with respect to bipartiteness is the
complete bipartite graph Km,n which is simply a bipartite graph with partites of
sizes m and n and with all possible edges between them. Generalizing bipartite
graphs, a multipartite graph G = (V,E) is a graph whose vertex set V can be
decomposed into m sets Vi such that V =

⋃m
i=1 Vi and edges only connect vertices

from different partites, i.e. for each edge e = {x, y} we have x ∈ Vi and y ∈ Vj
where i 6= j. Again an obvious extremal case is that of the complete multipartite
graph Kn1,n2,...,nm in which all possible edges are present.

Another important class of bipartite graphs are trees. A graph T is called a
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tree if it is connected and contains no cycles. Vertices of degree 1 are called leaves.
We call a graph H-free if it does not contain an induced subgraph of H. More
generally, for a family of graphs F we call a graph F-free if it does not contain
graphs in F among its induced subgraphs. Denoting the class of all cycles by C,
trees are C-free graphs.

We also need the following construction. Given a graph G we define the
graph L(G) with vertex set V (L(G)) = E(G) and edge set defined as those pairs
of distinct vertices whose corresponding edges in G share a vertex. This graph is
called the line graph of G.

1.3.2 Partially ordered sets

A (non-strict) partially ordered set (or simply a poset) is a pair (P,≤), where
P is a set and ≤ is binary relation on P which is reflexive, antisymmetric and
transitive. A a strict partially ordered set (or simply a strict poset) is a pair (P,<),
where P is a set and < is irreflexive, antisymmetric and transitive. Sometimes we
use the symbols � and ≺ to avoid confusion with the usual relation ≤ and < on
numbers – in this case the corresponding posets are denoted by (P,�) and (P,≺).

Elements a, b of P are comparable if a ≤ b or b ≤ a, otherwise they incompara-
ble. A poset where every pair of elements are comparable is called a linear order
or a total order or a chain. On the other hand if all elements are incomparable
such a poset is called an antichain. Given a poset (P,≤) there may be a greatest
element ag, which is defined by the property that a ≤ ag for every element a ∈ P .
Similarly, there may be a least element a`, defined by the property that a` ≤ a
for every element a ∈ P . A maximal element aM ∈ P is an element for which
there is no a ∈ P such that aM < a. Similarly a minimal element am ∈ P is an
element for which there is no a ∈ P such that a < am.

An important type of partially ordered set for us is a diamond, which is a
poset formed from a set of pairwise incomparable elements by adding a greatest
element and a least element.

1.3.3 Digraphs

A digraph is an ordered pair G = (V,E), where V is a nonempty set of vertices
and E ⊆ V 2 is its set of edges. Graphs can be defined as digraphs whose edge
relation is symmetric. We can also consider a digraph G to be a graph with
oriented edges, possibly in both directions, i.e. for an edge from x ∈ V (G) to
y ∈ V (G) we write (x, y) ∈ E(G). This type of edge can also be called an
arc. Similarly to graphs, for a vertex v of a digraph G we define the out-degree
deg+

G(v) of vertex v as the number of vertices u ∈ V (G) such that there is an arc
(v, u) ∈ E(G), and likewise the in-degree deg−G(v) as the number of u ∈ V (G)
such that (u, v) ∈ E(G). For a given vertex v ∈ V (G) the out-neighborhood Γ+(v)
of vertex v ∈ V (G) and in-neighborhood Γ−(v) of vertex v ∈ V (G) are defined
as set of all u ∈ V (G) such that (u, v) ∈ E(G) or (v, u) ∈ E(G) respectively.
Sometimes it is important to stress that a digraph has loops on all vertices. In
this case we call such structure a reflexive digraph and highlight this property by
denoting the such a digraph by G◦.

Most graph properties can be easily adapted for digraphs. A homomorphism
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has to preserve both edges and their orientation. Likewise there are some terms
defined for graphs that when carried over to digraphs require preservation of
orientation. For example, a directed cycle Ck is defined up to isomorphism as the
digraph on vertices {1, 2, . . . , k} whose edges are pairs (i, j) such that (j− i) ≡ 1
mod k. A transitive tournament Tk is defined up to isomorphism as the digraph
on vertices {1, 2, . . . , k} whose arcs are all pairs (i, j) such that i < j. A transitive
tournament has an initial vertex having no incoming edges (except possibly a loop
when we consider tournaments with loops allowed) and a final vertex having no
outgoing edges (again with exception of possible loop when these are allowed).

The following notions are used when working with classes of digraphs as well
as graphs. Most of these definitions originate from [62], which is a standard
reference for graph homomorphisms. Let G be a digraph and H a subgraph of G.
A retraction of G to H is a homomorphism r : G→ H such that r(x) = x for all
x ∈ V (H). We also say that G retracts to H. A core is a digraph which does not
retract to a proper subgraph. If the digraph is such that it has no endomorphism
other then identity then it is called a rigid digraph.

Considering homomorphisms there is another important notion. Let G and
H be digraphs. We write G ≤ H when there exists a homomorphism from G to
H. The relation ≤ is not antisymmetric and thus the set of all digraphs equipped
with the relation ≤ is not a partially ordered set [62]. However, restricting this set
to the set of all nonisomorphic cores C does yield a partially ordered set (C,≤).

If for a pair of digraphs (F,D) it is the case that for any G ∈ C there is no
homomorphism G→ D if and only if there is a homomorphism F → G then the
digraph D is called a dual of F in C. A similar definition of duality applies to
graphs.

1.3.4 Multicolored graphs

Relational structures are quite general and sometimes not very convenient for
graph theorists. For this reason several colored versions of graphs are used.
Let us first define one type of colored graph in a general way. A structure
G = (V, S1, S2, . . . , S`, E1, E2, . . . , Ek) is called a multicolored graph if V is a
set of vertices and {S1, S2, . . . , S`} is a set of unary relations defined over V and
{E1, E2, . . . , Ek} is a set of binary relations defined over V 2. Of course, the re-
lations Si correspond to colors of vertices and relations Ej to colors of edges.
Homomorphisms between these graphs have to “preserve” colors. Moreover this
definition allows several colors to be assigned to a single vertex or single edge.
We shall mostly assume both ` and k to be finite. Note also that this definition
is different from edge-colored graphs as usually defined – an edge-colored graph
is a graph where every edge is assigned a single color.

While analysis of multicolored graphs with an arbitrary distribution of colors
among their edges and vertices seems to be hard, it is convenient to use a slightly
modified version of multicolored graphs that puts a restriction on what sort of
coloring is possible. Let L be a partially ordered set with ordering relation �,
least element 0 and greatest element 1. An L-colored graph is an ordered triple
(V, χ′, χ′′) such that V is a nonempty set, χ′ : V → L is an arbitrary function
and χ′′ : V 2 → L is a function satisfying the following:

1. χ′′(x, x) = 0; and
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2. χ′′(x, y) = χ′′(y, x) whenever x 6= y.

The function χ′ colors vertices of G, while χ′′ colors edges of G. The two condi-
tions imposed on χ′′ mean that G is without loops and undirected.

A multicolored graph A = (V,E, S1, S2, . . . , S`, R1, R2, . . . , Rk) can be thought
of as an L-colored graph (V, χ′, χ′′) where L = P({1, 2, . . . ,m}), where P de-
notes the power set operation, with set-inclusion as the ordering relation and
χ′(x) = {j : x ∈ Sj} and χ′′(x, y) = {j : {x, y} ∈ Rj}.

Intuitively, χ′(x) = 0 means that there are no colors assigned to x, and
χ′(x) = 1 means that the vertex x is colored by all available colors. Analo-
gously, χ′′(x, y) = 0 means that x and y are nonadjacent, while χ′′(x, y) = 1
means that the edge {x, y} is colored by all the available colors.

To enable studies of homogeneity we must define what counts as a homomor-
phism for this type of graph. A homomorphism between two L-colored graphs
(V1, χ

′
1, χ

′′
1) and (V2, χ

′
2, χ

′′
2) is a mapping f : V1 → V2 such that

χ′1(x) � χ′2(f(x)) and χ′′1(x, y) � χ′′2(f(x), f(y)),

for all x and y in V1.
We will further distinguish bicolored graphs as L-colored graphsG = (V, χ′, χ′′)

where χ′(x) = ∅ (no colors are assigned to vertices) and χ′′ : V 2 → L is given by
L = ({∅, {r}, {b}, {r, b}},�), i.e. edges can be colored by red, blue, or red-blue
(both together).

1.4 Classification results for homogeneity

Ultrahomogeneous structures attract mathematicians from the perspective of
classification. There are several results dealing with different types of structures
classifying all ultrahomogeneous structures of a given type. Fräıssé himself was
interested in the ultrahomogeneity of (Q, <). The age of this structure is com-
posed of all finite linear orders. This class is obviously closed under isomorphism
and is hereditary. Furthermore the amalgamation property can be easily shown.

This leads us to the classification of countable ultrahomogeneous partial orders
provided by Schmerl.

Theorem 1.4.1 (Schmerl [138]). Any homogeneous partial order is isomorphic
to one of the following:

1. a countable antichain (An, <).

2. (Bn, <) = An × Q, where (a, p) < (b, q) if and only if a = b and p < q,
i.e. an antichain of chains or more precisely a countable union of copies of
(Q, <), where elements in distinct copies are incomparable.

3. (Cn, <) where Cn = Bn and < is defined as (a, p) < (b, q) if and only if
p < q. This can be represented as a union indexed by (Q, <) of antichains
all of the same size.

4. (P,<), i.e. the universal ultrahomogeneous partial order for the class of all
countable partial orders.
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The first three classes are relatively trivial and the hard part of the proof lies
in proving that Age(P ) has the amalgamation property, from which the remaining
ones can be simply shown.

Another example of classification is that of all finite ultrahomogeneous undi-
rected graphs without loops, given by Gardiner [50], extending previous results
of Sheehan [142].

Theorem 1.4.2 (Gardiner [50]). A finite undirected graph without loops is ultra-
homogeneous if and only if it is isomorphic to one of the following graphs:

1. a disjoint union of complete graphs all of the same size,
⋃k
i=1 Kn.

2. multipartite graphs Kn1,n2,...,nk
with n1 = n2 = . . . = nk.

3. the 5-cycle C5.

4. the line graph L(K3,3).

The proof of this theorem is purely combinatorial using several properties
of finite ultrahomogeneous graphs such as bounded diameter or girth, distance
transitivity or specific induced graphs on sets of neighbors to iteratively bound
the set of possible candidates. Since this class of finite ultrahomogeneous graphs
is important in this work we shall refer to it as the Gardiner’s class or simply as
the Gardiner graphs, and denote this class by G.

Moving to the infinite, Lachlan and Woodrow extended this classification to
all countable ultrahomogeneous undirected graph without loops.

Theorem 1.4.3 (Lachlan and Woodrow [92]). Every countable ultrahomogeneous
undirected graph without loops is isomorphic to one of the following:

1. A graph G ∈ G, i.e. one of the Gardiner graphs.

2. A disjoint union of m complete graphs all having same size n, where m,n ≤
ω (to ensure distinctness from Gardiner’s graphs m or n should be ω).

3. The complement of one of the graphs from previous cases.

4. The countable random graph R, i.e. the universal graph for the class of all
graphs.

5. The universal Kn-free graph, for a fixed n ≥ 3.

6. The complement to the previous case.

From the graph-theoretic point of view another interesting classification is
that concerning directed graphs. The first results on this topic are represented
by the nice work of Lachlan from the mid 1980s [91]. The complete classification
of directed graphs was then given by Cherlin in his extensive work from the end
of the 1990s [26].
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1.5 Structures near homogeneity

In the above classifications of ultrahomogeneous structures there are a relatively
small number of classes, although the size of particular classes can be infinite.
To understand more deeply the principles underlying ulrahomogeneity this work
also analyses structures or classes of structures that are in some sense near to
ultrahomogeneity. This can be done for finite structures as presented at the
beginning of Chapter 6. Nevertheless, while classifications are usually richer
for infinite structures an immediate task is to find infinite structures that have
properties resembling those of ultrahomogeneous structures and that might be
suspected to be easily extended to these ultrahomogeneous counterparts – see
the second part of Chapter 6. To achieve such a goal for infinite structures it is
more convenient to start with some well-behaved ones that already have some of
the required properties. We have already seen that for universal structures there
is an embedding into it of any structure younger than itself. We know for example
from Proposition 1.2.6 that the Rado graph R is universal and we also know that
any ultrahomogeneous structure is universal from Proposition 1.2.7. Still, this
requirement has proved to be too general to work with – see Section 6.5. For
these reasons, other examples of structures that have many properties resembling
those of ultrahomogenous structures are adopted. These are called ω-categorical
structures. However to define them several model-theoretic notions have to be
introduced.

1.5.1 Models and theories

Let L1 and L2 be signatures such that L1 ⊂ L2 and suppose that A is an L2

structure. Then it is possible to turn A into an L1-structure by forgetting the
relations from L2 \L1. We call such a structure an L1-reduct of A, and denote it
by A|L1 , or if specification is not necessary simply a reduct of A. On the other
hand, if A|L1 is a given structure B then we call A an expansion of B.

To describe L-structures a more formal language needs to be constructed. For
the sake of simplicity, we use a less formal definition since we do not directly use
the corresponding notions. For more detailed definitions see [67]. Each language
is built from a set of variables and several auxiliary symbols, where variables can
be considered as temporary labels for elements of the corresponding L-structure.
Let us for brevity use the following simplified designation. By a string of symbols
we mean a progression of symbols for variables, brackets, commas and other
auxiliary symbols in the correct order according to the specific use. Since the
signature L of a relational structure has no constant or function symbols we can
declare every variable to be a term (of signature L) and nothing else to be a term
of L. An atomic formula of L is a string of symbols given by the conditions:

1. for s and t terms of L the string s = t is an atomic formula, and

2. for any n > 0 such that there is an n-ary relational symbol R ∈ L and
terms t1, t2, . . . , tn the expression R(t1, t2, . . . , tn) is an atomic formula of L.

Note that we need a new symbol for equality.
A formula of L is string of symbols, where
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1. all atomic formulas are formulas, and

2. if ϕ and ψ are formulas then so are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, and

3. if ϕ is formula and x is variable then ∀xϕ and ∃xϕ are formulas.

Note again that there are additional symbols for logical operations that need to be
included. Moreover, similar to logic, we distinguish free and bounded occurrences
of variables in a formula. A sentence is then defined as a formula with no free
variables. For example, define for a graph G = (V,E) the notion of a dominating
set X to be a subset of vertices X ⊆ V such that every vertex not in X is adjacent
to at least one vertex from X. The property of having a dominating set of size k
can be defined by the following formula:

∃x1 . . . ∃xk∀k
∨

1≤i≤k

(E(xi, y) ∨ xi = y).

For defining structures we usually simply use a signature L, although to enable
a deeper description of structures using formulas it is more suitable to use the
notion of a language. A language L∞,ω can be constructed by including the
whole signature L together with some logical symbols, variables and auxiliary
punctuation. Terms, atomic formulas and formulas are either defined in the same
way as for L or with a little extra technical care – see [67]. The sub-indices in the
notation for the language L∞,ω indicate that it is permitted to join an arbitrary
number of formulas using logical operators, but there can be only finitely many
quantifiers in a row. The notion of a language is useful when using formulas and
discussing structures in more detail, whereas the signature is used in a simpler
way. In any case both notions are used interchangeably in the text according as
to which is most appropriate.

Two important types of language are highlighted here. The first is a language
L∞,0 with formulas containing no quantifiers, which is called quantifier-free. An-
other type of language is Lω,ω where for each formula the logical symbols join
only finitely many formulas and the whole formula is also finite. This language
is called a first order language.

We define languages so as to speak about structures. How are these languages
connected with the structures themselves? Any formula is defined for elements of
structures through variables used in terms. Substitution of a tuple a of elements
of A into a term t is denoted by t[a], into an atomic formula ϕ by ϕ[a] and into
a formula ψ by ψ[a], as described in [67].

For L-structure A and ϕ a formula defined in the corresponding language, we
say that ϕ is true in A or equivalently A is model of ϕ when the statement of ϕ
is true in A and we write

A |= ϕ.

This can be generalized to a set of sentences. For a language L, a theory T is
a set of sentences in the language L. For a theory T we can have either one or a
class of L-structures that are all models of the theory T . For general language L
and class K of L-structures, the theory Th(K) of K is defined as the class of all
sentences ϕ from L such that A |= ϕ for every structure A ∈ K. If all sentences
of the theory are first order then we call such a theory a first order theory.
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1.5.2 ω-categorical structures

There can be many models for any given language. An immediate question is
whether there are theories that have only one model and if so what can we
say about them? The answer to the first question is “yes”, which prompts the
following definition.

Definition 1.5.1. Let L be a language and T be a theory defined in L. Then T is
called ω-categorical if it has exactly one model of cardinality ω up to isomorphism.
Furthermore an L-structure is called ω-categorical if it has cardinality ω and it is
a model of an ω-categorical theory T defined in L.

Note also that finite structures are not ω-categorical. From the perspective
of ultrahomogeneity an interesting property of ω-categorical structures is a lim-
itation on the number of orbits of the automorphism group, a result due to
Engeler [36], Ryll-Nardzewski [137] and Svenonius [143].

Theorem 1.5.1 (Engeler, Ryll-Nardzewski and Svenonius). For a countably in-
finite first order structure A the following conditions are equivalent:

1. A is ω-categorical.

2. The automorphism group of A has only finitely many orbits on n-tuples,
for every n ≥ 1.

This property influences possible ultrahomogeneity since it limits the number
of automorphism types for each arity. In addition to the bound on the number of
orbits of the automorphism group there is another property making ω-categorical
structures similar to ultrahomogeneous ones.

Theorem 1.5.2 (Appeared in [19]). If A is ω-categorical then it is universal for
the class of all countable structures younger than A.

1.6 Class of forbidden structures

For a family of finite relational structures F the class denoted by Forb(F) consistis
of all relational structures A such that for any F ∈ F there is no embedding
F → A. Replacing embedding in this definition by homomorphism results in a
class that we shall denote by Forbh(F). Note also that in general these classes
are different, although they can be the same under specific circumstances.

These types of family posses many interesting features. In Theorem 1.4.3
Lachlan and Woodrow showed that the class Forb(Kn) has an ultrahomogeneous
universal graph. On the other hand, Cherlin and Komjáth [28] showed that for
any n ≥ 4 there is no universal countable graph for the class Forb(Cn). This
constitutes a relatively simple yet large family of graphs having no universal
graph.

The class Forbh(C5) can however be shown to have a universal graph [87].
There is though no ultrahomogeneous universal graph for this class. Since this
class contains graphs with no cycles of length 5 or 3, every pair of distinct non-
adjacent vertices can be connected by a path of length either 2 or 3, but not
both together. This leads to the existence of two different independent sets of
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size 2 in any universal graph, which results in the impossibility of meeting the
ultrahomogeneous condition.

There are other examples of families without a universal structure due to
Cherlin and Shelah [24]. They make use of a notion called a near-path that is a
tree created from a path by attaching a single vertex by an edge to any interior
vertex of the path. They showed that for any tree T the class Forb(T ) has a
universal structure if and only if T is a path or a near-path.

This class is not only used to distinguish the existence of universal structures.
It can also generate examples of families that are relatively simply defined but
cover a wide class of structures and have interesting universal structures. Namely
for graphs there is following result.

Theorem 1.6.1 (Cherlin, Shelah, Shi [25]). For any finite family F of finite
connected graphs there is a universal graph for the class Forbh(F).

1.7 Homomorphism homogeneity

Relatively recently Cameron and Nešetřil gave an alternative definition of homo-
geneity based on various kinds of homomorphism rather than isomorphism [18].
Because there are several types of homogeneity depending on the type of homo-
morphism used we usually say that a graph G belongs to one of the following
classes:

1. HH if every homomorphism from a finite induced subgraph of G into G
extends to a homomorphism from G to G;

2. MH if every monomorphism from a finite induced subgraph of G into G
extends to a homomorphism from G to G;

3. MM if every monomorphism from a finite induced subgraph of G into G
extends to a monomorphism from G to G.

We will also use abbreviated statements like “a graph G is MH”, “a graph G
is MH-homogeneous” or “a graph G has the MH property”, all of which mean
that the graph G belongs to class MH. Following the notation used in [18, 17],
we also use the following general definition.

Definition 1.7.1. A structure A is said to belong to the class XY if every x-
morphism from a finite substructure of A into A extends to a y-morphism from
A to A where pairs (X, x) and (Y, y) can be (I, iso), (M,mono) and (H, homo).

Using this notation, II stands for the class of ultrahomogeneous structures.
Moreover the term homogeneous is used when the classes from Definition 1.7.1
are discussed in general. Most of the claims, proofs and propositions mentioned in
this section are taken from [18] which is an excellent source of further information.

1.7.1 Homomorphism-homogeneous graphs

There are some trivial observations that can be made immediately. First, both
HH and MM classes are contained in the class MH. For undirected graphs, the
complete and null graphs are again trivially HH and MM and thus MH. This
last statement can be extended to the following proposition.
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Proposition 1.7.1. The only finite MM graphs are complete graphs and null
graphs.

Proof. It is trivial that complete and null graphs are MM. The other way round
needs just a simple argument. Assume that there is a connected graph which is
MM and not complete. Then there is a pair of distinct non-adjacent vertices u
and v and a pair of adjacent vertices x and y. A map taking u to x and v to
y is a monomorphism and thus can be extended to a global monomorphism by
the MM property of the graph. However this monomorphism would increase the
number of edges.

Some of the examples of ultrahomogeneous structures are also homogeneous
in the sense of homomorphism-homogeneous classes. However, a general state-
ment about the connection between the class of ultrahomogeneous structures and
the above-defined classes cannot be easily established. In the countably infinite
case the correspondence of homomorphism-homogeneous classes with the ultra-
homogeneous is even more interesting – the Rado graph is an example of both
an HH and an MM structure. As we shall see, this example in fact represents a
whole family of HH structures. Following in the steps of [18], we start with the
definition of a property that helps us define these examples.

Definition 1.7.2. A graph G has property ** if any finite set of vertices has a
common neighbor.

It turns out that this property induces graphs that have R as a spanning
subgraph.

Proposition 1.7.2 (Cameron and Nešetřil [18]). A countable graph contains R
as a spanning subgraph if and only if it has the property **.

Proof. To show that the property ** holds for graphs containing R as a spanning
subgraph it is enough to observe that it holds in R itself. The finite set from
Definition 1.7.2 can be identified with the set U used in the definition of property
* in Definition 1.2.2. Moreover property ** cannot be violated by adding edges.

For the converse we have to find an embedding f of R into a given graph
G that possesses property **. We iteratively construct mappings fk using the
back-and-forth method. Let Uk denote the set that has been already constructed
as the domain of the mapping fk. If k is odd then take vertex ui ∈ V (R) where
i = min{j : uj /∈ Uk}. This vertex is then mapped to a common neighbor of
fk(Uk). Since this set has to have a common neighbor, assuming ** property
of G, this image exists. When k is even, take a vertex v′ /∈ fk(Uk) and choose
u′ ∈ V (R) such that for all u ∈ Uk it holds that u′ ∼ u if and only if v′ ∼ f(u).
The existence of this vertex is ensured by property * of R.

Let property ** hold for a given graph G and let there be a local homomor-
phism f : X → V (G). To show that this homomorphism can be extended it
is sufficient to show that for any vertex z /∈ X there exists a homomorphism g
extending f . The set X can be divided into neighbors and non-neighbors of z.
Since we are now using homomorphisms rather than isomorphisms it is enough
to require only sufficiently many neighbors of f(z), which is assured by property
**. This proves the following proposition.
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Proposition 1.7.3 (Cameron and Nešetřil [18]). Any graph containing R as a
spanning subgraph is HH and MM, and hence MH.

1.7.2 Fräıssé analogue for homomorphism-homogeneity

Proposition 1.7.3 suggests that a direct analogue of Fräıssé’s unique limit might
be problematic. Nevertheless according to [18] it is at least possible to create an
an analogue of Fräıssé’s theorem for MM relational structures. To achieve that
the authors defined the following variant of AP.

Definition 1.7.3. Let K be a class of finite relational structures. Then K has the
mono-amalgamation property (abbreviated as MAP) if for any A,B1,B2 ∈
K and any maps fi : A→ Bi (for i = 1, 2) such that f1 is an embedding and f2 a
monomorphism, there exist C ∈ K and monomorphisms gi : Bi → C for i = 1, 2
such that g1 ◦ f1 = g2 ◦ f2 and g2 is an embedding.

B1

B2

CA

(emb) f1

(mono) f2

g1 (mono)

g2 (emb)

Schematically MAP is similar to AP, only some embeddings are replaced by
monomorphisms. Additional to this property one can define another:

Definition 1.7.4. Let M be relational structure and K is its age. Then M has
the mono-extension property (abbreviated as MEP) if for any B ∈ K and
substructure A of B, every monomorphism A→M extends to a monomorphism
B→M.

This is a variation on the extension property EP given by Definition 1.2.4 us-
ing monomorphisms instead of isomorphisms. Again it is not very hard to see that
an MM structure has property MEP. Similarly for the converse only a simple
variation of Lemma 1.2.5 is required so as to prove the following proposition [18].

Proposition 1.7.4. A countable structure is MM if and only if it has the mono-
extension property.

Using the previously defined properties and propositions it is possible to prove
the following variant of Fräıssé theorem concerning MM structures.

Proposition 1.7.5 (Cameron, Nešetřil [18]).

Let D be a countable MM relational structure. Then Age(D) has the mono-
amalgamation property MAP.

Let K be a non-empty finite or countable set of finite relational structures which
has HP, JEP and MAP. Then there is an MM relational structure D whose
age is K.

Proof. To prove the first part consider the configuration A, B1, B2, f1 and f2

defined as in the definition of MAP. Similarly to the proof of Theorem 1.2.8 it
may be assumed that the structures Bi are substructures of D for all i = 1, 2
and that the mapping f1 is the identity on A. Again f2 can be extended by a

23



monomorphism g by the MM property of the graph D. We use this monomor-
phism to define an amalgam structure C as follows. Let the mapping g1 be the
restriction of g to B1 and g2 the identity on B2. Then the domain C would be
the union of the domains of structures g1(B1) and B2 = g2(B2). This shows that
the mono-amalgamation property holds.

To show the existence of an MM structure we can construct it iteratively
from its age using the given properties, in a similar way to the proof of the
original Fräıssé Theorem 1.2.8. Suppose that the structure Di has been already
constructed. If i is even we choose a structure from K and use JEP to construct
a subsequent structure Di+1. Otherwise, if i is odd a pair (A,B) of structures
from K is chosen such that A ⊆ B. Since there exists an embedding f1 : A→ B,
for each monomorphism f2 : A→ Di we can apply MAP as shown in Fig 1.6 and
obtain a structure Di+1 such that the monomorphism from B to Di+1 extends
the monomorphism A to Di+1.

B

Di

CA

(emb) f1

(mono) f2

g1 (mono)

g2 (emb)

Di+1

Figure 1.6: Applying MAP in the construction of an MM structure from its
age.

