
PCP Theorem And Its Applications
Presented by Tomáš Masařík, Dušan Knop, Martin Böhm, Vojta T̊uma

Spring School 2014

PCP Theorem

D(�-approximation): An algorithm A is an �-approximation algori-
thm for a maximization problem P if the maximization value v(A) �
�OPT (P ), where OPT (P ) is the optimal solution.

Motivation: It is easy to recognize a valid �-approximation, but how
can we recognize that no �-approximation algorithm exists for a given
� < 1?

D(PCP-machine): A Turing machine T is a PCP-machine if it has
access to four tapes: a tape with the input and a work tape as usual,
a random-access tape with a proof of possibly exponential size, and a
random tape containing r random bits.

D(PCP complexity class): A language L 2 PCP (p; q) if there exists a
PCP-machine T such that on input x, T can access p random bits and
can also access q bits of the proof. This machine must then satisfy the
following:

� If x 2 L, then there is a proof y that makes T accept with proba-
bility 1.

� If x =2 L, then for every proof y, T accepts with probability < 1=2.

T(PCP Theorem): NP = PCP (O(logn);O(1)).

T(Hastad): NP = PCP (O(logn); 3).

T(Weaker PCP): For a fixed c, NP = PCP (nc; 1).

Proof of Weaker PCP

D: For two vectors x; y 2 f0; 1gn, we define x�y =
∑n

i=1 xiyi mod 2.
This corresponds to the number of 1-bits x and y have in common.

L(Random substring principle): If u 6= v then for a half of the possible
choices of x 2 f0; 1gn, u � x 6= v � x.

L(Linearity testing): After O(1=�) independently random linearity
checks, we can correctly decide with probability at least 1=2 whether or
not f is a function (1��)-close to a linear function, that is: Prx,y [f(x+
y) = f(x) + f(y)] � 1� �.

D(QUADEQ): QUADEQ is an NP -complete language of sys-
tems of quadratic equations over Z2 that are satisfiable. In other
words, we get a system of equations and ask for a solution.

D(Tensor product): For two n-dimensional vectors a; b, we have a 

b = (a1b1; a1b2; a1b3; : : : ; anbn). In other words, we do a matrix
product a � bT and read the matrix of size n� n as a big vector from
left to right.

O: QUADEQ is the following problem: given A matrix of size
m�n2 and an m-dimensional vector b, find an n2-dimensional vector
U such that AU = b and U is the tensor product u 
 u for some
n-dimensional vector u.

Relation of PCP and CSP

T(Hardness of approximation view): There exists � < 1 such that for
every L 2 NP there is a polynomial-time function f mapping strings
to (representations of) 3CNF formulas such that:

� x 2 L) val(f(x)) = 1;

� x =2 L) val(f(x)) < �:

D(CSP): If q 2 N (arity), then a qCSP instance ' is a collection
of functions '1; : : : ; 'm (constraints) from f0; 1gn to f0; 1g such that
each function 'i depends on at most q of its input bits.

We say that an assignment u 2 f0; 1gn satisfies a constraint 'i if
'i(u) = 1. Let val(') denote the relative maximum of satisfied con-
straints for any assignment u. If val(') = 1, we say ' is satisfiable.

D(Gap-CSP): For ever q 2 N; � < 1, define �-GAP qCSP to be the
problem of determining the following:

For a given qCSP instance ' whether:

1. val(') = 1,

2. val(') < �.

D: We say that �-GAP qCSP is NP -hard for every language L 2 NP
if there is a polynomial-time function f mapping strings to qCSP
instances satisfying:

1. x 2 L) val(f(x)) = 1,

2. x =2 L) val(f(x)) < �.

T(GAP Hardness): There exist constants q 2N; � 2 (0; 1) such that
�-GAP qCSP is NP -hard.

L: PCP Theorem implies GAP Hardness.

L: Hardness of Approximation View is equivalent to GAP Hardness.

Exercise Session 1

Exercise 1. Prove that the theorem GAP Hardness implies the PCP
Theorem.

Exercise 2. Prove that any language L that has a PCP -verifier using
r random bits and q adaptive queries also has a non-adaptive verifier
using r random bits and 2q queries.

Exercise 3. Prove that:

� PCP (0; 0) = PCP (0;O(logn)) = P .

� PCP (0;O(poly(n))) = NP .

� PCP (O(poly(n)); 0)) = co�RP .

� PCP (O(logn);O(1)) = PCP (O(logn);O(poly(n))).

Exercise 4. Prove that PCP (O(poly(n));O(1)) � NP .

Reductions using PCP
D: Let P be a maximization problem. A gap-introducing reduction
from some NP -hard problem H to P is a reduction that comes with
two parameters, f and �. Given an instance i of the problem H, we
want to output an instance p 2 P such that:

� if i 2 H: OPT (p) � f(p);
� if i =2 H: OPT (p) < �(jpj)f(p).

D: Let R;P be maximization problems. In a gap-preserving reduction
from R (with associated f1, �) to P (with associated f2; �), we want
for every instance r 2 R output p 2 P such that:

� if OPT (r) � f1(r), then OPT (p) � f2(p).
� if OPT (r) < �(jrj)f1(r) then OPT (p) < �(jpj)f2(p).

T(Stronger Hastad): NP � PCP1−ε,1/2+ε(O(logn); 3), and the ve-
rifier can only use functions odd and even on the three bits.

T(CSP view of Stronger Hastad): There exists no � > 1=2 approxi-
mation algorithm for the odd/even CSP unless P=NP.

D: Max 3-Lin is a maximization problem where the goal is to
satisfy as many linear equations as possible. Gap 3-Lin is the gap
version ofMax 3-Lin.

O: Gap-3-Lin with parameters 1�"; 1=2+" is hard to approximate
due to Stronger Hastad, even for equations modulo 2.

T(E3SAT 13=14): There exists no � > 13=14-approximation algo-
rithm for E3SAT unless P=NP.

T(E3SAT 7=8): There exists no � > 13=14-approximation algori-
thm for E3SAT unless P=NP.

T(Vertex Cover 7=6): For all constants " > 0, Vertex Co-
ver is NP-hard to approximate within a factor of 7=6� ".

Exercise Session 2
Exercise 1. Show an 1=2-approximation algorithm for the odd/even
CSP problem.

Exercise 2. Let Max 3-Maj be the optimization problem where
the input is a set of constraints over 3 boolean literals each, where each
constraint is of type “the majority of these three variables have value
1”. Show that there is no 2=3 + "-approximation for Max 3-Maj
unless P=NP.

Exercise 3. Let Max 3-SAT(k) be a Max 3-Sat problem
where each variable occurs at most k times. Give a gap-preserving
reduction from Max 3-Sat(29) to Max 3-Sat(5), with appro-
priate parameters, to show hardness for MAX-3SAT(5).