When the steps are arranged in such a way that every structure in K occurs at
an even stage and every pair (A,B) at infinitely many odd stages, we finally build
a countable structure D. Moreover every finite substructure of D is contained
in one of the finite structures Di and thus belongs to K. From this one can also
see that K is the age of D and has MAP, which in turns means that D is an
MM-structure.

We can see that uniqueness understood as uniqueness up to automorphism is
not part of Proposition 1.7.5 and thus we cannot expect to use this result for the
construction of a limit as in Fräıssé’s original ultrahomogeneous case. It is also
evidenced by many examples of MM graphs having R as an induced subgraph
– the age of every such graph is the class of all finite graphs. However these
structures are not completely different – there is at least homomorphism from
one to the other.

The question arises whether there is a similar theorem even for homomorphism-
homogeneous structures. A class K of finite relational structures is said to
have the homo-amalgamation property (abbreviated as HAP) if for any
A,B1,B2 ∈ K and any maps fi : A → Bi (for i = 1, 2) such that f1 is an
homomorphism and f2 an embedding, there exist C ∈ K and homomorphisms
g1 : B1 → C and embedding g2 : B2 → C such that g1 ◦ f1 = g2 ◦ f2. According
to recent results in [129] we have the following variant of Fräıssé’s theorem for
the class HH that makes use of the HAP property.

Proposition 1.7.6 (Theorem 4.4 in [129]).
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The age of any homomorphism-homogeneous structure has property HAP.

If a class K of finite relational structures is isomorphism-closed, has only a count-
able number of isomorphism classes, and has properties HP, JEP and HAP,
then there is a countable homomorphism-homogeneous structure H whose age is
equal to K.

1.8 Classification results for homomorphism ho-

mogeneity

Similarly to the case of ultrahomogeneous structures, homomorphism homogene-
ity has a relatively extensive classification program. As mentioned earlier, it was
already shown in the original paper of Cameron and Nešetřil [18] that MH = HH
for finite graphs and that these classes consist of disjoint unions of complete
graphs all having the same size. On the other hand, Proposition 1.7.1 shows that
the class of finite graphs with property MM consists only of complete and null
graphs.

The classes MH and HH remain coincident for the class of countable undirect-
ed graphs, as shown by Rusinov and Schweitzer [136], extending original results
of Cameron and Nešetřil [18]. To state this result a term adapted from [136]
needs to be defined. For a countable graph G and subset of vertices T ⊆ V (G)
we say that T has a cone, if there exists a vertex c ∈ V (G) adjacent to all vertices
in T .

Theorem 1.8.1 (Rusinov and Schweitzer [136]). For a countable graph G, the
following statements are equivalent:

1. G is MH .

2. If ϕ : H → H ′ is a monomorphism between finite induced subgraphs H and
H ′ of G which is surjective onto the vertices of H ′, and H has a cone, then
H ′ also has a cone.

3. If ϕ : H → H ′ is a homomorphism between finite induced subgraphs H and
H ′ of G which is surjective onto the vertices of H ′, and H has a cone, then
H ′ also has a cone.

4. G is HH

Proof sketch. To prove this theorem Rusinov and Schweitzer make use of the just
defined notion of a cone. For a monomorphism-homogeneous graph, case 1 can
be simply shown. To show the crucial implication between case 3 and 4 they
make use of a fact that it is sufficient to show for a local homomorphism ϕ that
for any vertex v ∈ V (G) there is an extension of ϕ by means of introducing v
into its domain which is in fact a homomorphism.

Countably infinite undirected graphs without loops remain interesting since
their classification for the classes MH and HH is incomplete. We have seen
in Proposition 1.7.3 that any countable graph containing R as a spanning sub-
graph is HH, MM and MH. The disjoint union of complete graphs is another
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class of homomorphism-homogeneous countably infinite graphs which leads to the
question of whether there is another countably infinite HH graph which is not
isomorphic to either of these cases [18]. This question was answered by Rusinov
and Schweitzer several years later [136]. They provided a simple construction for
such a graph. Let n > 1 and In be an independent set of vertices of size n. Now
for any subset Sn−1 ⊂ In, where |Sn−1| = n − 1, add an infinite clique and join
all its vertices to the vertices in the set Sn−1. Finally add all edges between any
pair of these newly added cliques. This graph is HH and does not contain R as
a spanning subgraph [136].

Rusinov and Schweitzer in their discussion of the classification of HH count-
ably infinite undirected graphs without loops make the observation that some
infinite HH graphs of this type can be obtained by choosing appropriate finite
HH graphs with loops and replacing loops with infinite cliques [136]. In this
way they were able to give an example of an infinite HH graph containing an
independent set of size 4 – see Fig. 1.7.

Figure 1.7: An HH finite undirected graph with loops that can be used for
construction of an HH countably infinite undirected graph without loops.

However this observation is not that strong since the following theorem shows
that the classification of HH graphs with loops allowed seems to be quite difficult.

Theorem 1.8.2 (Rusinov and Schweitzer [136]). The problem of deciding if a
graph with loops allowed is HH is co-NP complete.

We have thus seen that for countable graphs classification is still in progress.
On the other hand, when we focus on partially ordered sets the situation becomes
clearer. Classification of these structures is represented by the two main papers
by Mašulovič [109] on the topic, and also two papers by Cameron and Lock-
ett [17]. While Mašulovič’s earlier paper is purely devoted to partially ordered
sets with nonstrict order, Cameron and Lockett were more interested in classi-
fying all possible classes like MM, MH, etc. Moreover they were working with
partially ordered sets with strict and nonstrict orders. For the sake of brevity, we
give only the classification of HH countable partially ordered sets.

Theorem 1.8.3 (Mašulovič [109] and Cameron and Lockett [17]). A partially
ordered set (A,≤) is homomorphism-homogeneous if and only if (A,≤)
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1. is composed of connected components all of which are chains, or

2. is a tree, or

3. is a dual tree, or

4. splits into a tree and a dual tree, or

5. is locally bounded and X5-dense.

For brevity we omit the definition of the new terms here, which can be found
in [109].

For directed graphs there are results by Ilić, Mašulović and Rajković deter-
mining finite homomorphism-homogeneous tournaments possibly with loops. To
state their results several notions have to be defined. Let Y ◦n denote the reflexive
acyclic tournament on n vertices. Note that such a tournament is unique up to
isomorphism. For a given acyclic tournament Y = (V,E) with loops on some
vertices, let PY denote the set of vertices with loops. For ∅ 6= W ⊆ V , we say
that W is dense in Y if

1. There exists x ∈ PY such that (x,w) ∈ E(Y ) for all w ∈ W ,

2. There exists x′ ∈ PY such that (w, x′) ∈ E(Y ) for all w ∈ W ,

3. For any two vertices w1, w2 ∈ W such that (w1, w2) ∈ E(Y ) there exists a
vertex y ∈ V (Y ) such that (w1, y) ∈ E(Y ) and (y, w2) ∈ E(Y ).

We further call an acyclic tournament Y dense if V (Y ) is dense in Y . Note
that Y ◦n is a dense acyclic tournament.

Theorem 1.8.4 ([76]). A tournament T is homomorphism-homogeneous if and
only if it belongs to one of the following classes:

1. an acyclic tournament with precisely one loopless vertex (this case includes
the trivial one-vertex tournament),

2. an acyclic tournament with two consecutive loopless vertices and with the
additional property that both the initial and the final vertex of the tourna-
ment have a loop,

3. a dense acyclic tournament,

4. the directed cycle C3 or reflexive directed cycle C◦3 .

1.9 Other variants of homogeneity

There are several other variants of homogeneity that can be considered. For
brevity we define most of them just for graphs. These can be simply generalized
to relational structures.

One of the most obvious and also oldest variants is to simply add the condition
of connectivity to the local isomorphism that is being extended. We call a graph
G connected-homogeneous if every isomorphism between finite connected induced
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subgraphs of G extends to an automorphism of G. This notion dates back to
1978 and the work of Gardiner [51] classifying all finite connected-homogeneous
graphs. The Clebsch graph �5 is the graph obtained from the 5-dimensional cube
Q5 upon identifying antipodal vertices.

Theorem 1.9.1 (Gardiner [51]). A finite graph is connected-homogeneous if and
only if it is isomorphic to a finite disjoint union of copies of one of the following:

1. a complete graph Kn(n ≥ 1);

2. a multipartite graph Kn,n,...,n(n ≥ 2);

3. a cycle Cn(n ≥ 5);

4. the line graph of a complete bipartite graph L(Kt,t)(t ≥ 3);

5. the Petersen graph;

6. the bipartite complement of a perfect matching;

7. the Clebsch graph �5

This is particularly interesting, since compared to Theorem 1.4.2 classifying
finite homogeneous graphs we can see that several homogeneous graphs have
been extended to connected-homogeneous families. For example, homogeneous
C5 is enlarged to the class of connected-homogeneous Cn(n ≥ 5), and homoge-
neous L(K3,3) is enlarged to the class of connected-homogeneous L(Kt,t)(t ≥ 3).
Homogeneity of the remaining part of the extended family is violated by the im-
possibility of extending some local isomorphism on a disconnected set. This could
for instance be seen in the case of the Petersen graph. Gardiner also classifies
all locally finite connected-homogeneous graphs, which in fact extend the above
families of graphs by infinite equivalents of most of the graphs, except for the
cases of Petersen and Clebsch graphs, as well as adding two more cases.

This topic is further studied by Lockett in her preliminary results [97] from
the perspective of homomorphism-homogeneity. We call a graph G connected-
homomorphism-homogeneous if every local homomorphism between finite con-
nected induced subgraphs extends to an endomorphism of the graph. For finite
graphs the resulting classification is relatively simple. Let us for brevity present
only the classification for connected graphs. At first define a graph �2 as graph
created from two C4 by identifying two edges one from each C4.

Theorem 1.9.2 (Lockett [97]). Let G be a finite connected graph. Then G is
connected-homomorphism-homogeneous if and only if it is one of the following:

1. a single vertex;

2. a Kn-treelike graph (n ≥ 2);

3. a graph such that all induced cycles are squares, but �2 has no embedding;

4. a bipartite graph such that for each partite U there is a vertex in the other
partite adjacent to each vertex in U ;

5. the bipartite complement of a perfect matching.
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There is another extension of classical homogeneity that puts conditions on
which isomorphisms need to be extendable. A graph is called set-homogeneous
if, whenever two finite substructures are isomorphic, there is an automorphism
mapping one to another. The main difference is that extension is not required for
all isomorphisms. Originally this topic dates back to Enomoto [37], who showed
that for finite graphs this notion coincides with classical homogeneity.

1.10 Summary

Symmetric structures represented by ultrahomogeneity or its variations consti-
tute a mathematical field interesting from many viewpoints, such as graph theo-
ry, combinatorics, group theory and model theory. Moreover there remain many
open problems and questions. One of the first type of question to ask is that
of classification. Ultrahomogeneous structures based on extending isomorphisms
have been widely studied from this perspective, although a complete classifica-
tion is still not complete [104, 22]. One of the research perspectives as men-
tioned by Macpherson [104, p. 1605] is to classify homomorphism-homogeneous
graphs with edges colored using two or more colors. A basic classification of finite
homomorphism-homogeneous bigraphs is given in Chapter 3 and more specifically
in Theorem 3.2.5. This warm-up exercise provides a construction called a pump-
ing argument that is further used in the more complicated classification of finite
homomorphism-homogeneous L-colored graphs. Of course, a complete classifica-
tion of this type would be difficult, so we content ourselves with a classification
for the cases where L is a linear partial order or a diamond – see chapter 4.

The last-mentioned result also answers a question about the relationship be-
tween the classes HH and MH. From the very first results of Nešetřil and
Cameron [18], followed by Rusinov and Schweitzer [136], these classes were known
to coincide for the class of graphs. Their general differences seem to be easily
seen, however the question remains: what is a relatively simple structure for
which the corresponding classifications result in different classes? An answer is
given in Chapter 4, which contains an example of a relatively simply defined type
of L-colored graph that can be used to distinguish both classes. This is summa-
rized and put into a broader context in Chapter 5, where the general category of
classes of Definition 1.7.1 is described and a representative from each class that
distinguishes this class from the others is presented.

The search for “relatively simple” structures that distinguish classes HH and
MH motivated another line of research which moreover generalized previous ap-
proaches to providing classifications, namely by examining the “distance” of a
given structure from ultrahomogeneity as determined by relational complexity
– see Chapter 6. This property represents in some sense the simplest structure
derived from the original one, having as it does the same automorphism group,
and which is ultrahomogeneous. Chapter 6 contains results concerning relational
complexity. The first results deal with several classes of finite graphs with small
relational complexity like trees followed by a discussion about graphs with high
relational complexity. The chapter closes by giving bounds on relational com-
plexity for infinite graphs. For this purpose classes of structures Forbh(F) with
forbidden homomorphisms are used.

Since one of the motivations for this research stems from the study of symme-
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tries of real world networks, especially complex networks like the brain or climate
networks, this topic is introduced in Chapter 2 and several results of the au-
thor in this field are presented. The main connection lies in the notion of graph
limits [100, 118], as explained in Chapter 2.
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2. Complex network symmetries

The social psychology of this
century reveals a major lesson:
often it is not so much the kind of
person a man is as the kind of
situation in which he finds himself
that determines how he will act.

Stanley Milgram

This chapter contains mainly motivational studies performed in the field of
complex networks and their connection to the symmetric relational structures
studied in the sequel. The reader solely interested in the mathematics of sym-
metric structures may wish to skip this chapter. Nonetheless, to make the story
complete this chapter explains the motivations and connections that has led the
author to the deeper study of symmetries of mathematical structures which fol-
lows in the remaining chapters.

We begin by describing the field of complex networks itself. Nowadays many
real-world systems are often understood as networks, or simply as discrete graphs,
of mutually dependent subsystems [121, 13]. The analysis of a specific behavior
of these types of systems can be supported by an analysis of this “underlying
network”, assuming that some of the phenomena are due to a specific connec-
tion among its subsystems [121] – for a more detailed discussion see also below.
A classical example of a phenomenon that is shared by several networks is the
so-called small-world property, originating in the famous experiment performed
by Stanley Milgram in 1976. Roughly speaking, he showed that for any chosen
individual the average distance to any other in terms of friendship, more specif-
ically number of consecutive friendships, is six [114]. The experiment itself was
performed in several steps. At first, letters were sent to several individuals at ran-
dom containing the name of a specified target person. Attached to these letters
were instructions that a recipient of the letter should send it either to the target
person if he or she knows him or her personally or to the person that he or she
knows and considers as the most likely to be connected either with the target per-
son or someone close to him or her by friendship, all these according to the best
of the recipent’s knowledge. The original algorithm is in fact more complicated
– for a more detailed description, see [114]. This notion is sometimes called six
degrees of separation. This name originated earlier than Milgram’s experiement
through Hungarian writer Frigyes Karinthy [82]. The surprising aspect of six de-
grees of separation is that even in systems with a tendency to create groups (like
friendship networks) the distance between any pair of participants is relatively
small.

Although the assumptions and procedures of Milgram’s experiment have been
widely discussed and criticized, usually with ajustments suggested in the whole
process [139], the small-world phenomenon is a good example of a structural
property affecting global behaviour of the whole system. More specifically, it is
an example of a simple phenomenon influencing the the whole system from the
perspective of connectivity of its subsystems. For a recent review of the small-
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world problem see [140].
In more theoretical paper, Duncan J. Watts and Steven Strogatz have shown

that similar phenomena can be explained by a simple parametric network mod-
el [154]. Their model has two parameters – a probability p and a parameter
k. This model can be created by a process starting from a graph on n vertices
{v1, v2, . . . , vn}, each connected to its k nearest neighbors in modular order, i.e.
there is an edge {vi, vj} if and only if j− i < k mod n. This graph is an extremal
representation of a phenomenon called clustering, which indicates how much a
typical vertex neighborhood is dense. However such a graph is not very efficient
from the perspective of message delivery through the corresponding network.
That is why Watts and Strogatz in [154] propose a way to modify this graph
enabling more rapid communication between any pair of vertices by a series of
edge-rewirings applied independently with probability p.

Figure 2.1: Watts and Strogatz parametric model.

Surprisingly, even for small probabilities the resulting graph becomes quite
efficient in message delivery while still keeping its clustered nature. This phe-
nomenon has been shown to hold for many real-world networks. For a general
reference see [140], for brain networks see [6], and for climate networks see [145] –
for a more detailed description of the two latter particular networks see below. It
has also been shown that this characteristic can serve as a means of classification,
enabling, for example, a potential clinical use in medicine [7].

This simple example shows that the analysis of specific kinds of systems can
be supported by studies of the corresponding networks from a graph-theoretical
perspective. Since the characteristic of the system under study can be completely
represented by a property of the graph structure, one can represent this kind
of system as a set of vertices that are connected by edges of a chosen type.
This graph is in this case called a network. Most of these real-world networks
surprisingly share in common such characteristics as the small-world property
and therefore a notion complex network has been established for them [121].

Another example of a widely shared property is that of apower-law degree
distribution. To define this notion several auxiliary definitions are needed. The
degree distribution P (k) is defined as the probability that a node chosen uniformly
at random has degree k, or equivalently as the fraction of vertices having degree
k. Let us first consider the finite random graph G(n,M) defined by Erdős and
Rényi [38, 39]. This graph G(n,M) has n vertices v1, v2, . . . , vn and M edges dis-
tributed so that the resulting graph is chosen uniformly at random from the family
of all graphs which have n nodes and M edges. Alternatively, the Erdös–Rényi
random graph can be represented using another closely related model denoted by
G(n, p). This model is defined for n vertices v1, v2, . . . , vn, where an edge joining
any pair of vertices is included in the graph with probability p. Using the second
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model the probability that a vertex v ∈ V (G(n, p)) has degree k can be expressed
as:

P [deg(v) = k] =

(
n− 1

k

)
pk(1− p)n−1−k (2.1)

The average number of edges z connected to each vertex is given by z =
p(n− 1). The previous equation can then be shown to converge, for large n, to(

n− 1

k

)
pk(1− p)n−1−k → zke−z

k!
(2.2)

and thus the degree distribution for the random graph G(n, p) is Poisson [123].
Contrary to the previous observation, real-world networks usually exhibit a

power law shaped distribution, given by

P [deg(v) = k] = Ak−γ (2.3)

where the exponent lies in the interval 2 < γ < 3 [3].
Both properties of small-worldness and scale-freeness have become classical

characteristics studied for complex networks [121]. For the analysis itself several
other graph-theoretic characteristics are also used [13].

Modelling complex networks is a main source of motivation connecting the
areas of complex networks and symmetric structures. The key aspect of this
motivation is the notion of graph limit [100, 118].

Graph limits as defined by Lovász and Szegedy [101] have been used to anal-
yse a small-world network of coupled Kuramoto oscillators [112]. A different
definition of graph limit due to Benjamini and Schramm [8] has been used in the
study of the most prominent network-growing model used to represent dynamic
complex networks due to Barabási and Albert [3]. Recently Nešetřil and Ossona
de Mendez [118] introduced a generalized approach to structural limits based on
model theory that enables the definition of limits even for sparser graph sequences
than those for which limits had been previously defined. Moreover this type of
limit enables the analysis of families of structures for which the countable limit is
ultrahomogenous. They showed that if a sequence of graphs converges to an ul-
trahomogeneous limit than it is convegent under most of the previous definitions
of graph limit. This might motivate searching for specific families of complex
networks whose limit is ultrahomogeneous. One of the possible properties of the
corresponding theory might then be ω-categoricity. These ideas are described in
more detail in Section 2.6.

This chapter contains several sections dealing with specific areas of complex
networks. In Section 2.1 we describe various types of complex network that are
studied and follow this in Section 2.2 with an overview of widely used character-
istics and their mathematical definition. Then two specific complex systems are
described with an emphasis on results that have been obtained for them – namely
these systems are the human brain in Section 2.3 and earth climate in Section 2.4.
Both these sections contain a detailed description of the results of the author in
these respective fields. Then another result of the author from the study of the
small-world phenomeon in a general setting is presented in Section 2.5. Finally,
Section 2.6 contains a summary of results and motivation for the joint study of
complex networks and symmetric structures.
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2.1 Network construction

Essential to complex network analysis is the process of constructing a network.
Some of the complex systems modeled by networks have their structure defined
quite naturally from an underlying physical structure, such as transportation
networks like air transportation networks [55] or urban street networks [134, 21].
Computer networks also play an important role in complex network studies. In
particular, for the internet several properties similar to complex networks such
as its scale-free degree distribution have been established [43]. Analysis of the
internet network has been used to assess resilience of the internet to random
breakdowns [30]. A more abstract version of this network is that based on the
World Wide Web [1, 10] where nodes are HTML pages and edges are determined
by references from one page to another. This example is also important because
it is generally a directed graph with loops allowed, although loops are sometimes
omitted for lack of contribution to connective information. Moreover the World
Wide Web should be considered a dynamically changing network, or more accu-
rately a temporal network [70], where a time interval is given and the presence
of an edge is given by a collection of time subintervals.

There is another type of system where connections are given by virtual rela-
tionships between pairs of vertices from the network represented for example by
the frequency of interactions or the amount of shared entities under study. An ex-
ample of these systems is provided by social networks [153] where connections are
characterized by friendships or amount of shared interests – a simple example of a
social system is represented by Milgram’s small-world experiment. Another type
of social system is that of the scientific collaboration network [119], where vertices
are scientists and edges are constructed from coauthorships of scientific papers.
Here the famous Erdős number has been defined as a measure how far an author
is from Paul Erdős in sense of co-authorship – see for example [119]. Its definition
is simple. Paul Erdős is the only person having Erdős number 0. Everyone who
co-authored a paper with him has Edös number 1. Those who have co-authored
with someone having Erdős number i, but who have not co-authored with any
person having a lower value Erdős number, have Erdős number i + 1. This may
seem more akin to a children’s toy, but this or similarly defined characteristics
can be a valuable tool for recognizing collaborations in specific fields [119]. To
analyse such phenomena another type of network can be used, which has scientific
papers as its vertices and (directed) edges where a citation exists in one paper of
another – see for example [132].

Social networks and coathorships are today easily accessed via electronic ap-
plications like Facebook [95] and Twitter [77] or scientific applications like Web
of Science, Scopus, PubMed or Google Scholar [42], and thus construction and
interpretation are relatively direct. This field produces or extends many charac-
teristics and phenomena that have been used in other fields – see for example
that of centralities [46] or community structures [53]. Other systems consisting of
several actors having easily measurable pairwise interactions between themselves
are networks based on economic relationships – for example, the world trade net-
work [141], where vertices are countries and edges are given by the existence or
amount of imports and exports.

Another example of a complex system for which the physical nature of ele-
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ments and their interactions produces the corresponding vertices and their ad-
jacencies is that of chemical reactions/interactions networks, for example the
protein-protein network [79] expressing mutual interactions between proteins, or
the metabolic network [4] representing the collection of metabolic pathways where
enzymes also play a role. This type of network is also interesting since in one
of its representations there can be three types of nodes – reactions, reactants
and enzymes, and also two types of edge – one for the mass flow of reactants to
reactions, and the other for the catalytic role of enzymes in these reactions.

Most of the networks we have mentioned are well-defined by specific phenom-
ena which directly determine the existence of an edge or its weight, although
sometimes it can be quite difficult to collect all the necessary information. On
the other hand, there are systems where interactions of elements are hidden, due
to lack of corresponding data, or even unknown, usually due to the high complex-
ity of interaction. Such networks are constructed using mutual correspondence
or influence between particular subsystems (vertices of the network). Edges of
these networks are usually defined by a measure of correspondence given by as-
sumptions and conditions connected with system under study. Examples of these
networks include brain networks [15], where vertices represent parts of the brain
and edges correlation between their activation, climate networks [145], where ver-
tices are geographic locations and edges represents correlation between climatic
variables such as temperature or pressure, and financial markets [106, 125], where
vertices are stocks traded at specific markets and connections are given by the
correlation of their prices or other measures. Such systems should be treated with
special care when constructing the complex network model, since many factors
can influence the statistical significance of results.

Systems consisting of several subsystems connected by specific kinds of in-
teractions can be sometimes modeled as a collection of oscillators interconnected
by synchronization phenomena [2]. However from our point of view the most
important part of the system description is always the network.

2.2 Characteristics of complex networks

Complex networks are usually constructed because several of their characteristics
can be used to identify specific properties, either local or global, of the system
they represent. We have already mentioned the small-world phenomenon. This
phenomenon becomes more important when considering the dynamics of process-
es taking place on networks. A good example is given by the dissemination of
information. In small-world networks spreading information is much more effec-
tive with respect to conveying information from one actor to another [121].

Another widely studied area is that of epidemiological processes taking place
through networks [84]. The goal of these studies is usually to predict the spread
of diseases by analysing the structure of the underlying networks – for example
for sexually transmitted diseases the relevant network is that of sexual partner-
ship [35] or in the case of infectious diseases networks of physical contacts of
individuals [113].

To define the small-world phenomenon more precisely we need to introduce
several characteristics. For a graph G = (V,E) with |V | = n the characteristic
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path length is computed by the following formula

L =
1

n(n− 1)

∑
i,j;di,j<ω

di,j, (2.4)

where di,j is the (i, j)-entry of the distance matrix of G. Note that the graph
G may be disconnected and therefore we include only connected pairs of vertices
in the summation. This however can cause problems in several applications and
therefore sometimes characteristic path length is computed only for a giant com-
ponent. This characteristic obviously represents reachability of pairs of vertices
in the network, with low values indicating high efficiency.

Another term needed is the clustering coefficient, defined by

C =
1

n

∑
i

ci, (2.5)

where ci are local clustering coefficients defined for vertex i by

ci =

∑
j,` ai,jaj,`a`,i

ki(ki − 1)
, (2.6)

where ai,j are elements of adjacency matrix of G and ki denotes the degree of
vertex i.

For a vertex i with neighborhood Γ(i) and |Γ(i)| = ni and |E(Γ(i))| = mi this
local characteristic in fact gives the relative number of edges in the neighborhood
of given vertex, i.e.

ci =
|E(Γ(i)|(

ni

2

) (2.7)

Higher values of the clustering coefficient correspond to a more highly clus-
tered nature of the given network, or less formally, the tendency in the evolving
network for groups to be created.

The clustering coefficient also illustrates a general classification principle for
characteristics based on their locality. Usually we recognize local characteristics
as those that are determined by properties of vertices and their neighborhoods
while global characteristics are determined by features of the whole graph.

In their original paper, Watts and Strogatz [154] suggested the term “small-
world” for networks that have similar average path length, but increased cluster-
ing coefficient compared to the corresponding random graph, which originally was
taken to be the Erdős–Rényi random graph having the same number of edges.
More formally, conditions of small-world property can be characterized as

λ =
L

Lrand
& 1, (2.8)

γ =
C

Crand
� 1. (2.9)

In real-world applications Lrand and Crand are approximated by average esti-
mates L̂rand and Ĉrand from several sampled random networks.

This approach, however, has been criticized, since the Erdős–Rényi model
is not a precise random model for the corresponding system, because its degree

36



distribution differs. To overcome this drawback other models, for example such as
that of Maslov-Sneppen [107], have been proposed. The Maslov-Sneppen model
represents a randomized counterpart for a given network and thus has to be
generated with the original network at hand – the Erdős–Rényi model only needs
the number of edges and vertices. On the other hand, one can use Maslov and
Sneppen model to identify important non-random topological patterns, which
are significantly more or less presented in the real network compared to this null-
model. The algorithm simply chooses a subgraph H isomorphic to K2 + K2 at
random consisting of two edges {x, y} and {u, v}. Then rewire those edges such
that a newly created graph induced on V (H) has edges {x, v} and {u, y}. Maslov
and Sneppen suggest repeating this process 4|E(G)|-times.

The small-world property has been more recently proposed to be summarized
in the small-world index [74]

σ =
γ

λ
� 1. (2.10)

Instead of using the path length characteristic, which has problems with dis-
connected graphs, we can make use of a different measure called efficiency [94].
Rather than the arithmetic mean used by the path length characteristic, efficiency
is defined using the harmonic mean:

E =
1

n(n− 1)

∑
i 6=j

1

di,j
. (2.11)

Due to the complexity of the underlying system, sometimes it is enough to
work with an even simpler characteristic. An example of this is just using degrees
of specific vertices or the degree distribution, such as for the definition of scale-
freeness. Sometimes a sufficient indicator for specific phenomena can simply be
about the connectivity of the vertex, which is here represented by its degree –
for an example of using connectivity for clinical purposes in brain studies see [96]
and for climate networks see [146].

A more complex property dealing with the general tendency in connectivity
as a function of vertex degrees is called assortativity [120]. Roughly speaking,
this characteristic indicates whether high-degree nodes are likely to be connected
with other high-degree nodes, or to low-degree ones. This property is called as-
sortativity, or disassortativity, respectively. Detection of such behavior is usually
a nontrivial task, often replaced by calculation of a simple coefficient called the
assortative coefficient [120], defined by

r =

∑
(i,j)∈E

kikj − 1
m

[ ∑
(i,j)∈E

1
2
(ki + kj)

]2

∑
(i,j)∈E

(k2
i + k2

j )− 1
m

[ ∑
(i,j)∈E

1
2
(ki + kj)

]2 (2.12)

Another class of characteristics dealing with the roles of vertices within a
network is called vertex centrality [46]. These measures originated in social net-
works [46], however they were quickly adopted by other fields such as in the
analysis of the roles of genes in protein-protein networks [79], detection of ener-
gy flows in the climate network [34] or possible patterns of vulnerability of the
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brain network in Alzheimer’s disease [14]. Generally speaking, centrality indi-
cates important vertices for information exchange and therefore possibly weak
places under targeted attacks on networks [69]. One of the most prominent char-
acteristics is betweenness centrality [45] defined for vertex i ∈ V (G) by

Cb(i) =
∑

j,k∈V (G),j 6=i 6=k

σj,k(i)

σj,k
, (2.13)

where σj,k is the number of shortest paths from vertex j to vertex k and σj,k(i)
is the number of shortest paths from vertex j to vertex k going through vertex
i. Although this characteristic has been widely used it has been criticized for
its dependence on shortest paths that sometimes have an unrealistic physical
interpretation [122].

2.3 The brain network

The brain is a complex system whose structure and function is far from being
understood, although it has been known for a relatively long time that the brain
consists of neuronal elements interconnected in a complicated network called a
structural network [144]. Moreover functions of the brain are believed to be bet-
ter modeled by functional networks [47] that consist of several spatially distinct
brain regions that are connected according to statistical patterns among them.
Both networks can provide interesting insights into brain functionality and both
of them can be constructed using various measurement and preprocessing tech-
niques. They are believed to play a role in specific mental processes [48, 110].
This section describes results from [56] dealing with the process of analysis of the
brain as a complex network.

2.3.1 Defining vertices

In practice the fundamental step is to define network vertices. Usually this defini-
tion is tightly connected with the means of measurement used – vertices represent
brain regions where activities are measured using for example electroencepholog-
raphy (EEG), positron emission tomography (PET) or functional magnetic res-
onance imaging (fMRI). Within these areas activities are measured and the cor-
responding time series are compared among each other using cross-correlation
measures [71].

Although the general theory for complex networks using various methods of
measurement, like EEG or fMRI, are similar, there can be some differences in pro-
cessing. Let us consider functional magnetic resonance imaging as used in [56].
Within this study data from 12 healthy volunteers, 5 males and 7 females in the
age range 20 - 31 years, were obtained using a 3T Philips Achieva MRI scanner,
operating at ITAB (Chieti, Italy). Each measurement is called a session. It has
been already mentioned that functional MRI measures activity in specific areas
of the brain. The technique called Blood-oxygen-level dependent (BOLD) uses
the known coupling between cerebral blood flow or equivalently oxygen level and
neural activity in the corresponding area [124]. This is because particular neurons
performing tasks are in need of energy which among other things means a higher
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amount of oxygen consumption. Oxygen is released to these neurons from the
blood at a greater rate compared with inactive neurons. Deoxyhemoglobin, i.e.
hemoglobin when carrying no oxygen, is paramagnetic and therefore detectable
using an MRI scanner. For more detailed information see [124]. In this way
it is possible to observe brain activity as a function of time, however several
preprocessing steps should be also applied. Specific preprocessing should be ad-
justed every time to the task under study, however there are several standard
procedures that are applied in most studies. Following [56], we can describe such
preprocessing, omitting some measurement-specific algorithms, by:

1. correction for slice-timing differences,

2. correction of head motion across functional images,

3. co-registration of the anatomical image and the mean functional image, and

4. spatial normalization of all images to a standard stereotaxic space, here
(Montreal Neurological Institute, MNI) with a voxel size of 3× 3× 3mm2.

For a more detailed description of preprocessing see [49]. For the sake of com-
pleteness it should be mentioned that measurements were provided in a so-called
resting state, which means that subjects perform no task and think about noth-
ing particular, however they do not sleep. Moreover each subject underwent two
scanning runs. In each scanning run the initial five dummy volumes allowing the
MRI signal to reach a steady state were discarded. The subsequent 300 functional
volumes forming a 10-minute data session were then used for the analysis.

Functional MRI usually provides images of the brain at a resolution of 10000
voxels. While a network composed of these voxels can be hard to analyse and
results for particular voxels can be hard to interpret, several dimensionality reduc-
tion methods are applied. One of the commonly used methods is to map voxels
to a standard anatomically designed atlas defining specific areas of interest for
the brain – this can be done since we the brain under study will have already
been mapped into standard stereotaxic space MNI, see above. One particular
automated anatomical labelling (AAL) atlas [149] with 99 parcels, i.e. vertices,
was used.

For a more detailed description of preprocessing and the corresponding meth-
ods see [56] and references therein.

2.3.2 Defining edges

Studies of these kind of systems usually proceed as depicted at Figure 2.2. The
main goal of using an association measure is to define the weighted connectivity
matrix, i.e. a matrix W = {wi,j}ni=1, where wi,j is either equal to weight of the
edge {i, j} or equal to 0 when there is no edge. While weighted complex networks
in the field of brain have appeared only recently [135] and most studies for brain
complex networks are still for unweighted graphs, we apply thresholding to obtain
the connectivity matrix. However, even determining the weighted connectivity
matrix represents a problem in itself. The main issue is hidden in the choice of
association measure.
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Since recorded fMRI data reflects activities of the corresponding brain regions
it is possible to calculate some kind of association measure between the result-
ing time series. One of the simplest measures is that of Pearson’s correlation
coefficient. For two real random variables X and Y it is defined by

ρ(X, Y ) =

√
E[(X − E(X))(Y − E(Y ))]

E((X − E(X))2)E((Y − E(Y ))2)
, (2.14)

where the symbol E is used for expected value. Another option is to use a more
complex correspondence measure called mutual information, defined for two real
discrete random variables X and Y with corresponding sets of values Ξ and Υ by

I(X, Y ) =
∑
x∈Ξ

∑
y∈Υ

p(x, y) log
p(x, y)

p(x)p(y)
, (2.15)

where p(x) = P [X = x], x ∈ Ξ is the probability distribution function of X,
p(y) = P [Y = y], y ∈ Υ is the probability distribution function of Y and
p(x, y) = P [(X, Y ) = (x, y)], x ∈ Ξ, y ∈ Υ is the joint probability distribution
function for X and Y . For continuous variables, mutual information is defined
by the corresponding integral. However, in practice mutual information is esti-
mated using discretization of theoretically continuous variables. For a detailed
description of the computations involved see [127].

There is a wide range of methods available for the detection of dependence
between variables. Pearson’s correlation coefficient, a measure particularly sensi-
tive to linear dependence, is widely used. While Pearson’s correlation coefficient
reliably detects dependence in the case of multivariate Gaussian probability distri-
butions, it may be suboptimal in the case of non-Gaussian dependence patterns.
That is why here by linear dependence between two variables is meant a bivariate
Gaussian distribution – this peculiar ambiguity is due to naming conventions in
the complex systems community.

In the context of curve fitting the term linear dependence is used in a slightly
different sense to describe stochastic relationships where the dependent variable
is best fitted (e.g. in the least squares sense) by the independent variable using a
linear function of the form Y = aX+ ε, where none of the variables X, Y or noise
ε are necessarily Gaussian. This definition includes a broader family of bivariate
distributions. However, in the important example of a what is colloquially called
“a linear process”, that is, stationary multivariate linear autoregressive processes
with Gaussian noise, the bivariate dependences among all variables are Gaussian,
and therefore “linear” not only in context of curve fitting, but also in our narrower
sense.

Usually, interdependence between two variables is calculated because we do
not have detailed information about their synchronization – synchronization is
itself considered, since variables represent two dynamical (sub)systems with mu-
tual coupling. While synchronization can be quite complex, it is important to
consider even nonlinear measures [88].

The question about the suitability of a particular measure for the construction
of a complex network is important, since using an inappropriate measure can lead
to completely different network characteristics. Let us consider the question more
generally and ask
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Figure 2.2: Rough scheme for analysis of the brain dynamical system using a
complex network approach.

Problem 2.3.1. Is a linear dependence measure represented by Pearson’s corre-
lation coefficient when compared to a nonlinear approach represented by mutual
information, both computed from fMRI as described above, sufficient to represent
the internal dynamics between two regions of the brain in resting state?

Of course, a complete answer to this question would imply a complete under-
standing of the underlying system and fMRI measurement and correspondingly
the design of a complex analytical solution. However, having in hand measure-
ments of fMRI data, it is possible at least to marshal evidence to guide future
research and to construct a method of checking the validity of the chosen method.

Not to speak of the wide application of these chosen measures, these choices
are also supported by the property of a bivariate Gaussian distribution that the
correlation ρ(X, Y ) of the variables X, Y uniquely defines the mutual information
between them as [31]

I(X, Y ) = IG(ρ(X, Y )) = −1

2
log(1− ρ2(X, Y )). (2.16)

For a general non-Gaussian bivariate distribution this equation may not hold.
Two cases of bivariate non-Gaussianity can be distinguished.

Firstly, “simpler” nonlinearity consists in non-linear rescaling of one or both
of the variables. Such a rescaling does not affect the mutual information between
the variables, but the correlation may change substantially. Rescaling of this
type can be suspected in data e.g. due to non-linear properties of the measure-
ment scale, and may be considered as a bias in the correlation estimation. A
remedy commonly adopted is the use of Spearman’s rank correlation coefficient.
An alternative procedure lies in preprocessing the data by applying a mono-
tonic transformation to each variable separately that would render it Gaussian
(“marginal normalization”), and computing the correlation on the transformed
data.

A second, more “substantial” type of non-Gaussianity lies in that some bi-
variate distributions differ from bivariate Gaussian not only in their marginal dis-
tributions, but also in the form of the interdependence, which cannot be resolved
by univariate rescaling. This substantial non-Gaussianity is the key motivation
for the use of nonlinear dependence measures, as the dependence pattern can not
be recovered by only considering ranks or other rescaled version of the variables.

41



Recently, a quantification method for such deviation from Gaussian depen-
dence has been proposed [66], building on the fact that for univariate Gaussian
random variables X, Y , the correlation gives a lower bound on the mutual infor-
mation by

I(X, Y ) ≥ IG(ρ(X, Y )), (2.17)

with the minimum obtained for the bivariate Gaussian distribution. In par-
ticular, one can define the neglected (“extra-normal” or “non-Gaussian”) infor-
mation

IE(X, Y ) = I(X, Y )− IG(X, Y ) ≥ 0 (2.18)

Considering at least noise, there is some extra information IE(X, Y ) in the
data. Our task is to identify whether this amount can have a significant influence
on characteristics of the complex network.

2.3.3 Linear surrogate datasets

To assess the effect of nonlinearity on the graph-theoretical properties of the
resting-state fMRI brain networks we compare the network representations of the
data with those of their linear counterparts.

The linear counterpart of a single session dataset is considered as a realization
of a linear Gaussian process with the same “linear properties” as the original
data. Such realizations, called surrogate datasets, are created using the method of
multivariate Fourier transform (FT) surrogates [130, 126]. These are realizations
of multivariate linear Gaussian stochastic process which mimic individual spectra
of the original time series as well as their cross-spectrum. The multivariate FT
surrogates are obtained by computing the Fourier transform (FT) of the series,
keeping unchanged the magnitudes of the Fourier coefficients (the spectrum),
but adding the same random number to the phases of coefficients of the same
frequency bin; the inverse FT into the time domain is then performed. The
multivariate FT surrogates preserve the part of synchronization, if present in the
original data, which can be explained by a multivariate linear Gaussian stochastic
process.

2.3.4 Testing of nonlinearity influence

Once the linear surrogate datasets are obtained, we can compute the mutual
information for the original possibly nonlinear data and their linear counterparts.
The whole process is depicted in Figure 2.3.

The first step is preprocessing and normalization of the original time series
from Nsess = 24 sessions as described above. Then Nsurr linear surrogates are
generated. After this, mutual information for the original data and for all sur-
rogate datasets are computed giving several weighted connectivity matrices. For
each matrix several thresholds are applied, resulting in a set of undirected graphs
of various densities. These results were used to compute each of the described
characteristics from Section 2.2 as a function of density, i.e. f(ρ). To achieve
comparable results across the matrices, the function f = f(ρ) is interpolated ac-
cording to the Voronoi method [85] in which for each value of ρ the value f(ρneigh)
is assigned that corresponds to the closest density ρneigh attained by thresholding.
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Figure 2.3: Data analysis pipeline: An initial normalization step is performed
using the data time series. Then for this data MI is computed for all pairs.
In parallel, linear surrogate data are generated, from the original dataset and
for each surrogate its MI matrix is computed in a similar way. Each matrix
(corresponding to data or surrogate) is then binarized at multiple thresholds
providing a collection of graphs. For each such graph a chosen characteristic f is
computed and analysed (e.g., plotted as a function of density).

In further description, a data value of the global characteristic for a specific
session s and density ρ is denoted by fD(s, ρ). We drop some of the indices or
parameters to simplify notation where confusion is unlikely. We further write
fj(s, ρ) for the values obtained for surrogates, where j = 1, 2, . . . , Nsurr are the
indices of the surrogates. When local versions of characteristics are used, a pa-
rameter i for vertices has to be also used as in fD(s, ρ, i) and fj(s, q, i).

For each session, global characteristics are simply computed as functions of
density for the data and the corresponding Nsurr surrogates. The results for
surrogates are usually plotted by two gray lines minimal and maximal, forming a
“belt” of values typical under linearity. When the black data line falls into this
belt, it suggests that the data nonlinearity does not have a substantial effect on
the particular graph measure – the deviation from a linear process is within the
natural variation due to numerical estimation of the connectivity measure from
a finite-size sample. This process is repeated for each session and the goal is to
check whether data functions deviate significantly from the “belt” representing
the linear surrogate values. For examples of results, see Figure 2.4.

While visual inspection of the belt plot provides an intuitive grasp of the
strength of any nonlinearity effect on the studied graph-theoretical measures, a
more formal quantitative analysis is beneficial. An intuitive formalization of the
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(a) Clustering coefficient C (b) Betweenness centrality Cb

Figure 2.4: Two graph characteristics as functions of density ρ for a graph repre-
senting original data (black line) and minimal and maximal surrogates lines (gray
lines) for a representative session

concept of data ‘leaving the belt’ of surrogates by the concept of dominance is
provided below.

Let s and ρ be fixed. For a mesoscopic or local graph characteristic, let us call
a vertex i a maximal dominant vertex when it holds that maxj{fj(i)} < fD(i)
and similarly minimal dominant vertex if minj{fj(i)} > fD(i). We further define
the maximal dominance indicator function by

fdomM (s, ρ, i) =

{
1, i is maximal dominant

0, otherwise.
(2.19)

The minimal dominance indicator function fdomm (s, ρ, i) is defined in the very same
way. Finally, the dominance function is defined by fdom(s, ρ, i) = fdomm (s, ρ, i) +
fdomM (s, ρ, i). The following steps can be performed for any of these functions but
we concentrate on the dominance function only. Using simple summation the
graph dominance function is defined by:

fG,dom(s, ρ) =
n∑
i=1

fdom(s, ρ, i), (2.20)

and finally the overall dominance function is computed as

fT,dom(ρ) =
1

Nsess

Nsess∑
s=1

fG,dom(s, ρ). (2.21)

This function is then further analysed. The same approach is used for global
characteristics, with the exception that dominance indicators are not functions
of vertices and the summation step (2.20) is therefore omitted. Note that the
expected values of the dominances under strict linearity are about 2%, corre-
sponding to the probability of a single value out of a set of 100 values (1 data
value and 99 surrogate values) being the highest or the lowest under the sim-
plifying assumption of the existence of a single maximum (or single minimum)
value.
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To achieve robustness in the statistical comparison of the dominances, these
were further averaged across a range of relevant densities. The lower bound is
determined so that for all sessions all the resulting graphs are connected, i.e. con-
sist of a single component, so as to guarantee good comparability across graphs.
For each session s the minimal density ρm,s is determined, assuring that the data
graph and all the graphs of surrogates are connected.

Figure 2.5: Values of global dominances averaged over an interval of interest for
shadow datasets (gray dots) and original dataset (black lines) for all mentioned
characteristics. Values on the y axis are dominances in percent. Values on the x
axis represent the clustering coefficient (C), global betweenness centrality (Cb),
efficiency (E) and assortative coefficient (r).

To explicitly control for any potential bias in the numerical generation of
the surrogate distributions, we repeat for each session the whole procedure for
Nshadow = 39 linear shadow datasets. For each session, 39 shadow datasets were
created as a multivariate FT surrogate of the marginally normalized original
dataset. Thus the shadow dataset preserved only the linear (correlation) struc-
ture of the original dataset of the respective session. Subsequently, each shadow
dataset has undergone the same procedure as the original data, including the
initial normalization, generation of multivariate surrogates, computation of MI
and generation of binary graphs using the appropriate thresholds. In this way,
we mimic the full procedure of processing the original data while using linear
‘shadow’ datasets, accounting for any potential slight bias introduced by numer-
ical properties of the algorithm. Then, the dominances for the relevant graph
measures computed from the data are compared with the distribution obtained
from the linear ‘shadow’ datasets. In particular, if the data dominance value is
higher than at least 38 out of the 39 dominance values obtained from the shad-
ow datasets, this would correspond to a significance level p < 2/40 = 0.05 (no
correction for multiple comparisons applied).

This procedure results in the plot depicted in Figure 2.5. For all characteris-
tics except efficiency the dominances observed for the original dataset stay within
the range of dominances observed for shadow datasets. Dominance of the original
dataset for efficiency is outside this interval. However it is a minimum of this set
placed not far from the set itself. Such placement would suggest that the domi-
nance effects in shadows were stronger than in the original data which therefore
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cannot be caused by nonlinearities (original data more similar to linear surrogates
than observed for typical shadow dataset). This more detailed analysis confirmed
that nonlinearity does not have a substantial effect on the graph-theoretical prop-
erties of the resulting graph, with the data giving similar results as completely
linearized shadow datasets.

In the case of local characteristics the situation is slightly more complicat-
ed, because dominances are significantly higher than dominances for the shadow
datasets. This would suggest some influence of nonlinearities. That is why some
additional statistics are applied. Since this section serves more as inspiration
for current work, it is suggested that the reader consult [56] for further details.
However even these results, similarly to the previously mentioned, suggest that
nonlinearity as defined above has no significant impact on complex network char-
acteristics when applied to fMRI brain networks of the described type.

2.4 The climate network

Another example of a complex system constituted from several dynamical sub-
systems that can be analysed using a complex network approach is the climate
network [145, 147]. Climatologists work with variables like temperature, atmo-
spheric pressure, wind, precipitation etc. However in contrast to weather, which
studies the actual conditions of these variables with possible short-term predic-
tion, climatic studies are concerned more with patterns of variation that emerge
over longer time scales and which have long-term effects on weather.

The phenomenon called El Niño-Southern Oscillation (ENSO) [111] serves as
a motivational example for using complex networks. This phenomenon involves
fluctuation of ocean temperatures in the central and eastern equatorial Pacific.
It has a strong influence on specific regional climate patterns in the surrounding
areas of the Pacific like North and South America or Australia. There are two
patterns with roughly opposite oceanic and atmospheric conditions – the cooler is
called La Niña and the warmer is called El Niño. Many climatological properties
are opposite for these patterns – e.g. during El Niño there are weaker low-
level atmospheric winds along the equator, drought in Australia, Indonesia, and
neighbouring countries and rains in the central Pacific and the west coast of South
America. Moreover in the Atlantic hurricanes tend to be reduced in number
and intensity during moderate to strong El Niño events but stronger and more
numerous during La Niña events [111]. There can also be periods where neither
of these events occur. These events occur irregularly every 2-7 years, although
the average is 3-4 years. El Niño typically lasts 9-12 months, and La Niña 1-
3 years. This oscillation is usually identified via the sea surface temperature
(SST), however variations can be detected even in convective rainfall or surface
air pressure.

The presence of some of the climatological properties of ENSO, such as changes
in predictability [146] or linkage with the Indian summer monsoon [105], has been
shown using a complex network approach.
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2.4.1 Climatic data

Most of the analyses presented in Section 2.4 are based on the NCEP/NCAR
reanalysis project [81] which continually updates its dataset using analysis and
forecast systems to perform complex data assimilation. These data are usual-
ly gridded equidistantly in latitude and longitude 2.5 degrees times 2.5 degrees
giving 144 × 73 = 10512 time series and possibly in multiple layers representing
various pressure levels. Time scales are sub-daily, daily and monthly.

To minimize the bias introduced by periodic changes in the solar input, the
mean annual cycle is removed from the data to produce an anomaly time series.
To enable readability of results several types of dimensionality reductions have
been proposed – they are either based on simple sub-sampling of the original lati-
tude longitude grid [148] or conservative remapping schemes for grids in spherical
coordinates which assign the same hexagonal area to each grid point [80] or al-
ternatively use a rotated version of Principal Component Analysis [65, 5], also
known as Empirical Orthogonal Functions (EOF) in the climatological communi-
ty. Various globe samplings resulting in different grids can be seen in Figure 2.6.

(a) Grid defined as sub-sampling of the origi-
nal NCEP/NCAR grid

(b) Grid defined via remapping to Geodesic
Grid where each point corresponds to the same
area

(c) Grid defined from data using rotated PCA

Figure 2.6: Various grids defined over the globe for appropriate sub-sampling of
the original NCEP/NCAR grid.

The last-mentioned method has the advantage that its use has a long histo-
ry in climatology [90] and the particular components provided by rotated PCA
are usually connected with so-called climatological indices – see for example the
overview in [156]. This provides an explanation for most of the vertices and
thus subsequent interpretation of complex network results can be simpler. One
of the disadvantages is that this dimensionality reduction depends on the data,
because PCA uses the analysed data in order to compute the corresponding grid,
and therefore comparison of several datasets such as for different variables or
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simulation verification can be problematic. On the other hand, if we want to
be connected with geographical position, simple sub-sampling or remapping of
spherical coordinates seems to be a better choice. The advantage of remapped
geographical coordinates lies in the mentioned correspondence of each vertex
with the surrounding area always having the same size. Nevertheless simple sub-
sampling can more or less fix this handicap by scaling time series by the square
root of the cosine of the latitude to account for grid points closer to the poles
representing smaller areas and being closer together (thus generating an upward
bias of the correlation with respect to grid points farther apart). This method
gives grid points mapped to the poles a zero weight, effectively removing them
from the analysis.

Using these data the final calculation of association measure as described in
Section 2.3.2 can be performed. In this way a network can be constructed and
used for climate analysis. Here even a very simple analysis based on identifi-
cation of areas with high degrees, called supernodes [147], provides interesting
information about teleconnection patterns – see below.

The term teleconnection pattern [151] is used for the correlation of climate
characteristics at very distant areas spanning recurring and persistent anomalies
over vast geographical regions, sometimes occuring with low frequency. One
example of a teleconnection pattern is the Pacific–North America teleconnection
pattern (PNA) [151], which is a teleconnection pattern with two modes connecting
the North Pacific Ocean, represented by the vicinity of Hawaii, and the North
American continent, represented as the intermountain region of North America.
This pattern was discovered by supernode analysis in the already mentioned
study [147].

There is another interesting teleconnection pattern called North Atlantic Os-
cillation (NAO) [5], which binds together the East-Atlantic and West Atlantic
again in two phases. Both phases of the NAO are associated with basin-wide
changes in the intensity and location of the North Atlantic jet stream. It in-
fluences temperature and precipitation patterns from eastern North America to
western and central Europe [150]. This pattern cannot be identified from supern-
ode analysis in such direct way as PNA. However when considering the subnet-
work consisting of vertices corresponding only to latitudes 30◦ N the NAO index
becomes prominent [147].

There are other applications in climate networks working with information
transfer using the small-world character of the climate network [145] or inferring
specific structures using betweenness centrality [34].

2.4.2 Connectivity in climate networks

Similarly to brain networks, even the definition of the climate network itself causes
many problems. This section presents two problems that have been observed and
the corresponding studies designing appropriate corrections.

A study similar in its principles to that presented in Section 2.3.4 has been
performed for climate datasets [64], only this time emphasis is put on the influ-
ence of nonlinearity on connectivity instead of more complex network measures,
since the system under study exhibits the complicated structure of putative non-
linearity. Finally, for most of the alleged nonlinearity an appropriate explanation
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and corrective transformations were designed – namely detrending of the original
data and consecutive variance normalization [64]. Representative results can be
seen in Figure 2.7. It can be observed that most of the nonlinearity in the data
can be interpreted using proper preprocessing.
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(a) Connectivity for anomalized surface air temperatures (SAT)
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(b) Connectity of detrended, variance normalized, anomalized surface air temperatures SAT

Figure 2.7: Sums of weighted degrees representing average contribution of non-
linear dependences in anomalized and detrended variance-normalized data. Left
average mutual information for each location. Middle average nonlinear contri-
bution to mutual information IE. Right average nonlinear contribution relative
to total mutual information (IE/I)

Apart from nonlinarity there can be another problem represented by a bias
in association measures due to the dynamics of the corresponding time series
– namely their dynamical memory or higher regularity [128]. The correction is
simply achieved, by replacing correlations with Z-scores based on independent
Fourier transform surrogate data, which are realizations of processes preserving
the original spectra of the studied processes and their entropy rates using Gaus-
sian approximation. For more details see [128].

2.4.3 Directed complex networks for climate

Apart from the undirected climate network there are several other extensions or
modifications that are valuable in specific kind of analyses. In Section 2.1 we
described directed networks used in the analysis of the internet service called the
World Wide Web. In the class of complex networks based on the computation of
association measures it could also be valuable to consider directed networks so as
to make use of causality between events connected to specific vertices.

Such an approach could be particularly relevant due to the potential causal
character of processes on the globe given by mass or energy flows. The data
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preprocessing is the same as described in Section 2.4.1. However this time we do
not compute the symmetric Pearson’s correlation coefficient, but apply a different
approach that enables us to determine causality between each pair of vertices. We
will describe a method applied in the study [65] analysing the reliability of causal
measures.

A prominent method for assessing causality is Granger causality analysis,
named after Sir Clive Granger, who proposed this approach to time series anal-
ysis in a classical paper [54]. However, the basic idea can be traced back to
Wiener [155], who proposed that if the prediction of one time series can be im-
proved by incorporating the knowledge of a second time series, then the latter
can be said to have a causal influence on the former. This idea was formalized by
Granger in the context of linear regression models. In the following, we outline
the methods of assessment of Granger causality, following the description given
in [33, 52].

Consider two stochastic processes Xt and Yt and assume they are jointly sta-
tionary. Let further the autoregressive representations of each process be:

Xt =
∞∑
j=1

a1jXt−j + ε1t, var(ε1t) = Σ1, (2.22)

Yt =
∞∑
j=1

d1jYt−j + η1t, var(η1t) = Γ1, (2.23)

and joint autoregressive representation

Xt =
∞∑
j=1

a2jXt−j +
∞∑
j=1

b2jYt−j + ε2t, (2.24)

Yt =
∞∑
j=1

c2jXt−j +
∞∑
j=1

d2jYt−j + η2t, (2.25)

where the covariance matrix of the noise terms is

Σ = Cov

(
ε2t
η2t

)
=

(
Σ2 Λ2

Λ2 Γ2

)
. (2.26)

The causal influence from Y to X is then quantified based on the decrease in the
residual model variance when we include the past of Y in the model of X, i.e.,
when we move from the independent model given by equation (2.22) to the joint
model given by equation (2.24):

FY→X = ln
Σ1

Σ2

. (2.27)

Similarly, the causal influence from X to Y is defined by

FX→Y = ln
Γ1

Γ2

. (2.28)

Clearly, the causal influence defined in this way is always nonnegative.
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The original introduction of the concept of statistical inference of causality [54]
includes a third (potentially highly multivariate) process Z, representing all other
intervening processes that should be controlled for in assessing the causality be-
tween X and Y . The bivariate (or “pairwise”) implementation of the estimator
thus constitutes a computational simplification of the original process, for the
sake of numerical stability as well as comparability with the bivariate transfer en-
tropy (conditional mutual information) – for details see [65]. Using this measure
it is possible to compute the final directed network as shown in Figure 2.8.

Figure 2.8: Causality network obtained by averaging the results for six decades
(total time span 1948–2007) for remapped spherical grid data (162 spatial loca-
tions). Only the 200 strongest links are shown. For each decade, the network was
estimated by linear Granger causality.

As well as linear Granger causality, nonlinear conditional mutual information
has also been used [65]. Results indicate the relative similarity of networks dis-
covered by nonlinear methods with those from linear Granger causality, which is
in line with the hypothesis of near-linearity of the investigated climate reanalysis
data, in particular the surface air temperature time series.

2.5 Small-world in randomly connected systems

The small-world phenomenon as introduced in Section 2.2 is among characteristics
widely studied in complex networks. What follows are results from [63] showing
that the small-world property can be biased in complex networks constructed
from correlation measures.

Some complications with the analysis approach just outlined have recently
been suggested in the literature, in particular in the discussion of the biasing
effects related to sampling problems such as spatial oversampling [11] and finite
size temporal samples [12].

However, we argue that there is a more fundamental problem with the inter-
pretation of the graph-theoretical properties of functional connectivity matrices,
i.e., those computed by association measures, especially Pearson’s correlation co-
efficient. In particular, functional connectivity matrices are biased towards a
specific structure due to their method of construction, even in the case of perfect
sampling. We focus particularly on functional connectivity matrices constructed
using linear correlation as a measure of dependence. A specific example of an in-
built bias of a linear correlation matrix is its ‘weak’ transitivity property: for any
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three random variables X, Y, Z a strong positive correlation between two pairs of
them implies a positive correlation within the third pair, including specific ‘hard
limitations’, such as that ρ2

XY + ρ2
Y Z > 1 implies ρXZ > 0, i.e., positivity of the

third correlation coefficient (for a proof of a general form of this inequality see
[93]). Such implicit dependence between the entries of the correlation matrix have
been commonly overlooked in the interpretation of graph analysis of functional
connectivity matrices.

We have shown that such dependence has effects on graph structures such as
increasing the value of the clustering coefficient and thus affecting small-world
indices defined as in equation 2.10.

For simplicity, consider an autoregressive process [102] of order 1 (AR(1)):

Xt = c+ AXt−1 + et, (2.29)

where c is an n×1 vector of constants, A is a n×n matrix whose entries determine
the strength of connectivity between particular sub-processes and et is an n × 1
vector of error terms. For simplicity we choose c = 0n,1 and et ∼ N (0, 1) and
A = s(SC +αI)/λmax, with the symmetric binary structural connectivity matrix
SC = SC(n, p) generated as a realization of the Erdős–Rényi model G(n, p). In
particular, each nondiagonal entry of the n× n SC matrix is assigned randomly
and independently either with value 1 (edge exists, with probability p) or value
0 (edge does not exist, with probability 1 − p); diagonal elements are set to
0. I here denotes the identity matrix. The parameter s ∈ (0, 1) modulates
the relative strength of the autoregressive and noise terms in (2.29) with the
normalization by λmax – the largest (in absolute value) eigenvalue of the matrix
SC + αI. The autoregressive process is used since many real world systems
can be modeled as a system composed of two types of network – structural and
functional. For an example of structural and functional networks within brain
studies see Section 2.3. Serving as a structural network is that which determines
“physical connections” between pairs of subsystems of the global system. On
the other hand, the functional network results from the structural by a specific
transformation given by the inherent dynamics of the underlying system. This
network however determines the overall behavior of the system and it is usually
approximated from the data when measuring system outputs. In this case the
connectivity matrix of the autoregressive process provides a structural matrix and
an AR(1) process provides the required transformation. The resulting time series
can be then analysed through the association measure, resulting in a functional
matrix. The question is what happens if the structural matrix itself is completely
random?

We finish by presenting a motivational example, remaining results being left
for inspection in [63]. We generate a finite sample of a stochastic process with
length T = 300 with parameters pSC = 0.1, n = 100, s = 0.1, α = 2, and compute
the corresponding functional connectivity matrix FC by binarizing the sample
Pearson correlation matrix. The binarization threshold is chosen so that the
density pFC of the binarized functional connectivity matrix is equal to the density
pSC of the structural connectivity matrix (diagonal elements of the FC matrix
are first set to zero). The respective matrices are shown in Figure 2.9.

A visual inspection shows that while the entries of the structural connectiv-
ity matrix are independent, the functional connectivity matrix shows a specific
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SC FC FC binarized

Figure 2.9: Example of a binary functional connectivity matrix (right) generated
from a random structural connectivity matrix (left) by thresholding the correla-
tion matrix of the AR-model generated time series (center, light shades of gray
indicate higher correlation values). Network with n = 100 nodes shown. Note
that the functional connectivity matrix shows a specific structure even though
the entries of the generating structural connectivity matrix were chosen random-
ly. See text for further details.

structure. This can be quantified by graph-theoretical measures. In this par-
ticular realization, we have LS = 2.157, LF = 2.308, CS = 0.1081, CF = 0.2355.
As SC and FC have the same densities, SC is effectively a realization of the
Erdős-Rényi model corresponding to the density of FC, and we obtain the rela-
tive graph measures: λ = 1.07, γ = 2.18, σ = 2.04. The values indicate increased
clustering and approximately conserved average path length with respect to a
corresponding random graph. Together this signifies a small-world-like structure
of the functional connectivity matrix, even though the coupling structure of the
generating system is completely random.

In view of the results of this simple experiment, it is important to ask what is
the significance of the findings of increased clustering and small-world structure
in dependence matrices of real-world data. Motivated by this example a series
of parametric experiments were performed for various parameters: size of the
network n, density pSC of the coupling matrix SC, balance of the autocorrelation
and cross-correlation (by parameter α), balance between the autoregressive and
noise terms by parameter s and the level of thresholding by changing the required
density pFC of the matrix FC.

While the strength of the effect is dependent on the length of the sample T ,
the finite size of the sample is not crucial, as the upward bias does not vanish even
asymptotically. The covariance matrix Σ for the AR(1) process (2.29) is given by

the infinite sum Σ =
∑∞

i=0 A
iAi

T
(for a derivation see for example [102]), which

due to symmetry of the matrix A = AT leads to a Neumann series that converges
to Σ = (I−A2)−1. From this expression the correlation matrix is easily obtained
by trivial normalizations using diagonal elements of Σ. In this way asymptotic
behaviour was tested in the parametric study for the mentioned parameters.

In summary, in [63] we showed that the approach of constructing network
connectivity graphs from correlations of activity time series of local nodes leads
to particular graph structures, characterized by increased clustering compared
to common random graph models. This may lead to the attribution of small-
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world properties to networks possessing purely random structural connectivity.
By extensive mapping of the strength of the effect as a function of the model
parameters, we documented that this phenomenon is not a special theoretical
case or a negligible effect, but is a rather pronounced and general phenomenon.
While the coverage of parameter space was necessarily limited, it is sufficient not
only to demonstrate the existence of the effect, but also its potential strength
and the existence of complex modulation by system parameters.

For more information see [63] and its supplementary materials.

2.6 Concluding remarks and motivation

In the previous sections we have seen various applications of graph theory in the
analysis of complex systems via complex network analysis. In particular, we have
described the author’s work in the analysis of the construction of the complex
network for the brain, with the careful handling of nonlinearities in the data
outlined in Section 2.3 drawn from the paper [56]. A similarly motivated study of
the influence of nonlinearity has been carried out for climate networks, outlined in
Section 2.4.2 and further details of which can be found in [64]. In the same section
we described the author’s other results correcting the bias in the computation of
association measures caused by the dynamics of the corresponding time series.
This correction is represented by Z-scores based on independent Fourier transform
surrogate data and these results can be found in [128]. For climate networks an
analysis of the reliability of causal measures was carried out for more complicated
directed networks defined via mutual information. This analysis is described
in Section 2.4.3 and details can be found in [65]. Finally, an aspect of small-
world phenomena was analysed in Section 2.5 for model networks, in which its
reliability is under question when computed by correlation measures. Due to
the transitive character of this measure, even models generated from completely
random subsystems exhibit the small-world characteristic [63].

We move on now to motivating the simultaneous study of complex networks
and symmetric structures (especially ultrahomogeneous ones). There is some
evidence that complex networks obey some isomorphism type of symmetry – see
for example [157, 68, 103, 152]. Although this symmetry is usually defined more
locally, it has some influence in improving models of complex networks [157],
revealing corresponding identities of a dedicated individual in several different
complex systems [158] or analysing specific networks [152].

Another interesting area where symmetries can influence analysis is that of
social networks, where the roles of particular participants are studied from the
perspective of their similarity [41]. Studies of vertex similarity started with the
notion of structural equivalence [99], which is simply the property of two vertices
having the same neighbourhood, i.e., vertices u and v are structurally equivalent
if Γ(u) = Γ(v). Even more interesting from our point of view is the property
called automorphic equivalence [41]. Two vertices u and v from a graph G are
automorphically equivalent if and only if there exists an automorphism π such
that π(u) = v. This notion is interesting, since vertex-transitive graphs represent
networks where all vertices have the same role. Moreover, if the definition were
extended to groups, or equivalently sets of vertices, ultrahomogeneous graphs are
limiting networks in the sense of equivalence between all possible groups.
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One of the prominent areas of mathematics that motivates the joint study
of symmetric structures and complex networks is that of graph limits [100, 118].
As mentioned by Lovász [100] one motivation for defining graph limits is the
understanding and handling of large graph models. To quote one specific example
directly he mentions that “Jennifer Chayes, who was studying internet models,
asked whether there was a notion of “limit distribution” for sequences of graphs”.
As well as the internet, Lovász refers to social or biological networks. For these
or their models the motivation is to find the corresponding limit. We review here
the basis of this story so as to develop this motivation.

Let Gn be a sequence of graphs for which the number of nodes n tends to
infinity. Denote by hom(F,G) the number of homomorphisms from F to G.
Define the homomorphism density as the relative number of homomorphisms

t(F,G) =
hom(F,G)

|V (G)||V (F )| .

This value is the probability that a uniformly random mapping f : |V (F )| →
|V (G)| is a homomorphism. We say that a sequence (Gn)n∈N is L-convergent,
if the sequence (t(F,Gn)) has a limit as n → ∞ for every graph F [101]. This
definition is suitable for dense graphs, i.e. those having Ω(n2) edges, otherwise
it tends to 0. For the very simple example of the random graph with probability
p = 0.5 it can be shown that corresponding sequence converges with probability
1 [101].

When dealing with graphs whose vertex degrees are at most D another type of
convergence called BS-convergence is used [8] – in the original paper of Benjamini
and Schramm this convergence is called local weak convergence. Let G be a graph
and v ∈ V (G). We call a pair (G, v) a rooted graph. Any isomorphism f between
rooted graphs (G, v) and (G′, v′) has to satisfy f(v) = v′. Denote by GD the
collection of all isomorphism classes of connected rooted graphs with maximum
degree at most D. For r ≥ 0 and (G, v) ∈ GD denote by BG(v, r) the subgraph
of G spanned by the vertices at distance at most r from v. Define a metric ρ
on GD for rooted graphs as follows. For two rooted graphs (G, v) and (G′, v′)
from GD we can find the largest r such that the rooted graph (BG(v, r), v) is
isomorphic to the rooted graph (BG′(v′, r), v′). Then the metric ρ is defined by
ρ((G, v), (G′, v′)) = 1/r. We set ρ((G, v), (G, v)) = 0.

A sequence (Gn)n∈N of finite connected graphs with maximum degree at most
D is called BS-convergent [8] if, for every integer r and every rooted connected
graph (F, o) with maximum degree at most D the following limit exists

limn→∞
|{v : BGn(v, r) ∼= (F, o)}|

|Gn|
.

We use formulation as given in [118]. Nešetřil and Ossona de Mendez introduce
a new notion of limit [118] more generally for any relational structure. Let A be
a finite relational structure with signature L. Let ϕ ∈ FO(L) be a first order
formula with free variables x1, x2, . . . , xp. Then let Ωϕ(A) be defined by

Ωϕ(A) = {(v1, v2, . . . , vp) ∈ Ap : A |= ϕ(v1, v2, . . . , vp)}.
We define the Stone pairing as

〈ϕ,A〉 =
|Ωϕ(A)|
|A|p .
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If the vertices v1, v2, . . . , vp are chosen uniformly independently at random,
this value is the probability that the formula ϕ is satisfied in A. Moreover when ϕ
is a sentence the resulting value is either 1 or 0 according to sentence satisfiability.

We call a sequence (An)n∈N of finite L-structures FO-convergent if, for ev-
ery formula ϕ ∈ FO(L), the sequence (〈ϕ,A〉)n∈N is (Cauchy) convergent. X-
convergence is defined in a similar way when X is fragment of FO. For more
details see [118].

It turns out that this new limit can simply represent the previously de-
fined ones when adjusted appropriately. Nešetřil and Ossona de Mendez showed
that for set QF of quantifier-free formulas QF -convergence is equivalent to L-
convergence.

Theorem 2.6.1 (Nešetřil and Ossona de Mendez [118]). Let (Gn) be a sequence
of finite graphs such that limn→∞|Gn| = ∞. Then the following conditions are
equivalent:

1. the sequence (Gn) is L-convergent,

2. the sequence (Gn) is QF -convergent.

A similar result can be also given for BS-convergence of bounded degree
graphs. Let r ∈ N and let ϕ be a first order formula with p free variables. Then
this formula is called r-local if, for every graph G and every v1, . . . , vp ∈ Gp, we
have

G |= ϕ(v1, . . . , vp) ⇐⇒ G[Nr(v1, . . . , vp)] |= ϕ(v1, . . . , vp), (2.30)

where G[Nr(v1, . . . , vp)] denotes the subgraph of G induced by all the vertices at
(graph) distance at most r from one of v1, . . . , vp in G. A formula ϕ is local if it
is r-local for some r ∈ N. The fragment FOlocal is the set of all local formulas
in FO.

Theorem 2.6.2 (Nešetřil and Ossona de Mendez [118]). Let (Gn) be a sequence
of finite graphs with bounded maximum degree such that limn→∞|Gn| =∞. Then
the following conditions are equivalent:

1. the sequence (Gn) is BS-convergent,

2. the sequence (Gn) is FOlocal-convergent.

An interesting situation is when the (countable) limit is unique. This holds
for ω-categorical structures. In the case of a sequence of graphs with an ultra-
homogeneous limit it has been shown that FO-convergence in fact reduces to
QF -convergence. These and other results presented in [118] when combined with
results in [100] suggest that highly symmetric structures may occur naturally as
limits of graph sequences.

We already know that real-world networks are modeled by random graph mod-
els, especially those exhibiting network growth like for example the Barabási and
Albert model [3]. One model and its parametrization may fit complex networks
of a specific structure, while another model may be more suitable in different
cases. The general problem can be therefore stated roughly as follows.
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Problem 2.6.3. Is there a class of complex networks which can be well repre-
sented by a network growth model such that this model is FO-convergent and has
an ω-categorial structure as its limit?

A positive solution to Problem 2.6.3 demands that the networks are sparse
– see [118]. For the Barabási and Albert model an explicit construction of the
BS-limit has recently been proposed [9].
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3. Bicolored graphs

You take the blue pill – the story
ends, you wake up in your bed
and believe whatever you want to
believe. You take the red pill –
you stay in Wonderland, and I
show you how deep the rabbit hole
goes. Remember, all I’m offering
is the truth – nothing more.

Morpheus, The Matrix

This chapter contains a classification of finite homomorphism-homogeneous
bicolored graphs. The importance of this chapter lies mainly in the description
of a construction called the “pumping argument”, used in an extended version
later within the classification of finite homomorphism-homogeneous multicolored
graphs in Chapter 4. Most of the propositions and theorems presented in this
chapter have been published in the paper [61].

In Section 1.3.4 we defined bicolored graphs as a special version of L-colored
graphs. For the purposes of this chapter it is more convenient to use a definition
derived from multicolored graphs. A bicolored graph G will be thus defined as a
triple G = (V,E1, E2), where V is a set of vertices and E1 and E2 are two binary
relations representing colored edges.

The simple classification of homomorphism-homogeneous bicolored graphs
contained in this chapter was motivated by efforts to determine simple exam-
ples of structures that would distinguish the classes HH and MH. While for
ordinary graphs both classes coincide, we make a start on the classification of a
slightly extended version of graphs, namely graphs with colors assigned to edges,
and find a representative that separates these classes.

Recall that the finite ultrahomogeneous graphs classified by Theorem 1.4.2
consist solely of disjoint unions of complete graphs all of the same size, complete
multipartite graphs with partites of the same size, C5 and L(K3,3). Furthermore,
recall that the only finite homomorphism-homogeneous graphs [18] are complete
graphs and null graphs. We can of course expect that finite homomorphism-
homogeneous bicolored graphs will include several colored versions of these graphs,
for example by using colors to forbid unsuitable local isomorphisms.

The classification of finite homomorphism-homogeneous bigraphs presented
in this chapter can be divided into several steps according to the presence of
red-blue edges and weak completeness. All bigraphs in this chapter are finite.

3.1 Bigraphs with a red-blue edge

First we consider the case for which there is at least one red-blue edge present.

Lemma 3.1.1. Let G = (V,E1, E2) be a homomorphism-homogeneous bigraph
with at least one red-blue edge. Then the following holds:
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(1) Every vertex is incident with a red-blue edge.

(2) Let x, y, z be distinct vertices. If {x, y} and {y, z} are red-blue edges, then
{x, z} is a red-blue edge.

(3) Any two vertices x and z belonging to the same weakly connected component
are connected by a red-blue edge.

Proof. To see (1) consider the extension of a partial homomorphism mapping
a vertex incident with a red-blue edge to a vertex that is not incident to any
red-blue edge.

Part (2) can be derived from the following pumping argument. Let {x, y}
and {y, z} be red-blue edges. Assume, for a contradiction, that there is no red-
blue edge {x, z}. Consider a partial homomorphism f0 such that f0(x) = x and
f0(z) = y. Since G is homomorphism-homogeneous f0 can be extended to an
endomorphism f ′0 over G. When extending this local homomorphism an image
of vertex y has to be found. We denote this image by y1 = f ′0(y) and put y0 = y.
Vertex y1 has to be connected with vertices x and y by red-blue edges, while xy1 is
an image of edge xy under f ′0 and yy1 is an image of zy under f ′0. For this reason
we have y1 6= x (assuming no loops) and y1 6= z because {x, z} is not a red-blue
edge. This shows the existence of a new vertex y1 connected by a red-blue edge
to both x and y.

Another local homomorphism f1 can be defined as an extension of f0 by
fixing this new vertex y1. Note that f1 is indeed a homomorphism, since xz can
be mapped to xy as before and additionally zy1 can be mapped to yy1. Again,
when extending this homomorphism an image of y has to be found and as before
the only possible way is to find another vertex y2 connected by red-blue edges to
both x and y.

x z

y = y0

fk−1

fk−1fk−1

fk−1

y1y2

yk−1

yk

x z

y = y0

f1

f1

y1
y2

x z

y = y0

f0

y1

f0 f1 fk−1

f ′0

f ′1

f ′k−1

Figure 3.1: The process of extending local isomorphisms by the pumping argu-
ment. Blue edges are shown as black and red ones as gray and dash-dotted as a
simple chromatic edge or no edge.

Following this procedure (as shown in Figure 3.1) leads to an infinite sequence
of vertices y0, y1, y2, . . .. The bigraph G is finite and images cannot be mapped
backward, i.e., a mapping yj → yi where i ≤ j is impossible. Consequently either
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G cannot be homomorphism-homogeneous or there is a red-blue edge xz. This
leads to a contradiction.

x z

u v

Figure 3.2: Two disjoint vertices x and y in a weakly connected component
sharing no neighboring vertex in the bicolored neighborhood. Blue edges are
shown as black, red ones as gray, and dashed lines represent a simple chromatic
edge.

To show (3) we start with the observation that x and y have to be connected.
Otherwise we can consider a homomorphism mapping them into different weak
components and extending this local homomorphism is impossible. By (1) there
are vertices u and v such that {x, u} and {y, v} are red-blue edges. If u = v, we
can apply (2), putting y = u = v to get a red-blue edge {x, y}.

It remains to consider the case where u 6= v. Because any two vertices from a
weakly connected component have to be connected, a configuration as depicted
in Figure 3.2 must be present. However this configuration is impossible because
the local homomorphism f :

(
u v
z v

)
cannot be extended. This can be shown by

using the pumping argument again, where images of vertices z and x are forced
to either create an infinite clique or to be mapped backwards to x or u, thereby
creating a red-blue edge which will then force the red-blue edge {x, z}.

This lemma gives us the following classification of homomorphism-homogeneous
bigraphs with at least one red-blue edge:

Proposition 3.1.2. Let G = (V,E1, E2) be a finite homomorphism-homogeneous
bigraph with at least one red-blue edge. Then every weakly connected component
is a complete graph where each edge is red-blue and all these components have the
same number of vertices.

3.2 Bigraphs without a red-blue edge

We consider several sub-cases. It is useful to begin with an observation.

Lemma 3.2.1. Let G = (V,E1, E2) be a finite homomorphism-homogeneous bi-
graph that is not weakly complete and has no red-blue edge. Then the following
configuration is not an induced subgraph of G:

x z

y

where the dotted line represents a non-edge.
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Proof. Assume for a contradiction that such a subgraph is induced in the given
type of bigraph. The mapping f :

(
x z
x x

)
is a local homomorphism. Let f ∗ be its

extension. Then connection of x and y by a blue edge and connection of y and
z by a red edge implies a connection of x and f ∗(y) by a red-blue edge, which
yields the desired contradiction.

The first sub-case we consider is that of bigraphs that are weakly connected
but not weakly complete.

Lemma 3.2.2. Let G = (V,E1, E2) be a finite weakly connected homomorphism-
homogeneous bigraph that is not weakly complete and without red-blue edges. Then
the weak diameter of G, d(G), is equal to 2.

Proof. Obviously d(G) ≥ 2 because d(G) = 1 holds only for complete bigraphs.
For d ≥ 3 we can find a path of length 3 induced on sequence of vertices (x, y, z, u).
The local homomorphism f :

(
x z
x u

)
cannot be extended, because there is no image

for y. It follows that d(G) = 2 is the only option.

It follows that there are no further such graphs to consider.

Proposition 3.2.3. There are no finite homomorphism-homogeneous bigraphs
without red-blue edge that are weakly connected but not weakly complete.

Proof. Assume for a contradiction that there is a finite bicolored graph G without
red-blue edges which is homomorphism-homogeneous. Let x and z be distinct
non-adjacent vertices. By Lemma 3.2.2, d(G) = 2, so there has to be a third
vertex y such that y is adjacent to both x and z. Both edges have the same color
by Lemma 3.2.1. However for such a situation we can use a slightly modified
“pumping argument” like that in Proposition 3.1.1 to reach a contradiction to
finiteness.

To do so, assume that both edges xy and zy have the same color, say blue with-
out loss of generality. Similarly to the proof of Proposition 3.1.1, we define a ho-
momorphism f0 :

(
x z
x y

)
. Since G is by assumption homomorphism-homogeneous,

the homomorphism f0 can be extended to an endomorphism f ′0. This extension
has to map the vertex y to a new vertex y1 which has to be connected by blue
edges to x and y. We proceed the same way as in the proof of Proposition 3.1.1.
Just note that vertices z and y1 cannot be connected by a red edge, since other-
wise a homomorphism g :

(
x z
x x

)
would induce a red-blue edge, which is impossible

due to the given assumptions.
Subsequent steps proceed as before by defining the homomorphism f1 the same

as f0 for vertices x and z and additionally fixing vertex y1. Due to the character
of the connection between z and y1 the mapping f1 is a homomorphism and since
G is homomorphism-homogeneous it can be extended to a homomorphism f ′1
mapping vertex y into a new vertex y2 connected by blue edges to x and y. The
remainder of the proof follows the steps made in the proof of Proposition 3.1.1.

Now consider bigraphs that are weakly connected and weakly complete. In
this sub-case all homomorphisms are isomorphisms. Moreover we can view a
bigraph G = (V,E1, E2) as a graph H = (V,E1) (considering E2 as non-edges). G
is homomorphism-homogeneous if and only if H is ultrahomogeneous. Applying
the classification of ultrahomogeneous graphs, we obtain:
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x

z

y

g

y1

g

Figure 3.3: Configuration where a monochromatic path of length 2 is extended by
a vertex y1, for which an edge zy1 cannot be red, since in such a case extending the
homomorphism g to a homomorphism g′ would force the existence of a red-blue
edge xg′(y1).

Proposition 3.2.4. Let G = (V,E1, E2) be a homomorphism-homogeneous bi-
graph that is weakly connected, weakly complete and without red-blue edges. Then
G is isomorphic to a bigraph that has one of the Gardiner graphs induced on the
first color and a complement of the same graph on the second color.

Finally, we consider bigraphs without red-blue edges that are not weakly con-
nected. By Proposition 3.2.3 it follows that every weakly connected component
is weakly complete and all components must be isomorphic. We have already
classified such components in Proposition 3.2.4.

Summarizing the above results yields the classification of finite homomorphism-
homogeneous bigraphs.

Theorem 3.2.5. A finite bigraph G = (V,E1, E2) is homomorphism-homogeneous
if and only if it is one of the following:

1. a disjoint union of complete graphs all having the same size and composed
only from red-blue edges, i.e.

⋃k
i=1 Kn for some k, n ≥ 1,

2. a connected bigraph GG = (V,E1, E2) where (V,E1) is one of the Gardiner
graphs and (V,E2) is its complement,

3. a bigraph that has all its connected components isomorphic to bigraphs from
the previous case, i.e.

⋃k
i=1 GG for some k ≥ 1.

3.3 Concluding remarks

All the results in this chapter can be found in [61]. These do not include a
resolution of the question of whether the classes HH and MH coincide for finite
bicolored graphs. Considering the proof of Theorem 3.2.5, the only obstacle in
proving it also for the class MH in the same way as for the class HH lies in
proving that there cannot be an induced path of length 2 regardless of the color
of edges. However getting past such an obstacle would lead to a proof of a
variant of Lemma 3.2.1 for MH and also the proof of the corresponding variant
of Proposition 3.2.3. This should not be a hard task, however it turns out that
the coincidence of these classes can be shown in an even more general setting – see
Theorem 4.3.5. This latter theorem immediately gives the following proposition.
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Proposition 3.3.1. Classes MH and HH coincide for finite bicolored graphs.

Most of the proofs used to obtain this result are not applicable to count-
ably infinite graphs – in fact they make use of finiteness through the pumping
argument. This leads us to formulate the following:

Problem 3.3.2. What are the countably infinite homomorphism-homogeneous
bicolored graphs?

Among other reasons this could also be hard because the classification of
countable infinite homomorphism-homogeneous graphs is not complete. More-
over, since Proposition 1.7.3 shows that any graph having the Rado graph as a
spanning subgraph is HH, we can generate an infinite number of bicolored HH
graphs. We can at least use “sticking”, where all non-edges are just converted into
the second color. The search for countably infinite homomorphism-homogeneous
bicolored graphs should thus be motivated by finding more complex examples.

A solution to the problem of distinguishing the classes HH and MH that
mimics the process for countable undirected graphs by Rusinov and Schweitzer
stated in Theorem 1.8.1 seems not to be straightforward due to the several types
of edges that can appear within a cone.

Due to the coincidence of the classes HH and MH for the language of bicol-
ored graphs given by Proposition 3.3.1, the search for a “sufficiently complex”
language of structures to distinguish these classes also needs to be moved to the
countably infinite case.

Problem 3.3.3. Do the classes MH and HH coincide for countable bicolored
graphs?

Another question deals with a specific type of coloring of edges. For any
countable bicolored graph G = (V,E1, E2) one can find a countable graph G′ =
(V,E ′1, E

′
2, E3) where E ′1 = E1 \ E2, E ′2 = E2 \ E1 and E3 = E1 ∩ E2, i.e. single

colored edges are preserved and those having two colors are colored by a new one.
Let us call this process chromatic unification. Such a process produces simply
edge-colored graphs.

These two versions of colored graphs do not differ at all, or only a little
when using isomorphism and speaking about the class II, however they can be
different when going into the analysis of homomorphisms and the corresponding
homogeneity classes. In fact there is a simple example of bicolored graph and its
chromatic unification which differs in these properties. It is a specific bicoloring
G of K4 and its chromatic unification G′ as shown in Figure 3.4.

The illustrated monochromatic unification G′ can be easily checked to be
homomorphism-homogeneous. However the original bicolored graph G is not
homomorphism-homogeneous, as can be shown by taking the local homomor-
phism f :

(
b c
b d

)
. This shows that allowing multiple colors differs from adding

colors, however in this case it is more restrictive in the sense that allowing mul-
tiple colors for edges leads to a less symmetric structure in the sense of the class
HH. This motivates the following problem:

Problem 3.3.4. Is there a countable bicolored graph which is homomorphism-
homogeneous, but its chromatic unification is not?
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a b

c d

a′ b′

c′ d′

G : G′ :

Figure 3.4: Bicolored graph G and its monochromatic unification G′. The thinner
black edges represent edges with color blue, gray edges with color red and heavier
black edges represent those colored green – a new color defined by monochromatic
unification.

An obvious generalization of this classification, which leads to other questions,
is to add colors to edges or even to vertices. These types of structures are analysed
in Chapter 4 which follows.
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4. L-colored graphs

Mere color, unspoiled by meaning,
and unallied with definite form,
can speak to the soul in a
thousand different ways.

Oscar Wilde

This chapter is motivated by the results of Chapter 3. It seems that intro-
ducing only two colors, represented by structures called bicolored graphs, could
result in new examples of HH structures. Although there are still some open
problems for bicolored graphs, see Section 3.3, the natural generalization based
on introducing more colors for edges or even for vertices seems to be promising
for the identification of new homomorphism-homogeneous structures.

The whole process is motivated by the general though vaguely defined question
of extending relational structures that lead to homogeneity – here more precisely
to homomorphism-homogeneity.

Problem 4.0.5. How much do simple structures like ordinary graphs have to be
extended in order to provide interesting examples of homomorphism-homogeneous
structures?

In the previous chapter we proved that for bicolored graphs such examples
consist only of bicolored graphs, where each connected component is a bicolored
complete graph, with edges of one color forming a Gardiner graph and edges of
the other color forming its complement – see Theorem 3.2.5. In this chapter we
propose using more colors for edges and adding the possibility of coloring vertices
with further colors. Again it is possible to add a set of colors to each edge or
vertex. While such a generalization could create relatively general structures we
restrict ourselves just to those cases where all the sets attached to edges constitute
a specific partial order under set inclusion.

Another motivation for this chapter is that of the relationship between classes
HH and MH discussed at the end of Section 3. While the language of bicolored
graphs seems not to be “strong enough” to distinguish them (the full argument
for this is given in this section), a possible extension might be the language of
L-colored graphs. The motivation is thus to find the simplest example making
both classes distinct.

The results of this chapter are contained in [57], with the exception of some
of the concluding remarks.

4.1 MH-homogeneous L-colored graph

In this chapter we propose the study of the notion of L-colored graph introduced
in Section 1.3.4, together with the corresponding notion of homomorphisms be-
tween these graphs. For the purposes of this chapter several other notions have
to be introduced.
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For W ⊆ V , the substructure of (V, χ′, χ′′) induced by W is G[W ] = (W,χ′|W ,
χ′′|W ), where χ′|W and χ′′|W denote the restrictions of χ′ and χ′′ to W , respec-
tively. For an L-colored graph G = (V, χ′, χ′′) and α ∈ L let Wα = {x ∈ V :
χ′(x) = α} and G(α) = G[Wα].

Note that definitions of homomorphism-homogeneity and monomorphism-
homogeneity are the same as defined in Definition 1.7.1, only where the appro-
priate homomorphism of L-colored graphs has to be used instead.

Let G = (V, χ′, χ′′) be an L-colored graph, and let θG ⊆ V 2 be the reflexive
transitive closure of θ0

G = {(x, y) ∈ V 2 : χ′′(x, y) 6= 0}. Then θG is an equivalence
relation on V whose equivalence classes will be referred to as connected compo-
nents of G. An L-colored graph G is connected if θG has only one equivalence
class. Otherwise, it is disconnected . We say that G is complete if χ′′(x, y) 6= 0 for
all x 6= y.

An L-colored graph G = (V, χ′, χ′′) is vertex-uniform if there exists an α ∈ L
such that χ′(x) = α for all vertices x, and it is edge-uniform if there exists a
β ∈ L \ {0} such that χ′′(x, y) = β for all vertices x, y such that x 6= y. We say
that an L-colored graph G = (V, χ′, χ′′) is uniform if it is both vertex-uniform and
edge-uniform. Up to isomorphism, a finite connected uniform L-colored graph is
uniquely determined by n = |V |, the color of vertices α and the color of edges
β � 0, and we denote it by U(n, α, β).

If there is no danger of confusion, we shall write simply χ(x) and χ(x, y)
instead of χ′(x) and χ′′(x, y), respectively. Also, the set of vertices of G will be
denoted by V (G).

Lemma 4.1.1. Let G be an MH-homogeneous L-colored graph. Assume that
there exist three distinct vertices a0, a1, x ∈ V (G) such that:

(i) χ(a0, a1) � 0 and χ(x, a1) � 0,

(ii) χ(a0, x) � χ(a0, a1) and χ(x) � χ(a1), and

(iii) χ(a0, x) ≺ χ(a0, a1) or χ(x) ≺ χ(a1).

Then G is not finite.

Proof. We choose vertices an of G by induction, fulfilling the following properties:

(1) x, a0, a1, . . . , an are all distinct,

(2) i 6= j ⇒ χ(ai, aj) � 0,

(3) χ(a0, a1) � χ(a0, aj) and χ(a1) � χ(aj) for j ≥ 1,

(4) χ(aj, x) � χ(aj, ak) and χ(x) � χ(ak) for j < k, and

(5) χ(a0, x) ≺ χ(a0, aj) or χ(x) ≺ χ(aj), for j ≥ 1.

The basic case is for n = 1, and all the clauses here follow from the hypotheses
of the lemma.

For the induction step, we assume that a0, a1, . . . , an have been chosen ful-
filling all the properties so far, and we show how to choose a suitable an+1.
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Let m(n) = max{j ∈ {1, . . . , n} : χ(x, aj) � 0}. By (i), m(n) ≥ 1. Consid-

er the mapping fn+1 =

(
a0 . . . am(n)−1 am(n)+1 . . . an x
a0 . . . am(n)−1 am(n)+1 . . . an am(n)

)
, which is a

monomorphism from G[a0, . . . , am(n)−1, x, am(n)+1, . . . , an] to G[a0, . . . , an]. Since
G is MH-homogeneous, fn+1 has an extension to a homomorphism f ∗n+1, and
we let an+1 = f ∗n+1(am(n)), Figure 4.1. We verify properties (1)–(5) for clauses
involving the new point an+1.

a0

x

a1

a2

a3

a3

am(n)

an

an+1
f∗
n+1

a0

x

a1

a2

f2

f∗
2

f2

a0

x

a1

original
subgraph

general
settings:
n-th step

first step
n = 1

� 0

� 0

� 0

�

�

Figure 4.1: The original subgraph, the first step and general setting for the
inductive construction. Bold lines without arrows represent edges—solid lines
are those having colors � 0 and dashed those having colors � 0. Thin lines with
full arrows represents mappings and thin lines with empty arrows indicate the
direction of the succession in colors.

Let us show that (1) holds:

• if an+1 = x then χ(a0, am(n)) � χ(f ∗n+1(a0), f ∗n+1(am(n))) = χ(a0, x) and
χ(am(n)) � χ(f ∗n+1(am(n))) = χ(x), which contradicts (5);

• if an+1 = am(n) then 0 = χ(am(n), an+1) = χ(f ∗n+1(x), f ∗n+1(am(n))) � χ(x, am(n)),
but χ(x, am(n)) � 0 by definition of m(n) – contradiction;

• if an+1 = aj for some j 6= m(n) then, by (4), 0 ≺ χ(aj, am(n)) � χ(f ∗n+1(aj),
f ∗n+1(am(n))) = χ(aj, an+1) = χ(aj, aj) = 0 – contradiction.

In order to show (2) it suffices to show that χ(ai, an+1) � 0 for all i such that
0 ≤ i ≤ n:

• if i 6= m(n) then χ(ai, an+1) = χ(f ∗n+1(ai), f
∗
n+1(am(n))) � χ(ai, am(n)) � 0

by the induction hypothesis;

• if i = m(n) then χ(am(n), an+1) = χ(f ∗n+1(x), f ∗n+1(am(n))) � χ(x, am(n)) � 0
by definition of m(n).

To see that (3) holds we use the induction hypothesis and the fact that f ∗n+1

is a homomorphism:
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• χ(a0, a1) � χ(a0, am(n)) � χ(f ∗n+1(a0), f ∗n+1(am(n))) = χ(a0, an+1);

• χ(a1) � χ(am(n)) � χ(f ∗n+1(am(n))) = χ(an+1).

Let us show (4). As above, from (ii) and (3) we immediately get χ(x) �
χ(a1) � χ(an+1). To see that χ(aj, x) � χ(aj, an+1) for all j ∈ {0, . . . , n} we
consider several cases:

• if j > m(n) then χ(aj, x) = 0 by definition of m(n) so χ(aj, x) � χ(aj, an+1)
holds trivially;

• if j < m(n) then using the induction hypothesis and the fact that f ∗n+1 is a
homomorphism we get χ(aj, x) � χ(aj, am(n)) � χ(f ∗n+1(aj), f

∗
n+1(am(n))) =

χ(aj, an+1);

• if j = m(n) then χ(am(n), x) � χ(f ∗n+1(am(n)), f
∗
n+1(x)) = χ(an+1, am(n)).

Finally, (5) follows from (3) and (iii).
Therefore, G contains an infinite sequence a0, a1, a2, . . . of pairwise distinct

vertices, so it cannot be finite.

In the rest of the chapter we restrict our attention to two types of partially
ordered sets L: chains and diamonds.

4.2 L-colored graphs over chains

In this section we classify finite MH-homogeneous L-colored graphs where L is
a bounded chain and show that in this setting the classes MH and HH coincide.
So, let L be a chain with least element 0 and greatest element 1.

Lemma 4.2.1. Let G be a finite L-colored graph which is MH-homogeneous.
Assume that x, y, z are three distinct vertices of G satisfying χ(x, z) � 0 and
χ(y, z) � 0. Then:

(a) χ(x, y) ≺ χ(x, z) if and only if χ(y) � χ(z);
(b) χ(x, y) = χ(x, z) if and only if χ(y) = χ(z).

Proof. Clearly, (b) follows immediately from (a) because L is a chain. Let us
show (a). Suppose that G is a finite MH-homogeneous L-colored graph, and let
x, y, z be three distinct vertices of G satisfying χ(x, z) � 0 and χ(y, z) � 0 but
not (a). Then either

χ(x, y) ≺ χ(x, z) and χ(y) � χ(z)

or
χ(x, y) � χ(x, z) and χ(y) � χ(z).

In both cases finiteness of G contradicts Lemma 4.1.1.

Lemma 4.2.2. Let G be a finite MH-homogeneous L-colored graph. Then:
(a) for every α ∈ L, every connected component of G(α) is a uniform graph;
(b) for all x, y ∈ V (G), if χ(x, y) � 0 then χ(x) = χ(y);
(c) every connected component of G is a uniform graph.
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Proof. (a) Take any α ∈ L and let S be a connected component of G(α). Then,
by the definition of G(α), we have that χ(x) = α for all x ∈ S. Let us show that
χ(x, y) is constant for all x, y ∈ S satisfying x 6= y. If |S| = 1 or |S| = 2 the claim
is trivial. Assume that |S| ≥ 3. Since S is a connected component, it suffices to
show that whenever x, y, z ∈ S are three distinct vertices such that χ(x, z) � 0
and χ(y, z) � 0, then χ(x, z) = χ(y, z) = χ(x, y). So, let x, y, z ∈ S be three
distinct vertices satisfying χ(x, z) � 0 and χ(y, z) � 0. Since χ(y) = χ(z) = α,
Lemma 4.2.1 yields that χ(x, y) = χ(x, z). Analogously, χ(x, y) = χ(y, z).

(b) Assume that there exist x1, x2 ∈ V (G) such that χ(x1, x2) � 0 and χ(x1) 6=
χ(x2). Without loss of generality we can assume that χ(x1) ≺ χ(x2). Let us now
construct a sequence of vertices x3, x4, . . . inductively so that χ(xi−1) � χ(xi)
for all i ≥ 2. Assuming that xn has been chosen, since χ(xn−1) � χ(xn), the
mapping fn+1 taking xn−1 to xn is a monomorphism from G[xn−1] to G[xn], so as
G is MH-homogeneous, there is an endomorphism f ∗n+1 of G which extends fn+1

and we let xn+1 = f ∗n+1(xn). Then χ(xn) � χ(f ∗n+1(xn)) = χ(xn+1) giving the
induction step. Note, also, that

χ(xi−1, xi) = χ(f ∗i (xi−2), f ∗i (xi−1)) � χ(xi−2, xi−1), for all i.

Therefore, we have constructed a sequence of vertices x1, x2, x3, . . . such that
χ(x1) � χ(x2) � χ(x3) � . . . and 0 ≺ χ(x1, x2) � χ(x2, x3) � χ(x3, x4) � . . ..
Since χ(x1) ≺ χ(x2) and since G is finite there exists an n such that χ(xn−2) ≺
χ(xn−1) = χ(xn). Then Lemma 4.2.1 yields that χ(xn−2, xn−1) = χ(xn−2, xn) �
0 since χ(xn−1) = χ(xn). By the same lemma we also have χ(xn−1, xn) ≺
χ(xn−2, xn−1) since χ(xn) � χ(xn−2) . On the other hand, χ(xn−1, xn) � χ(xn−2,
xn−1) by construction. Contradiction.

(c) It follows from (b) that S is a connected component of G if and only if S
is a connected component of G(α) for some α ∈ L. Therefore, every connected
component of G is a uniform graph.

Theorem 4.2.3. Let G be a finite L-colored graph where L is a chain with the
least element 0 and the greatest element 1. Then the following are equivalent:

(1) G is HH-homogeneous,

(2) G is MH-homogeneous,

(3) G has the following structure:

– every connected component of G is a uniform L-colored graph, and

– if U(n1, α1, β1) and U(n2, α2, β2) are connected components of G such
that α1 � α2, then n1 ≤ n2 and β1 � β2. Consequently, if α1 = α2,
then n1 = n2 and β1 = β2.

Proof. (3)⇒ (1) is easy.
(1)⇒ (2) is obvious.
(2)⇒ (3). Let G be a finite MH-homogeneous L-colored graph. We already

know from Lemma 4.2.2 that every connected component of G is a uniform graph.
So, let S1 and S2 be connected components of G such that G[S1] ∼= U(n1, α1, β1),
G[S2] ∼= U(n2, α2, β2) and assume that α1 � α2. Let x be an arbitrary vertex
of S1 and y an arbitrary vertex of S2. Then f taking x to y is a monomorphism

69



from G[x] to G[y], since χ(x) = α1 � α2 = χ(y). So, by the homogeneity
requirement, f extends to an endomorphism f ∗ of G. It is easy to see that
an endomorphism maps a connected component of G into another connected
component of G, so f ∗(S1) ⊆ S2, since f ∗(x) = y ∈ S2. Moreover, f ∗|S1 is
injective (assume that x, y ∈ S1 are two distinct vertices such that f ∗(x) =
f ∗(y); then χ(f ∗(x), f ∗(y)) = 0 because G is without loops; on the other hand,
χ(f ∗(x), f ∗(y)) � χ(x, y) = β1 � 0 by the definition of an edge-uniform L-colored
graph – contradiction), so n1 = |S1| ≤ |S2| = n2. Finally, if x, y ∈ S1 are two
distinct vertices, then β1 = χ(x, y) � χ(f ∗(x), f ∗(y)) = β2.

4.3 L-colored graphs over diamonds

In this section we consider L-colored graphs where L is a diamond. We first
consider finite vertex-uniform L-colored graphs and show that in this case the
classes MH and HH coincide. We then provide an example of an L-colored
graph which is MH-homogeneous, but not HH-homogeneous, proving thus that
in the general case the classes MH and HH do not coincide for L-colored graphs
when L is a diamond. So, let L be a diamond with least element 0 and greatest
element 1.

First, we consider finite MH-homogeneous vertex-uniform L-colored graphs
such that χ(x, y) = 1 for some pair of distinct vertices x and y. At this point it is
important to stress that Lemma 4.3.1 as well as Propositions 4.3.2 and 4.3.3 hold
for arbitrary partial orders L, not only diamonds. However, these three state-
ments are important prerequisites for Theorems 4.3.4 and 4.3.5 which essentially
depend on the requirement that L be a diamond.

Lemma 4.3.1. Let G be a finite MH-homogeneous vertex-uniform L-colored
graph and assume that there exist x0, y0 ∈ V (G) such that χ(x0, y0) = 1. Then
the following holds:

(1) For every vertex x there is a vertex y such that χ(x, y) = 1.

(2) Let x, y, z be distinct vertices. If χ(x, y) = χ(y, z) = 1 then χ(x, z) = 1.

(3) If x and y belong to the same connected component of G then χ(x, y) = 1.

Proof. (1) Let x be an arbitrary vertex. Then f taking x0 to x extends to an
endomorphism f ∗ of G, so χ(x, f ∗(y0)) = χ(x0, y0) = 1.

(2) Let χ(x, y) = χ(y, z) = 1. If χ(x, z) ≺ 1, Lemma 4.1.1 yields that G then
cannot be finite. Contradiction.

(3) Let S be a maximal set of vertices of G such that x ∈ S and χ(u, v) = 1
for all u, v ∈ S with u 6= v. Note that |S| ≥ 2 due to (1). Let us show that S
coincides with the connected component W of G that contains x. Suppose to the
contrary that this is not the case and take any z ∈ W \S such that χ(z, y) � 0 for
some y ∈ S. If χ(z, s) = 1 for some s ∈ S then, by(2), χ(z, s) = 1 for all s ∈ S,
which contradicts the choice of z. Therefore, χ(z, s) ≺ 1 for all s ∈ S. Take any
w ∈ S \ {y}. As we have just concluded, 0 ≺ χ(z, y) ≺ 1 and 0 � χ(z, w) ≺ 1, so
Lemma 4.1.1 yields that G is not finite. Contradiction.

As an immediate corollary, we get the following straightforward result:
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Proposition 4.3.2. Let G be a finite MH-homogeneous vertex-uniform L-colored
graph where every vertex has color α ∈ L. Assume that there exist x0, y0 ∈ V (G)
such that χ(x0, y0) = 1. Then there exists a positive integer n such that every
connected component of G is isomorphic to U(n, α, 1).

Proof. By Lemma 4.3.1, every connected component Si of G is of the form
U(|Si|, α, 1). If |Si| > |Sj| for some distinct connected components Si and Sj
of G, then a partial monomorphism which maps a vertex from Si to a vertex
from Sj would, by the homogeneity requirement, extend to an endomorphism of
G which would then map Si into Sj. On the other hand, such an endomorphism
would necessarily be injective on Si because of our requirement that χ(x, x) = 0
(see Section 4.1). Contradiction.

Next, we consider finite MH-homogeneous vertex-uniform L-colored graphs
satisfying χ(x, y) = 1 for no x, y ∈ V (G).

Proposition 4.3.3. Let G be a finite connected MH-homogeneous vertex-uniform
L-colored graph such that χ(x, y) = 1 for no x, y ∈ V (G). Then G is complete.

Proof. Assume, to the contrary, that G is not complete. Then there exist x, y ∈
V (G) such that x 6= y and χ(x, y) = 0. Since G is connected, there exists a
sequence v1, v2, . . . , vk of vertices of G such that x = v1, y = vk and χ(vi, vi+1) �
0 for all i ∈ {1, . . . , k − 1}. Without loss of generality, we can assume that
(v1, v2, . . . , vk) is the shortest such sequence, so that χ(vi, vj) = 0 whenever j−i >
1. Note that k ≥ 3 beacuse χ(x, y) = 0. Now, v1, v2 and v3 provide a configuration
which, by Lemma 4.1.1, ensures that G is not finite. Contradiction.

If G is a finite vertex-uniform L-colored graph which is connected and com-
plete, all endomorphisms are automorphisms, and it is easy to see that G is
HH-homogeneous if and only if G is MH-homogeneous if and only if G is ultra-
homogeneous. On the other hand, if G is a finite vertex-uniform L-colored graph
wich is not connected and has the property that χ(x, y) ≺ 1 for all x, y ∈ V (G),
then by Proposition 4.3.3 every connected component of G is complete and all
components have to be be isomorphic. So, we have the following partial classi-
fication result which depends on the classification of all finite ultrahomogeneous
edge-colored graphs (and this is a long-standing open problem):

Theorem 4.3.4. Let L be a diamond with least element 0 and greatest element 1.
The following are equivalent for a finite vertex-uniform L-colored graph G where
every vertex is colored by α ∈ L:

(1) G is HH-homogeneous,

(2) G is MH-homogeneous,

(3) G is a disjoint union of k ≥ 1 copies of H, where

– H is U(n, α, 1) for some positive integer n; or

– H is an ultrahomogeneous L-colored graph such that 0 ≺ χ(x, y) ≺ 1
for all distinct x, y ∈ V (G), and χ(x) = α for all x ∈ V (G).
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Proof. The implications (3)⇒ (1)⇒ (2) are straightforward. Let us show (2)⇒
(3). If χ(x, y) = 1 for some distinct x, y ∈ V (G), then Proposition 4.3.2 yields
that there is a positive integer n such that every connected component of G is
isomorphic to U(n, α, 1). Assume, therefore, that χ(x, y) ≺ 1 for all x, y ∈ V (G).
By Proposition 4.3.3 every connected component of G is complete. Therefore,
for all distinct x and y in the same connected component we have that 0 ≺
χ(x, y) ≺ 1. Since L is a diamond, it easily follows that for every endomorphsim
f and every pair of vertices x and y in the same connected component we have
χ(x, y) = χ(f(x), f(y)). From this we then easily infer that every connected
component of G is an ultrahomogeneous L-colored graph and that all connected
components of G are isomorphic.

In particular, if L = M2 is the diamond on four elements 0, b, r, 1 where
0 ≺ b ≺ 1, 0 ≺ r ≺ 1 and where b and r are incomparable (b and r stand
for blue and red, respectively), we can provide the full classification as follows.
For an α ∈ M2 let G(α) = (V,Eα) be the (ordinary undirected) graph where
Eα = {{x, y} : χ(x, y) = α}.
Theorem 4.3.5. The following are equivalent for a finite vertex-uniform M2-
colored graph G where every vertex is colored by α ∈M2:

(1) G is HH-homogeneous,

(2) G is MH-homogeneous,

(3) G is a disjoint union of k ≥ 1 copies of H, where

– H is U(n, α, 1) for some positive integer n; or

– H is vertex uniform, H(r) is one of the Gardiner graphs and H(b) is its
complement.

Note that part of this theorem is just a reformulation of Theorem 3.2.5. It
additionally provides an argument for the coincidence of classes HH and MH for
finite vertex-uniform M2-colored graphs, effectively proving Proposition 3.3.1.

As Example 4.3.1 below shows, Theorems 4.3.4 and 4.3.5 cannot be extended
to finite L-colored graphs when L is a diamond and graphs are not required to be
vertex-uniform. In fact for both cases the classes coincide when the corresponding
L-colored graphs are vertex-uniform.

Example 4.3.1. LetG be anM2-colored graph on four vertices a, b, c, d where the
vertices and the edges are colored as follows: χ(a) = χ(b) = r, χ(c) = χ(d) = b,
χ(a, c) = χ(c, d) = χ(b, d) = r, χ(a, d) = χ(b, c) = b and χ(a, b) = 0 (see
Figure 4.2).

Then G is clearly an MH-homogeneous graph. To see that G is not an HH-
homogeneous graph it suffices to note that the partial homomorphism f =

(
a b
a a

)
cannot be extended to an endomorphism of G.

This example enables us to state the following proposition that L-colored
graphs are in fact sufficient for distinguishing the classes MH and HH.

Proposition 4.3.6. There is a partial order L and corresponding L-colored graphs
for which the classes MH and HH do not coincide.

.
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a

b

c

d

Figure 4.2: An example of a finite L-colored graph that is MH-homogeneous but
not HH-homogeneous.

4.4 Concluding remarks

All results presented in this chapter, except several new propositions added by
the author, can be found in two consecutive papers [61, 57].

The simple relational structure presented in Example 4.3.1 can easily be gen-
eralised to provide a whole class of structures that are all MH-homogeneous but
not HH-homogeneous.

Kn Kn

u v

xi yi

u

Figure 4.3: A class of finite L-colored graphs which are all MH- but not HH-
homogeneous. Cliques Kn are colored black on vertices and edges. The cliques
are connected by thick gray lines, the two vertices u and v colored gray are joined
by black edges to one clique and by gray edges to the other clique.

The construction is depicted in Figure 4.3. Fix n ∈ {1, 2, . . . , ω}. (Note that
in case n = ω we get an example of a countably infinite structure that is MH-
homogeneous but not HH-homogeneous.) Take two cliques both of size n whose
vertices and edges are colored black. Join the vertices of these two cliques by
thick gray edges. Finally, add two new nonadjacent vertices u and v colored gray,
and join the two vertices and the vertices of the two cliques by black and gray
edges as in Figure 4.3. Then, as in Example 4.3.1, we can show that this graph
is MH-homogeneous but not HH-homogeneous.

A question that immediately arises is whether one can avoid the need for
colored vertices at the expense of introducing loops. Consider the finite edge-
colored graph depicted in Figure 4.4 with no colors assigned to vertices that we
construct as follows. Given n > 1, take five copies of Kn and color their edges
gray. Now join these cliques by complete bipartite graphs using two mutually
disjoint 5-cycles where the edges of one 5-cycle are black, while the edges of the
other 5-cycle are gray. Furthermore, add a black loop to each vertex.

This graph is easily seen to be MH-homogeneous. To see that it is not HH-
homogeneous, consider a partial homomorphism unifying two neighboring cliques
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Kn

Kn Kn

Kn

Kn

Figure 4.4: An edge-colored graph with loops that is MH- but not HH-
homogeneous.

(this is possible due to the black-colored loops). Then every endomorphism that
extends such a partial homomorphism would enforce the existence of an edge
colored both black and gray.

v1

v2

v3v4

v5

v1

v2v2

v3

Figure 4.5: A digraph with loops that is MH-homogeneous but not HH-
homogeneous.

Finally in Figure 4.5 we present a directed graph with loops that is MH-
homogeneous but not HH-homogeneous. To see that this digraph is not HH-

homogeneous consider a partial homomorphism f =

(
v1 v4 v5

v1 v5 v5

)
. Then every

endomorphism that extends f would enforce the existence of a bidirectional edge.
A natural generalization of the proposed classifications is to use a less restric-

tive collection of colors. This leads to following problem.

Problem 4.4.1. Let L be an arbitrary partially ordered set. Classify all finite
HH-homogeneous and MH-homogeneous L-colored graphs.

Solving this problem could be hard, although only finite structures are con-
sidered.

Proposition 3.3.1 and Proposition 4.3.6 prompt the question of analysing the
coincidence of classes MH and HH. This analysis should lead to the identification
of a minimal extension of ordinary graphs that would distinguish the classes MH
and HH. It seems that vertex-uniformity is the key property in this regard.
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Conjecture 4.4.1. Do the classes MH and HH coincide for finite vertex-uniform
L-colored graphs?

Once these problems are solved we could follow their trail into the count-
ably infinite world, where examples of homomorphism-homogeneous structures
could be even more interesting. Since posing the problem of classifying countable
homomorphism-homogeneous L-colored graphs would be premature, it is more
appropriate to deal with distinguishing the classes MH and HH. Assuming Con-
jecture 4.4.1 to be true, we can formulate the following problem that extends
it.

Problem 4.4.2. Do the classes MH and HH coincide for countable vertex-
uniform L-colored graphs?

75



5. Morphism extension classes

Stones grow, plants grow and live,
animals grow, live and feel.

Carl Linnaeus

This chapter summarizes results dealing with various homogeneity classes,
like the classes MH and HH studied in Chapters 3 and 4 – see in particular the
concluding remarks in Sections 3.3 and 4.4. More precisely it discusses properties
of relations between the classes of structures defined by the various types of
homogeneity of Definition 1.7.1. Inspired by the distinction between the classes
HH and MH for L-colored graphs given by Proposition 4.3.6, we study mutual
coincidence between other pairs of classes.

Similarly to the case of the HH and MM correspondence it is possible to
ask for the least “complex” structure that distinguishes a pair of classes from
each other. Here, by complexity we, in vague terms, mean the richness of the
corresponding relational structure definition, for example the number of relations
added. The main purpose of this chapter is to summarize the results of the
previous chapter and some from the literature and to put them in a broader
context of the classes given by Definition 1.7.1, called here morphism extension
classes.

5.1 Known hierarchies

It is easily observed that the class of finite HH-homogeneous undirected graphs
is significantly smaller compared to the ultrahomogeneous case. More precisely,
for finite graphs there are only complete and null graphs in the class HH [18].
Such an inclusion is to be found in many cases. For example MH is a subclass of
IH. The obvious inclusions between the morphism extension classes are depicted
in Figure 5.1. Note that, for simplicity, we omit the inclusions implied by transi-
tivity in all diagrams and following [17] we omit the lower part of the hierarchy
containing the extension of less strict morphisms into morphisms that are more
strict like the class HI.

IH

IM MH

II MM HH

Figure 5.1: The hierarchy of morphism extension classes for a general relational
structure. A line connecting two classes means that the class horizontally below
the other is contained in it. For simplicity, all lines implied by transitivity are
omitted.

If one fixes the type of structure, the hierarchy often differs from the general
one of Figure 5.1, usually by identifying particular classes. A good example
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is the hierarchy of extension morphism classes for graphs due to Rusinov and
Schweitzer [136] depicted in Figure 5.2.

IH

IM

MHII

MM

HH =

infinite
countable
graphs

(a) Countably infinite graphs

IH

IM

MH

II

MM

HH

=

=

Finite
graphs

(b) Finite graphs

Figure 5.2: The hierarchy of morphism extension classes for graphs. The meaning
of the lines is the same as in Figure 5.1. Adapted from [136].

Here we can see the already discussed coincidence of the classes MH and HH
for countable graphs. Adapting results from Rusinov and Schweitzer [136], we
can check that the class IM is a proper subclass of IH, which can be shown using
Kn,1 for finite graphs and Kω,1 for countably infinite graphs, respectively. On the
other hand, going from the finite case to the countably infinite case the classes II
and IM start to be different. One witness of this difference is a countably infinite
graph created from the infinite clique by removing one edge.

Another example is given by partially ordered sets with nonstrict order, for
which the hierarchy is as depicted in Figure 5.3, adapted from [17]. For a deeper
description of the situation that holds here see [17].

IH = MH = HH

II
countable

posets

IM = MM

(a) Countably infinite posets

IH = MH = HH

finite
posets

IM = MM = II

(b) Finite posets

Figure 5.3: Hierarchy of morphism extension classes for partially ordered sets [17].
The meaning of the lines is the same as in Figure 5.1. Adapted from [17]

The usual task of classification is to provide structures or their parametric
classes that are homogeneous in the sense of the corresponding morphism ex-
tension class. One of the questions around these morphism extension classes is
the following problem – again by structural complexity here we mean a vaguely
defined notion that includes the number and character of defined relations.

Problem 5.1.1. How far, in the sense of underlying structural complexity, does
one have to go in order to make all the XY-homogeneous classes distinct, where
X, Y ∈ {H,M, I}?

This has been partially discussed in Chapter 4, where the question about
the relationship between HH and MH was solved for L-colored graphs. In all
previous existing classification results the classes HH and MH have coincided.
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5.2 Classes for L-colored graphs

To show that the class IH is different from the classes IM and MH we can use
the results for the graphs mentioned in Section 5.1. The star graph, i.e. the
complete bipartite graph with partites V1 of size 1 and V2 of size n − 1, is an
obvious example of a graph that is IH, but neither IM nor MH. Its containment
in the class IH can be simply seen by considering two basic types of nontrivial
local isomorphism:

1. permutations on V2, and

2. isomorphisms mapping a vertex v ∈ V1 to some vertex u ∈ V2 and another
vertex u′ ∈ V2, not necessarily different from u, to vertex v.

Both these local isomorphisms can be easily extended to an endomorphism.
On the other hand, a star cannot be IM, while the second-mentioned local iso-
morphisms cannot be extended to a global monomorphism over the whole graph.
At the same time a star graph cannot be MH, while a monomorphism fixing any
vertex u ∈ V2 and mapping another vertex u′ ∈ V2 such that u 6= u′ to vertex
v ∈ V1 cannot be extended to a homomorphism – consider the possible images
for vertex the v ∈ V1. This shows that the class IH is distinct from all others in
the case of graphs.

x y

u v

(a) MH vertex-colored graph

x y

u v

f

(b) Local isomorphism f which
shows that MH 6= IM,MM, II

Figure 5.4: MH vertex colored graph that is neither IM nor MM nor II.

To show a similar property for the class MH one can make use of the vertex-
colored graph H created from the path P3 of length 3 with an alternating coloring
of its vertices, i.e. for V (H) = V (P3) = (u, x, v, y) we color vertices x and y by
the first color and vertices u and v by the second, as depicted in Figure 5.4(a).
This graph is obviously MH. To show that it is neither IM nor MM nor II one
can use a local isomorphism f defined by f(x) = y and f(y) = x which cannot be
extended to any monomorphism – see Figure 5.4(b). This graph can be also used
to distinquish the class HH from the classes MM, IM and II, since the graph H
is obviously HH-homogenous but neither MM nor IM nor II, as shown above.

For a pair of classes MH and HH we can use Example 4.3.1 from Chapter 4
giving an L-colored graph which witnesses the fact that the classes MH and HH
are distinct. This example is however even more valuable. It can also be used
to distinguish the classes HH and MM and similarly II– note that the graph G
from the example is obviously MM and II.
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To distinguish the class IM from the others, a simple homogeneous graph,
namely the cycle C5 of length 5, can be used. Homogeneity of this graph makes
it a member of IM. Let V (C5) = {v1, v2, . . . , v5} and E(C5) = E1 ∪ {v5, v1}
where E1 = {{vi, vi+1}; i = 1, 2, 3, 4}. Then a local monomorphism h defined by
h(v1) = v1 and h(v3) = v2 cannot be extended to an endomorphism. Since every
monomorphism is a homomorphism this graph is neither MM nor MH nor HH.
In the same way C5 is seen to be a graph that is II, but neither MH nor MM
nor HH.

IH

II = IM MH

MM HH

Figure 5.5: Morphism extension classes hierarchy for finite vertex- and edge-
colored graphs.

Finally, considering only finite L-colored graphs one can show that classes II
and IM coincide. This can be seen from the simple fact that in a finite graph
every surjective monomorphism is in fact an isomorphism. This can be shown by
a simple counting argument starting with an intial map from a non-edge to an
edge and then a consequent series of mappings of corresponding edges. Since the
graph is finite this shows that such an initial mapping is impossible.

IH

IM MH

II MM HH

C5

Sn

H

G

Kω \ e

A B ⇒ B ⊆ A

A B ⇒ B ⊂ A

A B ⇒ ∃G ∈ A : G /∈ B

Figure 5.6: General reasoning when constructing the complete hierarchy for
countable L-colored graphs. Gray areas indicate important participation for the
corresponding graph – some of the classes in which the corresponding graph be-
longs are not depicted in order to preserve readability of the figure. Black lines
indicate relationships between pairs of classes. Some of the lines are also omitted
– mostly those that can be simply derived from the above-mentioned results. The
particular meaning of arrows are shown in the figure itself. On the other hand,
orange lines (see as gray in black and white print) indicate which relationships
can be explained by the corresponding graph.

Summarizing all the previously mentioned results it is possible to show a final
form for the hierarchy of morphism extension classes for finite L-colored graphs
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as depicted in Figure 5.5. This diagram however also provides reasoning about
morphism extension classes for infinite L-colored graphs – for more details see
below.

As a final observation, for finite graphs the prospects do not seem very promis-
ing for distinguishing the classes II and IM. On the other hand, when considering
countable graphs one can easily find a graph that is IM but not II. For this pur-
pose a graph from [136] can be used. It is an infinite clique with one edge removed,
i.e. Kω \ e. This graph is not in the class II, since a local isomorphism map-
ping a vertex that is incident to the removed edge to another vertex that is not
incident to this edge cannot be extended by isomorphism – consider the image
of the second vertex of the non-edge. On the other hand it is in the class IM
since in this case this non-edge can be mapped to an edge. At the same time
the previously mentioned counting argument is not a problem since we have an
infinite clique. By a simple extension of this argument it can be shown that this
graph is MM, thus distinguishing the classes II and MM. For this reason the
hierarchy of morphism extension classes for countable L-colored graphs has the
general structure as shown in Figure 5.1. General reasoning for the whole process
can be checked in Figure 5.6.

5.3 Concluding remarks

This chapter contains virtually nothing new, except several examples of coloured
graphs distinguishing some classes and a few references to other sections, like
Example 4.3.1. Most of the mentioned properties are either well known or derived
from the papers [136, 109, 17]. The purpose of this chapter is to summarize these
results from the perspective of morphism extension classes and to describe the
whole hierarchy, which in turn partially answers Problem 5.1.1.

There are several possibilities for extending such an analysis. Several open
problems dealing mainly with the classes MH and HH are mentioned in Chap-
ters 3 and 4. Recently, there have been some preliminary results dealing with a
variant of homogeneity called connected-homomorphism-homogeneity – see Sec-
tion 1.9 and the paper [97]. In the paper just cited several new classes for this
type of homomorphism-homogeneity are given. This leads to the following:

Problem 5.3.1. What is the morphism extension classes hierarchy for L-colored
graphs when using connected-homomorphism-homogeneity?

Another future direction for research could be in using other recent prelim-
inary findings introducing new morphism extension classes for specific types of
morphism – see [98]. Roughly speaking, this work introduces another two mor-
phisms into Definition 1.7.1. These are epimorphism and bimorphism. An epi-
morphism is just a surjective endomorphism and a bimorphism is epimorphism
which is at the same time a monomorphism. Another step could thus be to
explore these new classes for colored structures.
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6. Relational complexity

Everything is both simpler than
we can imagine, and more
complicated that we can conceive.

Johann Wolfgang von Goethe

The results of previous chapters suggest that there are not many structures
that are homogeneous, even under variant definitions of homogeneity. For in-
stance, staying in the world of ultrahomogeneous structures, there are very few
examples among undirected graphs. This situation may change when the un-
derlying language for structures is extended. Theorem 3.2.5 provides the list
homomorphism-homogeneous bicolored graphs. It can be easily seen that these
structures are also ultrahomogeneous, and thus all homomorphisms are in fact
also isomorphisms. This shows that Gardiner’s ultrahomogeneous graphs given
in Theorem 1.4.2 can be extended by introducing colors on edges, even though
this extension is quite simple. Moreover, it suggests that this process can be
somehow generalized. For the sake of brevity, we only discuss ultrahomogeneity
here (unless otherwise stated).

Having a classification of ultrahomogeneous relational structures in hand for
a given language L, we can extend this language to a language L′ and study
the classification for this extension. Since all ultrahomogeneous structures in the
language L can also be realized in the language L′, the classification for this
extension can only be wider. We could follow the pattern of our previous efforts
and look for new structures while introducing new relations. However this process
can be also converted, prompting the following roughly stated question.

Problem 6.0.2. For a given relational structure A, what is the minimal arity r
such that there exists a set of relations S each of arity at most r such that the
structure A′ constructed as an expansion of A using relations from S is ultraho-
mogeneous.

This question should be given careful interpretation and underlying assump-
tions made clear. Taking the roughly defined terms of the question as it stands,
it is always possible to make a finite structure ultrahomogeneous by coloring each
vertex differently. This immediately trivializes our question for finite structures.
Nevertheless, as it stands the it can still be interesting for infinite structures since
we can adopt the natural assumption that the number of relations is finite, at
least for each arity. This is discussed in more detail in this chapter and leads to
the notion of lift complexity.

Still, it remains to be decided whether our question for finite structures can
be interesting from some point of view. The extension just described that gives
vertices different colors violates the desirable property of extensions that they
do not affect the automorphism group of the structure– coloring all the vertices
with different colors makes the automorphism group of the underlying structure
contain only the identity, and moreover also forces all local isomorphisms to be
trivial. Since the criterion for a structure to be ultrahomogeneous involves the
extension of local isomorphisms to automorphisms, such an extension that reduces
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all local isomorphisms to trival ones should be considered as non-preserving. On
the other hand, such symmetry-breaking extensions remain interesting for infinite
structures, as mentioned above.

Adding the condition that an extension has to “not harm the automorphism
group” results in the notion of relational complexity defined below. Our revised
question now reads as follows:

Problem 6.0.3. For a given relational structure A what is the minimum arity
r such that there exists a set of relations S each of arity at most r such that the
structure A′ constructed as an expansion of A using relations from S is ultraho-
mogeneous while at the same time Aut(A) = Aut(A′).

In Section 6.5 of this chapter both these questions are posed not only about
a single relational structure, but also about universal structures for a class of
structures. In this case bounds for arities rather than arities themselves are
studied, especially because there can be many universal structures for a given
class.

This chapter is based on two consecutive results [59, 60]. Examples are given
within the flow of the chapter and results are always referenced at their point
of use. This work is based on a slightly different notion defined for permutation
groups that appeared in [29, 27]. For a more detailed discussion see Section 6.3.1.

In Section 6.2 these concepts are formalized as complexity characteristics and
discussed for various classes of structures and complexity values. First to be
considered is the finite case for ordinary undirected graphs. This is discussed in
Section 6.3, where small values of complexities that are already interesting are
analysed, namely in Subsections 6.3.1 and 6.3.2. On the other hand, high values
of relational complexity for graphs are discussed in Section 6.4. The chapter
closes with Section 6.5, which contains results on bounds for both complexities
in the case of infinite relational structures. This last section draws its inspiration
mainly from [73, 32].

6.1 Introduction

The classification of ultrahomogeneous undirected graphs given by Theorem 1.4.2
shows that cycles are ultrahomogeneous up to size 5 (C3 is a complete graph, C4

is a complete bipartite graph, C5 is a sporadic case). Similarly to the Petersen
graph, C6 has two different independent sets, only here of size 2 (a pair of ver-
tices at distance 2 and a pair of vertices at distance 3). C6 can be turned into an
ultrahomogeneous structure by introducing another type of edge, say red, and by
connecting every pair of vertices at distance 2 using these newly defined red edges.
The resulting structure is ultrahomogeneous and we consider such an extended
structure to be a homogenization of the original structure. Cherlin [22], when ex-
plaining a more general theory of ultrahomogeneous structures [86], notices that
such a process can be seen more generally — classifications of ultrahomogeneous
structures usually contain sporadic ultrahomogeneous structures that can be con-
sidered as members of regular ultrahomogeneous families in a suitably extended
language. Although C5 is sporadic as an ultrahomogeneous graph, it belongs to
the family of graph cycles all of which are ultrahomogeneous as metric graphs [23].
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v1 v2

u1 u2

w1

w2

x

Figure 6.1: L(Kn,n): graph containing two subgraphs, each isomorphic to 2 ·
K2 (two disjoint edges), with the property that any isomorphism between them
cannot be extended to an automorphism of whole graph. This example was given
originally in [22].

Just as for cycles, one can observe the extension of a sporadic case into a
whole class of ultrahomogeneous structures when introducing new relations for
the graph L(K3,3). What is so special about the structure of this graph that makes
it ultrahomogeneous whereas other line graphs of a similar type, namely L(Kn,n)
for n > 3, are not? Following the analysis given in [22], we observe that for
n ≤ 3 these graphs are ultrahomogeneous – L(K3,3) is the sporadic case, L(K2,2)
is a complete bipartite graph (i.e. one of the multipartite graphs in Theorem
1.4.2) and L(K1,1) can be considered as the complete graph K1. On the other
hand, each graph L(Kn,n) for n > 3 contains two subgraphs, each isomorphic to
2 ·K2 (two disjoint edges), with the property that any isomorphism between them
cannot be extended to an automorphism of whole graph. Figure 6.1 shows these
subgraphs in L(K4,4) – the first subgraph is represented by edges v1v2 and u1u2

and the second by edges v1v2 and w1w2.
This problem can be fixed by changing the structure under consideration – or

equivalently by adding new relations to its signature [22]. For Kn,n, n > 3, we can
add a relation of parallelism P (v1, v2, v3, v4) which defines for every pair of disjoint
edges with no additional edges between the four spanned vertices v1, v2, v3, v4

as being parallel if there is no vertex adjacent to each of vertices v1, v2, v3, v4.
Figure 6.1 shows a parallel pair of edges v1v2 and u1u2, while edges v1v2 and
w1w2 are not parallel due to the existence of a vertex x adjacent to each of the
endpoints. This extended definition of structure makes the whole class L(Kn,n)
ultrahomogeneous. For more details see [22].

This process of making structures ultrahomogeneous, which is called homog-
enization, is also an important concept in the construction of universal struc-
tures [32, 73].

Throughout this chapter we denote graphs by boldface letters and their vertex
set by the corresponding lightface letter, in a similar way to the notation used
for general relational structures, in order to emphasize their interpretation as a
relational structure admitting extensions by the adding of further relations. The
only exceptions using standard notation as defined in Section 1.3 are particular
graphs such as cycles or complete graphs and the Gaifman graph defined below.
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6.2 Complexity of relational structures

We introduce our two notions of complexity: relational complexity and lift com-
plexity. First, however, we review more formally the process of adding new types
of relations into a structure.

Let L be a signature containing relations (Ri
A : i ∈ I) with arities (δi : i ∈

I). Moreover let the signature L′ be an expansion of L. Then every structure
X ∈ Rel(L′) may be viewed as a structure A = (A, (Ri

A : i ∈ I)) ∈ Rel(L)
together with some additional relations for i ∈ I ′ \ I. To make this more explicit,
these additional relations will be denoted by X i

X, i ∈ I ′ \ I. Thus a structure
X ∈ Rel(L′) will be written as

X = (A, (Ri
A : i ∈ I), (X i

X : i ∈ I ′ \ I)),

and, abusing notation, more briefly as

X = (A, X1
X, X

2
X, . . . , X

N
X ).

We call X a lift of A and A is called a shadow of X. In this sense the class
Rel(L′) is the class of all lifts of Rel(L). Conversely, Rel(L) is the class of all
shadows of Rel(L′). If all the extended relations are unary then the lift is called
monadic. In the context of monadic lifts, the color of vertex v representing a
unary relation is the set {i : (v) ∈ X i

X}. Unless stated explicitly otherwise, we
shall use letters A,B,C, . . . for shadows (in Rel(L)) and letters X,Y,Z for lifts
(in Rel(L′)).

The lift complexity, lc(A), of a relational structure A is the least k such that
there exists a lift X = (A, X1

X, X
2
X, . . . , X

N
X ) of A that is ultrahomogeneous and

all the relations X1
X, X

2
X, . . . , X

N
X have arities at most k.

Let A be a relational structure and let Aut(A) be the automorphism group of
A. A k-ary relation R ⊆ Ak is an invariant of Aut(A) if (α(x1), . . . , α(xk)) ∈ R
for all α ∈ Aut(A) and all (x1, . . . , xk) ∈ R. Let Invk(A) denote the set of
all k-ary invariants of Aut(A) and let Inv(A) =

⋃
k≥1 Invk(A), Inv≤k(A) =⋃

1≤k′≤k Invk′(A). It easily follows that the lift (A, (Ri
A : i ∈ I), Inv(A)) (possibly

with an infinite number of relations) is an ultrahomogeneous structure for every
structure A = (A, (Ri

A : i ∈ I)). For a structure A the relational complexity rc(A)
of A is the least k such that (A, (Ri

A : i ∈ I), Inv≤k
(A)) is ultrahomogeneous, if

such a k exists. If no such k exists, we say that the relational complexity of A is
not finite and write rc(A) =∞.

6.3 Basic properties

As a warm-up, we state a few basic observations about relational and lift com-
plexities. It easily follows from the definition that the complement of an ultraho-
mogeneous structure is also ultrahomogeneous. The same holds for both of our
notions of complexity.

Proposition 6.3.1. Relational and lift complexity are each closed under comple-
mentation.
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Relational complexity is determined as for lift complexity except in the re-
strictions imposed on adding relations determined by the automorphism group of
the structure. This immediately leads to the following simple fact.

Proposition 6.3.2. For every ω-categorical structure A, lc(A) ≤ rc(A).

Relational complexity is interesting even for finite structures, while lift com-
plexity is trivially 1 for finite structures that are not ultrahomogeneous.

Proposition 6.3.3. Let A be a finite relational structure. Then lc(A) ≤ 1 and
rc(A) ≤ |A| − 1.

Proof. For every finite A, an ultrahomogeneous lift can be created by adding a
unique unary relation to each vertex. This gives lc(A) ≤ 1.

The unary relations may not be invariant. It can however be easily seen that
by adding all invariant relations (i.e. those having arity at most |A|) one always
obtains an ultrahomogeneous structure. A relational structure of arity |A| does
not however contribute to the homogenization of the structure, giving the bound
of |A| − 1 on the relational complexity of a finite structure.

The following observation allows us to restrict our attention to connected
structures.

Proposition 6.3.4. Let k ≥ 2 be finite and let A be a non-ultrahomogeneous
relational structure with connected components A1,A2, . . . ,Ak. Then

1. lc(A) = max{1, lc(A1), lc(A2), . . . lc(Ak)};
2. if there is a pair of two mutually isomorphic structures Ai and Aj, i 6= j,

such that rc(Ai + Aj) > 1, then

rc(A) = max{2, rc(A1), rc(A2), . . . rc(Ak)},
otherwise

rc(A) = max{1, rc(A1), rc(A2), . . . rc(Ak)}.
(Here A + B denotes the disjoint union of A and B.)

Proof. The ultrahomogeneous lift of the structure A can always be created as
a disjoint union of ultrahomogeneous lifts of A1,A2, . . . ,Ak with k additional
unary relations distinguishing individual components. With this construction
the lift complexity is increased to at least 1. This finishes the proof of (1).

To show (2) we need only add invariant unary and binary relations depending
on the isomorphism types of components. First we add unary relations classifying
vertices by the isomorphism type of the connected component to which they
belong. If there is no pair of mutually isomorphic components Ai,Aj such that
rc(Ai + Aj) > 1, then the lift is extended by all necessary relations that make
each component ultrahomogeneous, which creates an ultrahomogeneous lift.

For every Ai along with one or more components Aj1 , Aj2 , . . . Ajn that are
all distinct and isomorphic to Ai, we add two extra binary relations. First a
relation used to join all pairs of vertices within the same component, and second
a relation joining all pairs of vertices belonging to two different components.

These additional relations prevent partial isomorphisms exchanging vertices
in between individual connected components leading to an ultrahomogeneous
structure after applying all remaining relations in a similar way to above.
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6.3.1 Graphs of complexity 1

Our notion of relational complexity of structures is derived from the notion of
relational complexity of groups in [22]. For every structure A, the relational com-
plexity of Aut(A) (in the sense of [22]) corresponds to rc(A) with the exception of
rc(A) being smaller than the maximum arity of a relation in A. Our notion of re-
lational complexity ignore arities of relations already present in A. For instance,
the relational complexity of the cyclic group on n ≥ 4 elements in the sense of
[22] is 2, while rc(C4) and rc(C5) is 0. The main motivation for our definition is
to get finer information on structures with small complexity. We explore these
small complexity classes now. To simplify our presentation we shall restrict our
attention to graphs. (Many of our observations generalize to arbitrary relational
structures.)

The class of graphs of relational or lift complexity 0 has been well studied:
these are the ultrahomogeneous graphs. We now consider the class of graphs of
relational complexity 1 and the class of graphs of lift complexity 1. Both these
clases are closely related to the established notion of an n-graph (see [133] for a
recent review of the topic).

Definition 6.3.1. For positive integers n and c, a c-colored n-graph is a graph on
n pairwise disjoint sets of vertices V1, V2, . . . , Vn (called parts), each of which is an
ordinary countable graph, with c edge-types between pairs of parts (cross-edges).

Isomorphisms of n-graphs do not permit exchanging vertices within an in-
dividual part [133]. We shall consider 2-colored n-graphs as corresponding to
graphs where one of the types of cross-edges is an edge and the other type is a
non-edge.

The unary relations forming an ultrahomogeneous lift (equivalently seen as a
vertex coloring) partitions the vertex set of a graph into a finite number of classes.
Analogously to n-graphs we call the classes of this partition parts.

The following observation describes the structure of graphs of complexity 1.

Proposition 6.3.5. Let k be finite and let G be a graph with rc(G) = 1 or
lc(G) = 1 and let V1, V2, . . . , Vk be its parts. Then the following holds.

1. The subgraph induced by each part is an ultrahomogeneous graph.

2. G corresponds to an ultrahomogeneous 2-colored k-graph with parts V1, V2, . . . , Vk.

3. The subgraph induced by each pair of parts corresponds to an ultrahomoge-
neous 2-colored 2-graph.

Proof. The automorphisms of G consist of arbitrary combinations of automor-
phisms of subgraphs induced by the individual parts. Consequently, each of the
subgraphs must already be ultrahomogeneous, giving (1).

(2) and (3) follow directly from ultrahomogeneity.

The structural condition given by Proposition 6.3.5 and the classification of
ultrahomogeneous graphs allows the construction of a number of interesting ex-
amples. Generally, c-colored n-graphs are only partially classified. The classifica-
tion is complete for the class of n-edge-colored bipartite graphs, which is a special
subclass of n-colored 2-graphs where every part is an independent set.
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Theorem 6.3.6 ([78]). If G is a countable ultrahomogeneous n-edge-colored bi-
partite graph such that n is finite and all of the n types of edges are used in G,
then one of the following holds:

• n = 1 and all edges are the same color;

• n = 2 and edges of one color form a perfect matching, and edges of the
other color are its complement;

• n ≥ 2 and G is a generic bipartite n-edge-colored graph.

Figure 6.2: Graph of relational complexity 1 consisting of 3 isomorphic ultraho-
mogeneous graphs (K3). The parts are depicted by different vertex markings.

In the case of graphs (n ≤ 2), we thus have only three types of bipartite
ultrahomogeneous graphs (up to complementation): complete or empty bipartite
graphs, matchings, and the generic bipartite graph. In Figure 6.2 we show a
graph of relational complexity 1 that consists of 3 isomorphic ultrahomogeneous
subgraphs.

Observe that not every graph built from finitely many isomorphic copies of
an ultrahomogeneous graph has relational complexity 1. In the example given
it is the use of different bipartite graphs to connect each pair of subgraphs that
ensures that each of the subgraphs forms an independent cluster. Proposition
6.3.5 can however be reversed for lift complexity:

Proposition 6.3.7. Every infinite graph G with n parts (n finite) such that
lc(G) = 1 corresponds to an ultrahomogeneous 2-colored n-graph.

Figure 6.3: Graph of relational complexity 1 using a sporadic 2-colored 2-graph.

The classification of ultrahomogeneous 2-colored n-graphs is still an open
problem – see [133] for partial results. The graph depicted in Figure 6.3 has
relational complexity 1 and is constructed from 4 ultrahomogeneous subgraphs
(K1, K1, K2 +K2 and K2 +K2) using a sporadic example of an ultrahomogeneous
2-colored 2-graph joining K2 +K2 and K2 +K2 (c.f. [133]).

A special case of graphs of lift complexity 1 can be constructed from a given
finite graph G by replacing every vertex by an ultrahomogeneous graph and
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every edge by an ultrahomogeneous 2-colored 2-graph. Such a construction is
considered in [73], where the homomorphism dual D of a graph T is turned into
a countable graph U that is embedding-universal for the class of all graphs not
containing a homomorphic image of T. Here vertices of D are replaced by infinite
discrete graphs and edges of D by random bipartite graphs. It is a well-known
result [117] that homomorphism duals exists only when T is a (relational) tree.
For the case of universal graphs with lift complexity 1, the construction can be
extended also to structures obtained from trees by replacing every edge by an
arbitrary irreducible structure. When the same construction is applied to any
rigid graph D (and this is the case for cores of graph duals), the expanded graph
also has relational complexity 1. We shall further study the complexity of infinite
graphs in greater detail in Section 6.5.

6.3.2 Graphs of complexity 2

Given the difficulties of characterizing graphs even of complexity 1, it is not
reasonable to expect a simple characterization of graphs of complexity 2. We can
however produce several interesting classes of such graphs.

Given a graph G, the graph metric is a function measuring the path distance
between pairs of vertices. We call a graph metrically ultrahomogeneous if and only
if it is ultrahomogeneous as a metric space with its graph metric. It is not difficult
to see that relations measuring distance between vertices (i.e. relations connecting
vertices of distance n) are all invariant binary relations. We immediately have
the following observation.

Proposition 6.3.8. All metrically ultrahomogeneous graphs have relational and
lift complexity at most 2.

Metrically ultrahomogeneous graphs were studied by Cherlin, leading to a
partial catalog of them [23]. These include special bipartite graphs, tree-like
graphs, antipodal graphs, and a number of other examples.

One example of a connected graph of relational complexity 2 that is not
metrically ultrahomogeneous can be constructed with the help of Proposition
6.3.4. Take the complement of the graph created as C5 + C5. This graph has
relational complexity 2, but it is not metrically ultrahomogeneous. Consider a
function mapping an edge within the complement of C5 to an edge joining the
two subgraphs. Additional examples can be easily produced with the help of the
following two propositions.

Proposition 6.3.9. Finite (graph) trees have relational complexity at most 2.

Proof. We prove this by induction on the diameter of a given tree T. Again we
shall consider the unary relations to be vertex colorings. To carry through the
induction, we prove a stronger result: all finite vertex-colored trees have relational
complexity at most 2.

The claim trivially holds for a colored tree consisting of a single vertex or
edge.

Now assume that the claim holds for trees of diameter up to k. Fix a colored
tree T of diameter k + 2 and consider a tree T′ constructed from T by

1. removing all leaves; and
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2. changing the color of every new leaf vertex v to a unique representation
of the isomorphism type of the rooted tree induced by T on v and its
descendants.

T′ is a vertex-colored tree with diameter k. By induction hypothesis rc(T′) ≤ 2
and thus there exists an ultrahomogeneous lift X′ of T′ adding only invariant
unary and binary relations. To make our presentation easier, we also consider
the colors introduced in the construction of T′ to be extended unary relations of
X′ and edges of T′ to be mirrored in an extended binary relation of X′.

We extend X′ to an ultrahomogeneous lift X of T. Once again we extend our
language of X, in the following way:

1. for every unary relation X i
X′ we add a new unary relation X

u(i)
X and a new

binary relation X
b(i)
X ; and

2. for every binary relation X i
X′ we add a new binary relation X

b(i)
X .

X is a lift of T such that X i
X = X i

X′ for all relations used by X′. We use the
newly introduced relations in the following way.

1. for every leaf v ∈ T with father v′ such that (v′) ∈ X i
X′ we also put (v) ∈

X
u(i)
X ;

2. for every pair of distinct leaves v1, v2 ∈ T sharing father v′ such that (v′) ∈
X i

X′ we also put (v1, v2) ∈ Xb(i)
X and (v2, v1) ∈ Xb(i)

X ;

3. for every pair of distinct leaves v1, v2 ∈ T with distinct fathers v′1, v
′
2 (re-

spectively) such that (v′1, v
′
2) ∈ X i

X′ we also put (v1, v2) ∈ Xb(i)
X .

The ultrahomogeneity of X′ follows from the fact that automorphisms of T must
map leaves to leaves and non-leaves to non-leaves. The automorphism group of
T acting on non-leaf vertices of T is precisely the automorphism group of X′.
Finally, every automorphism can map a leaf vertex v to a leaf vertex v′ if and
only if they have same color and it can map the father of vertex v to the father
of vertex v′.

Because graphs with relational complexity 2 are closed under complementa-
tion, Proposition 6.3.4 gives an iterative way to construct non-trivial examples
of such graphs. Consider the following special case. A cograph is a graph not
containing an induced path on 4 vertices. It is well-known that all cographs can
be generated from the single-vertex graph K1 by complementation and disjoint
union. We immediately obtain:

Proposition 6.3.10. Finite cographs have relational complexity at most 2.

6.4 Finite graphs with large complexity

It is not difficult to construct examples of finite graphs with large relational
complexity, showing that the relational complexity of graphs is unbounded.
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Example 6.4.1. Consider a permutation group Γ acting on n elements that is k-
transitive but not (k+ 1)-transitive. (If Γ is the alternating group on n elements,
then k = n− 2.) Now construct a graph GΓ with the following vertices:

1. n control vertices v1, v2, . . . vn;

2. for every permutation p ∈ Γ, n+ 1 additional vertices vp1, v
p
2, . . . , v

p
n+1;

and the following edges:

1. {vpa, vpa+1} for every p ∈ Γ and 1 ≤ a ≤ n;

2. {vpi , vj} if and only if the permutation p ∈ Γ sends the ith element to the
jth element.

The graph GΓ thus consists of control vertices and paths representing individ-
ual permutations connected to the control vertices by pairings. By construc-
tion, an automorphism of GΓ sends control vertices to control vertices (these
are the only vertices of large degree). Similarly, an automorphism must send a
path vp1, v

p
2, . . . , v

p
n+1 corresponding to some permutation p ∈ Γ to another path

vp
′

1 , v
p′

2 , . . . , v
p′

n+1 corresponding to another permutation p′ ∈ Γ. It easily follows
that the automorphism group of GΓ acting on the control vertices is precisely Γ.
By transitivity of Γ it is necessary to use at least (k + 1)-ary relations in order
to homogenize it, which gives rc(GΓ) > k. We remark that this construction in
fact works for all groups with large relational complexity in the sense of [22].

Identifying less artificial families of graphs with large relational complexity is
however challenging. We outline two examples given by [22].

1. The Johnson graph Jn,k is a graph whose vertices are all the k-subsets of a
fixed n element set. Two vertices are adjacent when the two corresponding
sets meet in exactly k− 1 elements. In [29] the bound rc(Jn,k) ≤ 2[log2 k] is
given on the relational complexity of Johnson graphs. Equality is achieved
when n ≥ 2 log2 k + 2.

2. The Kneser graph KGn,k is the graph whose vertices are the k-subsets of a
fixed set of n elements, and where two vertices are adjacent if and only if the
two corresponding sets are disjoint. For n ≥ 2k the relational complexity
is given by rc(KGn,k) = 2[log2 k].

In particular, the relational complexity of the Petersen graph is 3 and thus
the problem shown in Figure 1.2 is in fact the only obstacle to its ultraho-
mogeneity.

It seems that the upper bound on relational complexity given by Proposi-
tion 6.3.3 is far from the reality, since the relational complexity of all the exam-
ples seen so far grows sublogarithmically in their size. It is reasonable to ask for
extremal examples of graphs with high relational complexity or for better bounds.

Problem 6.4.1. Estimate f(n) = max|G|=n rc(G).
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6.5 Complexity of infinite structures

We have primarily discussed the relational complexity of finite structures. Now
we turn our attention to the infinite case, as has been proposed in [59]. Fräıssé’s
Theorem 1.2.8 can be seen as a “zero instance” of the problems considered in this
section. In this theorem the amalgamation property can be seen as the critical
property that the age K must have in order that there exists structure U with
Age(U) = K satisfying rc(A) = 0. Inspired by this approach, we could, for a
fixed age K, ask for bounds on relational complexity for structures U having
Age(U) = K. Alternatively, fixing n, we seek structural properties of the age K
that imply the existence of a structure U with Age(U) = K and rc(U) = n.

Relational complexity is not interesting for rigid structures (with trivial auto-
morphism group), where it is always 1. Such a structure exists for almost every
age. We thus restrict our attention to ω-categorical structures. Recall that using
Theorem 1.5.1, proved independently by Engeler, Ryll-Nardzewski and Svenonius,
we can characterize ω-categorical structures as structures whose automorphism
group has only finitely many orbits on n-tuples, for every n, and thus there are
also only finitely many invariant relations of arity n.

For this section several versions of amalgamation are needed and it is thus
useful to give them standard names. Suppose we have an amalgamation of struc-
tures A, B1 and B2, as given in Definition 1.2.3. If the embeddings f1 and f2

are identity mappings we call this amalgamation an amalgamation of B1 and B2

over A. An amalgamation (B1,B2,A, f1, f2) is called strong if

g1(B1) ∩ g2(B2) = g1(f1(A)) = g2(f2(A)).

Moreover we call a strong amalgamation free if there are no relations of C
spanning vertices of both g1(B1) and g2(B2) that are not images of some relations
of structure B1 or B2 via the embedding g1 or g2, respectively.

Using Theorem 1.5.2 we can see that the countable ω-categorical structure
U is universal for the class of all countable structures younger than A and thus
it contains as an induced substructure every countable structure A, Age(A) ⊆
Age(U). However there is no 1-1 correspondence between ω-categorical structures
and their ages. We will demonstrate this for the class of bipartite graphs.

Consider the class K of lifts of finite bipartite graphs with one part distin-
guished by an extended unary relation. K is an amalgamation class and thus there
is an (up to isomorphism unique) infinite ultrahomogeneous lift X,Age(X) = K.
Now consider a bipartite graph B2 that is a shadow of X. The graph B2 is not
ultrahomogeneous, but is however a universal bipartite graph (because X is uni-
versal for bipartite graphs with one part distinguished). Each vertex of B2 has
infinite degree and B2 is connected. The age of B2 is the class of all finite bipar-
tite graphs. Every countable bipartite graph is an induced subgraph of B2 (it is a
universal bipartite graph). There are no non-trivial invariant unary relations be-
cause B2 is vertex transitive. It is possible to turn B2 into an ultrahomogeneous
lift by using two invariant binary relations. The first relation joins every pair
of vertices belonging to the same part. The second relation joins every pair of
vertices belonging to different parts. Consequently rc(B2) = 2 while lc(B2) = 1.

Denote by L the set of vertices of X belonging to the part distinguished by
the unary relation. Now consider the graph B1 created from X by joining every
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v ∈ L to a newly added vertex of degree 1. An automorphism of B1 necessarily
maps vertices of degree 1 to vertices of degree 1 and thus cannot swap the parts.
It is thus possible to turn B1 into an ultrahomogeneous structure with two unary
relations and rc(B1) = lc(B1) = 1. The age is however unchanged.

Finally it is possible to construct, for given n > 2, a connected bipartite
universal graph Bn, rc(Bn) = n. Take any connected bipartite graph An,
rc(An) = n. (Such a graph can be constructed by the techniques of Section
6.4; non-bipartite graphs can be turned into bipartite ones by subdividing every
edge by a vertex). Moreover we have already constructed universal random bi-
partite graph B2. Construct Bn as a disjoint union of B2 and An with one vertex
unified.

It follows that an ω-categorical relational structure whose age consists of all
finite bipartite graphs can have relational complexity anywhere between 1 and
infinity. This is not a sporadic example and we thus need to add extra restrictions
on the structures under consideration. Among all ω-categorical structures with a
given age we can turn our attention to the “most ultrahomogeneous-like” in the
following sense. A structure A with Age(A) = K is existentially complete if for
every structure B, such that Age(B) = K and the identity mapping (on A) is an
embedding A→ B, every existential statement ψ which is defined in A and true
in B is also true in A. By [25], for every age K defined by forbidden monomor-
phisms with an ω-categorical universal structure there is also up to isomorphism a
unique ω-categorical, existentially complete and ω-saturated universal structure,
where ω-saturated structure is understood as defined in [67]. This in fact holds
more generally. In such cases the canonical universal structure of a given age K
is the unique ω-categorical, existentially complete, and ω-saturated structure U
such that Age(U) = K.

Given an age K we can thus ask:

I. What is the minimal relational complexity of an ω-categorical structure U
such that Age(U) = K?

II. What is the relational complexity of the canonical universal structure of
age K?

We consider universal structures for the class Forbh(F), where F is a family
of connected structures. Recall that Forbh(F) denotes the class of all structures
A for which there is no homomorphism F → A, F ∈ F . The classes Forbh(F)
are among the most natural ones where the existence of a universal structure
is guaranteed for every finite F , see [25]. For such F we can fully answer the
questions above.

For a structure A = (A, (Ri
A, i ∈ I)), the Gaifman graph (in combinatorics

often called the 2-section) is the graph GA with vertices A and edges all pairs
that are contained in a tuple of a relation of A, i.e., G = (A,E), where x, y ∈ E
if and only if x 6= y and there exists a tuple ~v ∈ Ri

A, i ∈ I, such that x, y ∈ ~v.
For a structure A and a subset of its vertices B ⊆ A, the neighborhood of B

is the set of all vertices of A \ B connected in GA by an edge to a vertex of B.
We denote by GA \B the graph created from GA by removing the vertices in B.
A structure A is called connected if its Gaifman graph GA is connected.

A g-cut in A is a subset C of A which disconnects the Gaifman graph GA

when removed. A g-cut C is minimal g-separating in A if there exists structures
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Figure 6.4: Two minimal g-separating g-cuts of the Petersen graph.

A1 6= A2 induced by A on two connected components of GA \ C such that C
is the intersection of the neighborhood of A1 and the neighborhood of A2 in A.
All the minimal separating cuts of the Petersen graph (up to isomorphism) are
depicted in Figure 6.4.

A family of structures is called minimal if and only if all the structures in
F are cores and there is no homomorphism between any two structures in F .
The following theorem provides bounds on the relational complexity of universal
structures defined by a forbidden homomorphism class for various classes F .

Theorem 6.5.1. Let F be a finite minimal family of finite connected relational
structures and U an ω-categorical universal structure for Forbh(F). Denote by n
the size of the largest minimal g-separating g-cut in F . Then (a) rc(U) ≥ n; (b)
if U is the canonical universal structure for Forbh(F) then rc(U) = n.

In the rest of the chapter we establish the upper bounds and lower bounds
given in Theorem 6.5.1. In fact we prove more general statements.

6.5.1 Upper bounds on relational complexity

It appears that relational complexity is closely related to the homogenization
method of constructing universal structures as used in [32]. The main result
of [32] is in fact a variant of Fräıssé’s Theorem with amalgamation reduced to
what is called local failure of amalgamation.

An amalgamation failure of a given age K is a triple (A,B,C) such that
A,B,C ∈ K, the identity mapping (on C) is an embedding C→ A and C→ B,
and there is no amalgamation of A and B over C in K. (i.e., (A,B,C) shows
that K does not have the amalgamation property). An amalgamation failure is
minimal if there is no another amalgamation failure (A′,B′,C′) such that identity
mappings are embeddings A′ → A, B′ → B and C′ → C.

Theorem 6.5.2. Let U be the canonical universal structure for age K and S the
set of isomorphism types of minimal amalgamation failures of U. If S is finite
then rc(U) and lc(U) is bounded from above by the largest size of C such that
(A,B,C) ∈ S.

Proof. Given an age K and set S, [32] provides a construction of an ultrahomo-
geneous lift X such that its shadow U is universal for the class of structures of
age K. Moreover this lift is constructed using relations invariant under the au-
tomorphism group of U (Lemma 2.7 in [32]) and their arities correspond to the
sizes of C such that (A,B,C) ∈ S. U is ω-categorical because U is a shadow of
X. Existential completeness and ω-saturation follow directly from the construc-
tion.

93



Figure 6.5: Amalgamation failures of the class of graphs not containing an induced
path of length 3.

Example 6.5.1. Determining the minimal set of amalgamation failures of a given
age can be difficult. In [32] there is only one non-trivial example given, namely
that of cographs (graphs without an induced path on 4 vertices). The minimal
amalgamation failures are depicted in Figure 6.5. This class has only two minimal
failures, both containing 3 vertices in C. The resulting lift uses a relation of arity
3. This is in contrast with the fact that all finite cographs have complexity at
most 2 (Proposition 6.3.10).

In the special case of K = Age(Forbh(F)) one can however prove a stronger
result. Details of the following constructions will appear in [58]. Some of the
construction used in this proof has also appeared in [72] as part of an informal
cooperation with the respective authors. Before going any further several notions
have to be introduced. First, it is useful to introduce substructures with a specific
part “participating” in a g-cut. For any set of elements A denote by ~A a tuple
of corresponding vertices. For any relational structure A we can define a rooted
structure A as a pair (A, ~R), where ~R is a tuple of distinct vertices of A called
a root. Since roots are going to be used for amalgamations, which operate with
isomorphisms, we call the size of this root the width of the rooted structure.
This also plays its role in isomorphism between rooted structures. We say that
rooted structures A1 = (A1, ~R1) and A2 = (A2, ~R2) are isomorphic if there is
an isomorphism f : A1 → A2 between A1 and A2 such that f |~R1

is a monotone

bijection taking ~R1 to ~R2.
Let A be a connected relational structure and R a minimal g-separating g-cut

forming a component C of the Gaifman graph GA. A piece of relational structure
A is a rooted structure (P, ~R), where the tuple ~R consists of the vertices of the
g-cut R in a fixed linear order and P is the structure induced by A on C ∪R.

To construct universal structures special types of lift have to be introduced.
For a family of relational structures F we fix an enumeration of pieces Pi =
(Pi, ~Ri), i ∈ I ′. For a relational structure A define the lift X = (A, (X i

X, i ∈ I ′)).
This lift is then called an F-lift if the arities of the relations X i

X, i ∈ I ′ correspond

to the sizes of the roots in the given enumeration, i.e. |~Ri|. The F -lift X is then
called the canonical lift, denoted by X = L(A), when for any tuple of size k it is
the case that (x1, x2, . . . , xk) ∈ X i

X if and only if there exists a homomorphism f

from Pi to A such that f(~Ri) = (x1, x2, . . . , xk). In other words, the lift relations
glue only those tuples that are contained in the corresponding piece.

Let A be a relational structure and B ⊆ A. We call the canonical lift L(A)
complete on B if for every C ∈ Forbh(F) such that A ⊆ C the lift induced by
L(A) on B is the same as the lift induced by L(C) on B. Finally, the lift X is
called complete if there exists C ∈ Forbh(F) such that X is induced by L(C) on
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X and the canonical lift L(C) is complete on X.
Let LF denote the set of all complete lifts of Forbh(F). For a complete

lift X ∈ LF we define a witness W (X) of the fact that X belongs to LF as
a relational structure A ∈ Forbh(F) such that X is induced by L(A) on X
and L(A) is complete on X. The inclusion of completeness in the definition of
witness ensures that constructing a universal structure is existentially complete.
Moreover free amalgamation preserves the property of being a witness, as stated
in the following lemma, whose proof we omit.

Lemma 6.5.3 ([72]). Let A and B be both witnesses of X. Then the free amalgam
of A and B over X is also a witness.

We now have all the machinery needed in order to state the main theorem
bounding both complexities. A complete proof with all necessary details will
appear in [58] and as mentioned above some of the construction used in this proof
has also appeared in [72] as part of an informal cooperation with the authors of
the cited paper.

Theorem 6.5.4. Let F be a (finite or infinite) family of connected structures
such that there exists a canonical universal structure U for Age(Forbh(F)). Then
rc(U) and lc(U) are each bounded from above by the size of the largest minimal
g-separating g-cut in F .

Proof. Let K = Age(Forbh(F)). By assumption the canonical universal structure
U exists. Define KF to be the class of all complete lifts of Age(Forbh(F)). By
definition of K, the class KF obviously satisfies both properties HP and JEP. It
remains to prove it has the amalgamation property.

Consider complete lifts X,Y,Z ∈ KF such that Z is the substructure induced
by both X and Y on Z = X ∩ Y . Put

A = W (X),

B = W (Y),

C = Sh(Z).

Consider the free amalgam D of structures A and B over C. Using Lem-
ma 6.5.3, a free amalgam D is also a witness of Z, X and Y. To show the
amalgamation property holds just take E ∈ KF such that D ⊆ E with L(E)
being complete on D. It follows easily that the structure induced by L(E) on D
is the amalgamation of X and Y over Z.

Consequently there exists an ultrahomogeneous structure U′. Denote the
shadow of this structure by U. We show that U is model complete. This gives
existential completeness and ω-saturation of U as well as the fact that Aut(U) =
Aut(U′).

A structure is called model complete if every formula is equivalent to an
existential formula. We can make use of fact that U′ is model complete (because
every ultrahomogeneous structure is model complete). In this case for any formula
φ in language of U we can obtain existential formula φ′ in language of U′. What
is needed is a transformation of this formula into the language of U. This can be
done by replacing every ~v ∈ X i

U′ by an existential formula testing the presence

of a rooted homomorphism f from Pi → U such that f(~Ri) = ~v. Completeness
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of witnesses has to be used in order to translate ~v /∈ X i
U′ into an existential

formula. It follows that the resulting existential formula describes all cases where
a homomorphism Pi → U having f(~Ri) = ~v would produce a homomorphic
image of some F ∈ F . This means that for every piece Pi there is a set of
rooted structures P1

i ,P2
i , . . . ,Pni such that ~v /∈ X i

U′ implies the existence of m,
1 ≤ m ≤ n and a rooted homomorphism g : Pmi → U such that the root is
mapped to ~v and moreover the free amalgam of Pmi and Pi is not in Forbh(F).

Examples. Theorem 6.5.4 applies to many families F . For example:

1. Let F be a family of relational trees and U the canonical universal structure
for Forbh(F) (if it exists). By Theorem 6.5.4 rc(U) ≤ 1. In fact U can be
seen as a “blown up” core of a homomorphism dual D (given by [117] even
for some infinite families F) where each vertex is replaced by infinitely many
vertices and each edge by a random bipartite graph. In this case the bound
given by Theorem 6.5.2 is not tight even for F consisting of an oriented
path on 4 vertices.

2. Let FCn contain a single odd graph cycle on n vertices. The relational
complexity of the canonical universal structure for Forbh(FCn) is at most 2.

3. Let Fodd be the class of all odd graph cycles. The canonical universal
structure for Forbh(Fodd) is the random bipartite graph B2. By Theorem
6.5.4 we have rc(B) ≤ 2.

6.5.2 Lower bounds on relational complexity

We obtain the following bound:

Theorem 6.5.5. Let F be a finite minimal family of finite connected structures
and U an ω-categorical universal structure for Forbh(F). Then rc(U) and lc(U)
are bounded from below by the size of the largest minimal g-separating g-cut in F .

We use the following result, proved by a special Ramsey-type construction.
This is not a technical finesse, but rather in a way a necessity. It has been shown
by [115, 116] that Ramsey classes are related to ultrahomogeneous structures.
This connection has been elaborated in the context of topological dynamics in [83].

Theorem 6.5.6 ([72]). Let F be a finite minimal family of finite connected re-
lational structures and K a lift of the class Forbh(F) adding finitely many new
relations of arity at most r. If K contains an ultrahomogeneous lift U that is
universal for K then the size of minimal g-separating g-cuts of F ∈ F is bounded
by r.

Theorem 6.5.5 follows directly as follows. Fix an ω-categorical U universal
for Forbh(F). By ω-categoricity of U we know that Invk(A) is finite and we can
now apply Theorem 6.5.6.
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Examples.

1. Let FP consist of the Petersen graph alone and let U be the canonical
structure for Forbh(FP ). Then rc(U) = lc(U) = 4. Recall that the minimal
g-separating g-cuts of the Petersen graph are shown in Figure 6.4.

2. The complexity of an ω-categorical graph universal for Forbh(FCn), n ≥ 5,
(graphs without odd cycles of length at most n) is at least 2. Combining
this with Theorem 6.5.4, we know that the relational complexity of the
canonical universal structure for the class Forbh(FCn) is 2. On the other
hand, however, this does not hold for the class Fodd. We have already shown
that the canonical universal graph for the class of all bipartite graphs has
relational complexity 2 and lift complexity 1. Finiteness and minimality
assumptions are thus both essential in Theorem 6.5.5.

6.6 Concluding remarks

The results presented in this chapter can be found in [59, 60], together with sever-
al auxiliary results that have been adapted from various sources as referenced. To
mention three important sources we can start with the original idea of relational
complexity from [29, 27] together with several examples like the homogenization
of L(Kn,n) for n ≥ 4 and the relational complexity of Johnson and Kneser graphs.
The second source [32] treats homogenization, and we have adapted this for the
proof of Theorem 6.5.2. The last source is a combination of [73] and particu-
larly [72], where the last-mentioned paper was written with informal input from
the present author, and contains a construction used in the proof given of Theo-
rem 6.5.4. In fact a fully detailed proof of this theorem will appear in [58], along
with several other results.

The main results of this chapter can be divided into two parts. The first deals
with finite graphs. This part is further divided according to the values of relational
complexity. For relational complexity equal to 1 one of the results is represented
by the relatively simple Proposition 6.3.5, joining the classification of these graphs
with the classification of 2-colored n-graphs. Proposition 6.3.5 provides a tool for
constructing various examples of graphs with relational complexity 1. This is
even more interesting because the classification of ultrahomogeneous 2-colored n-
graphs is still an open problem – see [133]. Moreover the construction underlying
this proposition was used to show that any infinite graph having n parts and with
lift complexity equal to 1 corresponds to an ultrahomogeneous 2-colored n-graph,
as stated in Proposition 6.3.7. The main goal here for future work would be the
classification of 2-colored n-graphs, which would provide insights into graphs with
relational complexity 1.

Section 6.3.2, about finite graphs having relational compexity equal 2, starts
with the simple but nonetheless important Proposition 6.3.8 showing that all
metrically homogeneous graphs have relational complexity 2. This is followed by
Proposition 6.3.9 showing by a more technical proof that all trees have relational
complexity 2. This section closes with the observation that cographs have the
same relational complexity 2.

97



Problem 6.6.1. Which finite graphs other than metrically homogenous graphs,
trees and cographs have relational complexity 2?

In Section 6.4 we move to a discussion about graphs with high relational com-
plexity. We gave an example of the construction of a graph of arbitrary large
finite relational complexity based on a permutation group. Further examples
drawn from the work of Cherlin give the relational complexity of well known
graph classes such as the Johnson and Kneser graphs. This section closes with
Problem 6.4.1, in which we ask for the maximal progression of relational com-
plexity as a function of graph size. Since a complete solution is probably hard it
is more reasonable to ask the following roughly defined question.

Problem 6.6.2. Provide examples giving a partial solution to Problem 6.4.1.

The second part deals with infinite structures. Inspired by Fräıssé’s Theo-
rem 1.2.8, for a fixed age K the problem was to find bounds on the relational
complexity of a structure having K as an age. Since the field of infinite relation-
al structures is quite wide, even when considering the special structure of ages,
several additional conditions have to be imposed. At first the restriction to ω-
categorical structures has been adopted considering also their characterization via
Theorem 1.5.1 by Engeler, Ryll-Nardzewski and Svenonius and Theorem 1.5.2,
showing universality of an ω-categorical structure for the class of younger struc-
tures. Additionally, only existentially complete structures have been considered
so as to overcome the still widely defined range of relational complexity for ages
of ω-categorical structures. All necessary properties of structures are encapsulat-
ed in the term cannonical universal structure. To conclude this second part we
asked the following questions:

I. What is the minimal relational complexity of an ω-categorical structure U
such that Age(U) = K?

II. What is the relational complexity of the canonical universal structure of
the age K?

The remainder of the chapter provides bounds for relational complexity as well
as lift complexity, as summarized in Theorem 6.5.1, although some partial results
can be stronger. The first proof of upper bounds for relational complexity is given
by Theorem 6.5.2. It makes use of the set of minimal amalgamation failures given
by Covington [32]. This seems to be a relatively elegant solution, nevertheless
such a set is usually hard to find. For this reason another bound for relational
complexity for the canonical universal structure for the age of Forbh(F), where
F is a family of connected structures, is given in Theorem 6.5.4, using the size of
the largest minimal g-saparating g-cut. This proof will appear in [58], although
related basic constructions have also been used in [72], a product of informal
cooperation among the authors of these two papers. In fact, g-separating g-cuts
were also used in proving lower bounds. Theorem 6.5.5 gives lower bounds for
relational as well as lift complexity for the ω-categorical structure for Forbh(F),
where F is a finite minimal family of connected structures, by using the size of
the largest minimal g-separating g-cut.
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Both types of complexities are based on ultrahomogeneity. As mentioned in
Section 1.7, Cameron and Nešetřil [18] introduced the concept of homomorphism-
homogeneous relational structures. It would be interesting to study the topic of
this chapter in the context of this type of homogeneity.
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7. Conclusion

The game of science is, in
principle, without end.

Karl Popper

In this chapter we summarize the conclusions to previous chapters given in
Sections 2.6, 3.3, 4.4, 5.3 and 6.6, to which reference should be made for further
detail and for corresponding open problems. This chapter retells the whole story
that started in the introductory Section 1.10 and continued through subsequent
chapters. It serves mainly as an overview and reference list to the particular
conclusions we have drawn along the way. Special emphasis is given to the actual
contributions of this work and the corresponding papers.

As mentioned in the first chapter, a theme pervading this work is that of sym-
metric structures, most importantly those defined by having the property that
each partial mapping of a predefined type extends to a mapping on the whole
structure, again of a given type. Examples of symmetric structures defined in
this way include those that are ultrahomogeneous (partial isomorphisms extend
to isomorphisms) and homomorphism-homogeneous (partial homomorphisms ex-
tend to homomorphisms). These properties of structures are a focus of this work.
The theoretical background required has drawn from various mathematical dis-
ciplines such as graph theory, combinatorics, group theory, model theory and
others. These theoretical essentials are described in Chapter 1, where most of
the theory needed for handling these structures is introduced.

Also in the introductory chapter, the idea of structure complexity, which is the
main topic of this work, is given a preliminary introduction. Roughly speaking,
the structure complexity is lower the “nearer” the structure is to meeting the
conditions of the version of homogeneity that is under study. The underlying
language is a determinative variable here, therefore the main task proves to be
studying homogeneity of the corresponding class of structures when changing the
definition of this underlying language. The distance which determines proximity
to homogeneity is represented by the arities of relations used to extend the original
language.

There are basically two ways to proceed. The first is to study how the classi-
fication of homogeneous structures changes when we change the underlying lan-
guage of relational structures by adding relations of relatively small arity. The
corresponding results, summarized in Sections 7.2 and 7.3 below, provide a clas-
sification of homomorphism-homogeneous L-colored graphs for various L.

The second way, described in Section 7.4 below, uses another approach rep-
resented by relational and lift complexity. In this case for a given structure we
search for a minimal arity k such that there exists a set of relations each of arity
at most k such that the original structure extended using these relations is ultra-
homogeneous. This task is also considered more generally for a class of structures
via the analysis of the corresponding universal structure.

Infinite countable universal structures meeting the homogeneity condition
have a surprising connection with graph limits and consequently with complex
networks [100, 118]. This connection together with the corresponding studies of
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complex networks are described in Section 7.1.

7.1 Homogeneous structures as motivation for

complex networks

One of the connections between complex networks and homogeneous structures
finds realization in graphs limits as defined by Lovász [100] and Nešetřil and
Ossona de Mendez [118]. This connection is described in Section 2.6. The no-
tion of FO-convergence [118] can represent limits of graphs as defined either
by Lovász and Szegedy [101] or by Benjamini and Schramm [8]. For example,
for ω-categorical structures it is seen that for a sequence of graphs having an
ultrahomogeneous limit the corresponding FO-convergence in fact reduces to
QF -convergence. Considering this together with the connection of graph lim-
its to complex networks shown by Lovász [100] suggests that highly symmetric
structures may occur naturally as limits of graph sequences representing complex
networks. The question was raised in Problem 2.6.3 of whether there is a class
of complex networks which can be well represented by a network growth model
such that this model is FO-convergent and has an ω-categorial structure as its
limit.

To become more familiar with complex networks requires becoming familiar
with how they are constructed. For this reason several studies have been made
by the author in order to clarify this process. A list of these studies follows.

The first area concerns the brain, analysed by the method of functional mag-
netic resonance imaging (fMRI). The problem studied was to understand the
effect of nonlinearity in time series representing underlying subsystems in the
construction of complex networks and therefore whether the measure that is used
to define edges should be the correlation coefficient or mutual information. The
results show that the differences resulting from which choice is made are fairly
negligible. The methods and results are presented in Section 2.3 and can be found
in the corresponding paper [56].

Inspired by the case of brain networks, a similar study has been carried out
for climate networks, which are quite different from various points of view. How-
ever, even for this type of system it has been shown that observed nonlinearity
effects can be corrected by proper preprocessing. These results are described in
Section 2.4.2 and details can be found in [64]. In the same section other results
are given that correct the bias in computation of association measures caused by
the dynamics of the corresponding time series by introducing Z-scores based on
independent Fourier transform surrogate data [128].

Additionally for climate networks, we have carried out an analysis of the
reliability of causal measures, for example conditional mutual information, for
more complicated directed networks. This analysis is described in Section 2.4.3
and details can be found in [65]. Finally, small-world phenomena, introduced
at the beginning of Chapter 2, are analysed in Section 2.5. It has been shown
that even for models generated from completely random networks the small-world
characteristic indicates the presence of the phenomenon and thus its reliability is
questionable, especially considering the transitive character of the corresponding
correlation measure [63].
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7.2 Colored graphs

The first step in studying the complexity of structures is through extending their
language and making a classification. Since the classification of countable ultra-
homogeneous graphs has been completed, a natural candidate is the correspond-
ing problem for homomorphism-homogeneity. For finite graphs classification is
easy and therefore the starting point is finite structures with an extended lan-
guage – namely bicolored graphs. This also follows the suggestion of Macpher-
son in [104] that one possible future step would be to classify homomorphism-
homogeneous graphs with edges colored using two or more colors. The classifi-
cation of homomorphism-homogeneous structures of this type is given by Theo-
rem 3.2.5. This result appears in [61].

The importance of this proof lies mainly in introducing the notion called the
pumping argument that is used later in the classification of L-colored homomophism-
homogeneous graphs. In the concluding Section 3.3 an open problem concerning
coincidence of the classes HH and MH is discussed. It turns out that arguments
from this chapter cannot be used to resolve this problem completely for the class
of bicolored graphs. However, as mentioned there, using results from the follow-
ing chapter about homomorphism-homogeneous L-colored graphs it can be shown
that these classes in fact coincide for bicolored graphs. In Section 3.3 other open
questions and problems are posed, such as the problem of classifing countably in-
finite homomophism-homogeneous bigraphs (Problem 3.3.2), whether the classes
HH and MH coincide for countably infinite bicolored graphs (Problem 3.3.3),
and whether or not the classifications of homomorphism-homogeneous bicolored
graphs and 3-edge-colored graphs differ (Problem 3.3.4).

The classification of bicolored graphs is followed by the classification of L-
colored graphs in Chapter 4. This topic is represented by two consecutive pa-
pers [61, 57] together covering the content of the chapter as a whole. The clas-
sification is given by two theorems. Firstly, Theorem 4.2.3 provides the classi-
fication of finite homomorphism-homogeneous and monomorphism-homogeneous
L-colored graphs when L is a chain. Secondly, the classification with same pa-
rameters except that L is assumed to be a diamond is given by Theorem 4.3.4. In
order to prove these results a generalization of the pumping argument has been
used.

As a side effect of the work in Chapter 4, examples of L-colored graphs that
show the classes HH and MH do not coincide for these structures emerged for
both the finite and infinite case. In Section 4.4 there are detailed conclusions for
this chapter, in which several open questions and conjectures arise, such as the
problem of classifying all finite homomorphism-homogeneous L-colored graphs
for general L (Problem 4.4.1) and whether the classes MH and HH coincide for
vertex-uniform L-colored graphs (Conjecture 4.4.1). Moreover if Conjecture 4.4.1
were true, one could then ask about the coincidence of these classes for countably
infinite vertex-uniform graphs, as conditionally posed in Problem 4.4.2.

7.3 Morphism extension classes

The question of the coincidence of classes HH and MH motivates a wider explo-
ration of the whole category of classes defined by various types of homogeneity

102



and mutual coincidence. As the main result of Chapter 5, the class of L-colored
graphs is shown to be sufficient to have all mutual relationships hold without
actual coincidence.

In fact even finite L-colored graphs would be enough, were it not for the fact
that the mutual coincidence of the classes IM and II can only be removed by
introducing countably infinite L-colored graphs.

This chapter largely consists of a collection of results from other authors and
other chapters of this thesis put into a broader context. It closes with asking
about the morphism extension classes hierarchy for L-colored graphs when using
a connected-homomorphism-homogeneous variant (Problem 5.3.1).

7.4 Relational complexity

Complementary to the analysis in Chapter 4 of homomorphism-homogeneous L-
colored graphs, Chapter 6 considers the language of a relational structure as a
variable and searches for its “minimal extension” to obtain an ultrahomogeneous
lift. This process is represented by the notions of relational and lift complexity.
The results of this chapter can be found in two consecutive papers [60, 59] which
together provide an analysis of these complexities. For more detailed conclusions
see Section 6.6.

The analysis is divided into two parts. The first part deals with finite graphs,
further subdivided according to complexity values. The main result for com-
plexity value 1 is given by Proposition 6.3.5, joining the classification of graphs
with relational complexity 1 with the classification of 2-colored k-graphs, which
is even more interesting since their classification is still an open problem. On the
other hand, for relational complexity 2 there are several propositions establishing
familes of graphs with relational complexity 2, namely Proposition 6.3.8 for met-
rically homogeneous graphs, Proposition 6.3.9 for trees and Proposition 6.3.10
for cographs. This analysis closes with several open problems, for example Prob-
lem 6.6.1 asking for a complete classification of graphs with relational complexity
2 or Problem 6.4.1 asking for determining the largest relational complexity a
graph with size n can have.

The second part deals with countably infinite structures. Namely it searches
for bounds on the relational complexity of universal structures for given classes
of relational structures. The class that is of particular interest in this work is
Forbh(F) for various F . The overall, although not the most general, result of
this part is given in Theorem 6.5.1, providing a lower bound on the relational
complexity of an ω-categorical universal structure U for the class Forbh(F). When
F is a finite minimal family of finite connected relational structures the relational
complexity of U is bounded below by the size of the largest minimal g-separating
g-cut. Moreover if U is a canonical universal structure for such a class the size
of the largest minimal g-separating g-cut gives the exact value of the relational
complexity.

The mentioned lower bound is given by Theorem 6.5.5 using a simple ob-
servation in the light of other results from Hubička and Nešetřil [72], namely
Theorem 6.5.6. The upper bound is provided mainly in Theorem 6.5.4, where
the construction of a specific lift-preserving automorphism group is given and it is
proved that the relational complexity of the canonical universal structure for the
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class Forbh(F) is bounded above by the size of the largest minimal g-separating
g-cut. The assumptions about F make the class Forbh(F) in fact wider than
in Theorem 6.5.1, however there is a condition for a universal structure to be
in fact a canonical universal structure. This ensures, mainly through existential
completeness, that the resulting lift does not modify the automorphism group.
Additionally, there is a simple proof using the notion of amalgamation failure to
bound relational complexity, as stated in Theorem 6.5.2, which is rather an al-
ternative to the previously mentioned bound, since g-separating g-cuts are more
easily handled.

In the concluding Section 6.6 there is a summary of results and the formulation
of several open problems.
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dependence and teleconnections in climate data: sources, relevance, nonstation-
arity. Climate Dynamics, pages 1–14, 2013.

J. Hlinka, D. Hartman, M. Vejmelka, J. Runge, N. Marwan, J. Kurths, and
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and M. Paluš. Reliability of Inference of Directed Climate Networks Using
Conditional Mutual Information. Entropy, 15(6):2023–2045, 2013.
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e`, vivj edges of graphs, either specific edge or using vertices concatenation, page 3

G,H graph, page 3

G ≤ H there exists homomorphism between digraphs G and H, page 15

Jn,k Johnson graph, page 90

Kn complete graph on n vertices, page 12
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A,B,C, . . . relational structure, page 3

A,B,C, . . . domains of relational structures A,B,C, . . ., page 3

δi arity of ith relation of relational structure A, page 3

X = (A, X1
X, X

2
X, . . . , X

N
X ) structure X defined as extension of structure A by

relations X i
X for i = 1, 2, . . . , N , page 84

ai, xi elements relational structure domain, page 3

ϕ, φ formulas or atomic formulas, page 19

GA Gaifman graph of structure A, page 92

lc(A) lift complexity of structure A, page 84

L signature of relational structure, page 3

L∞,0 first order language, page 19

L∞,0 quantifier-free language, page 19
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tifiers, page 19

A |= ϕ A is model of ϕ, page 19

a, x n-tuple of elements, page 3

A rooted structure, page 94

rc(A) relational complexity of structure A, page 84

Rel(L) class of all (countable) relational structures with signature L, page 3

A |L1 L1-reduct of A, page 18

~R root of rooted structure, page 94

L(A) canonical lift, page 94

RA tuple (Ri
A : i ∈ I) of all relations of structure A, page 3

Ri
A ith relation of relational structure A, page 3

T, Th(K) theory, theory of class K, page 19

ti, si terms of relational language, page 18
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Glossary

BS-convergence, 55
L-colored graph

complete, 66
connected, 66
disconnected, 66
edge-uniform, 66
uniform, 66
vertex-uniform, 66

L-convergence, 55
F -lift, 94
ω-categorical

structure, 20
theory, 20

n-graph
c-colored, 86

n-tuple, 3

age of a relational structure, 8
amalgamation, 11

free, 91
strong, 91

amalgamation of B1 and B2 over A,
91

anomaly time series, 47
antichain, 14
arc, 14
atomic formula, 18
automorphism, 4

back-and-forth, 7
Blood-oxygen-level dependent, 38

chain, 14
characteristic

global, 36
local, 36

characteristic path length, 36
chromatic unification, 63
class

HH, 21
MH, 21
MM, 21
amalgamation, 11
Gardiner’s, 17

clique, 13
clustering, 32

clustering coefficient, 36
coefficient

Pearson’s correlation, 40
cograph, 89
comparable

elements of poset, 14
complement

of graph, 12
complex network, 32
complexity

lift, 84
relational, 84

cone
having a, 25

connected
vertices, 13

connected component
of L-colored graph, 66

connected-homogeneous, 27
connected-homomorphism-homogeneous,

28
convergence

BS-convergence, 55
FO-convergence, 56
L-convergence, 55
X-convergence, 56
local weak, 55

core, 15
cycle, 13

directed, 15

degree, 13
degree distribution, 32
dense

subset of tournament, 27
density

homomorphism, 55
deoxyhemoglobin, 39
diameter of graph, 13
diamond, 14
digraph, 14

core, 15
reflexive, 14
rigid, 15

distance
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of vertices, 13
distribution

power-law, 33
dominating set, 19
dual

of digraph, 15

eccentricity, 13
edge

incident, 13
oriented, 14

EEG, 38
efficiency, 37
El Niño, 46
embedding, 4
Empirical Orhogonal Functions (EOF),

47
endomorphism, 4
epimorphism, 80
equivalence

automorphic, 54
structural, 54

Erdős number, 34
expansion of structure, 18

Facebook, 34
final vertex

of tournament, 15
fMRI, 38
formula, 18

r-local, 56
Fourier transform, 42
free

H-free, 14
F -free, 14

function
dominance, 44
graph dominance, 44
maximal dominance indicator, 44
minimal dominance indicator, 44
overall dominance, 44

girth, 13
Google Scholar, 34
graph, 3

L-colored, 15
n-edge-colored, 86
bicolored, 16
bipartite, 13

Clebsch, 28
complete, 12
complete bipartite, 13
complete multipartite, 13
connected, 13
disconnected, 13
edge transitive, 5
edges, 3
empty, 13
Erdős-Rényi, 32
Johnson, 90
Kneser, 90
line, 14
multicolored, 15
Petersen, 5
random bipartite, 12
rooted, 55
undirected, 3
vertex transitive, 5
vertices, 3
with loops allowed, 3

graph metric, 88
graphs

Gardiner, 17
greatest element

of poset, 14
group

automorphism, 4

hemoglobin, 39
homomorphism, 4

in-degree, 14
in-neighborhood

of vertex, 14
incomparable

elements of poset, 14
independent set, 13
index

small-world, 37
initial vertex

of tournament, 15
isomorphism, 4

La Niña, 46
language, 19

first order, 19
least element

of poset, 14
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leave, 14
lift, 84

complete, 94
complete on B, 94
monadic, 84

lift canonical, 94
local clustering coefficient, 36
loop, 3

matrix
connectivity, 39
distance, 13
weighted connectivity, 39

maximal element
of poset, 14

Milgram, Steven, 31
minimal element

of poset, 14
model

of formula, 19
of theory, 19

monomorphism, 4
Mutual information, 40

near-path, 21
neighborhood

of vertex, 13
network, 32

functional, 38
structural, 38

order
linear, 14
total, 14

Oscillation
North Atlantic (NAO), 48

out-degree, 14
out-neighborhood

of vertex, 14

part
of n-graph, 86

partially ordered set, 14
non-strict, 14
strict, 14

partite, 13
path, 13

shortest, 13
path exists in graph, 13
PET, 38

piece
of relational structure, 94

poset, 14
non-strict, 14

power-law, 32
degree distribution, 32

Principal Component Analysis, 47
Principal Component Analysis (PCA),

47
property

amalgamation, 8
extension, 9
hereditary, 8
homo-amalgamation, 24
joint embedding, 8
mono-amalgamation, 23
mono-extension, 23

PubMed, 34
pumping argument, 59

quantifier-free formulas, 19

random
graph, 32

random graph
Maslov-Sneppen, 37

reduct of structure, 18
relation

invariant, 84
resting state, 39
retraction, 15
retracts to, 15
root

of rooted structure, 94

Scopus, 34
sentence, 19
session, 38
set-homogeneous, 29
shadow, 84
shadow dataset, 45
six degrees of separation, 31
small-world property, 31
Stone pairing, 55
strict poset, 14
Strogatz, Steven, 32
structure

connected, 92
existentially complete, 92
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generic, 12
relational, 3
rooted, 94
universal, 10
younger, 8

subgraph, 4
subgraph induced, 4
substructure, 4
supernode, 48
surrogate

multivariate Fourier transform ,
42

teleconnection pattern, 48
Pacific North America (PNA), 48

temperature
sea surface (SST), 46

term, 18
theory, 19

of structures, 19
first order, 19

tournament
dense, 27

transitive tournament, 15
tree, 14
true

in structure, 19
tuple, 3
Twitter, 34

ultrahomogeneous
metrically, 88

vertex
correctly joined, 6
maximal dominant, 44
minimal dominant, 44

vertex color
monadic lift, 84

Watts, Duncan J., 32
Web of Science, 34
width

of rooted structure, 94
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