PCP Theorem And Its Applications

Presented by Tomds Masarik, Dusan Knop, Martin Béhm, Vojta Tuma

Spring School 2014

PCP Theorem

D (a-approximation): An algorithm A is an a-approximation algori-
thm for a maximization problem P if the maximization value v(A) >
aOPT(P), where OPT(P) is the optimal solution.

Motivation: It is easy to recognize a valid a-approximation, but how
can we recognize that no a-approximation algorithm exists for a given
o< 17

D(PCP-machine): A Turing machine T is a PCP-machine if it has
access to four tapes: a tape with the input and a work tape as usual,
a random-access tape with a proof of possibly exponential size, and a
random tape containing r random bits.

D (PCP complexity class): A language L € PCP(p, q) if there exists a
PCP-machine T such that on input x, 7" can access p random bits and
can also access ¢ bits of the proof. This machine must then satisfy the
following:

e If x € I, then there is a proof y that makes T accept with proba-
bility 1.

e If ¢ ¢ L, then for every proof y, T accepts with probability < 1/2.

T (PCP Theorem): NP = PCP(O(logn),0(1)).
T (Hastad): NP = PCP(O(logn),3).
T (Weaker PCP): For a fixed ¢, NP = PCP(n¢,1).

Proof of Weaker PCP

D: For two vectors z,y € {0,1}", we define zoy = Z?:l Z;y; mod 2.
This corresponds to the number of 1-bits # and y have in common.

L(Random substring principle): If u # v then for a half of the possible
choices of © € {0,1}", uox # vou.

L(Linearity testing): After O(1/d) independently random linearity
checks, we can correctly decide with probability at least 1/2 whether or
not f is a function (1—§)-close to a linear function, that is: Prgz y[f(z+

y)=fl@)+fyl>1-4
D(QUADEQ)5 QUADEQ is an N P-complete language of sys-

tems of quadratic equations over Zsg that are satisfiable. In other
words, we get a system of equations and ask for a solution.

D (Tensor product): For two n-dimensional vectors a,b, we have a ®
b = (a1b1,a1b2,a1b3,...,anbn). In other words, we do a matrix
product a - b and read the matrix of size n X n as a big vector from
left to right.

0: QUADEQ is the following problem: given A matrix of size
m x n? and an m-dimensional vector b, find an n2-dimensional vector
U such that AU = b and U is the tensor product v ® u for some
n-dimensional vector .

Relation of PCP and CSP

T (Hardness of approximation view): There exists p < 1 such that for
every L € NP there is a polynomial-time function f mapping strings
to (representations of) 3CNF formulas such that:

o rcL=val(f(z)) =1,

o ¢ ¢ L= val(f(z)) <p.

D(CSP): If ¢ € IN (arity), then a gCSP instance ¢ is a collection

of functions ¢1,...,¢m (constraints) from {0,1}" to {0,1} such that
each function ¢; depends on at most ¢ of its input bits.

We say that an assignment u € {0,1}" satisfies a constraint ¢; if
w;(u) = 1. Let val(p) denote the relative maximum of satisfied con-
straints for any assignment . If val(y) = 1, we say ¢ is satisfiable.

D(Gap-CSP): For ever ¢ € IN, p < 1, define p-GAP qCSP to be the
problem of determining the following;:

For a given ¢gC'SP instance ¢ whether:

1. val(p) =1,
2. val(yp) < p.

D: We say that p-GAP qCSP is N P-hard for every language L € NP
if there is a polynomial-time function f mapping strings to ¢qCSP
instances satisfying:

1. z € L = val(f(z)) =1,
2. ¢ ¢ L= val(f(z)) < p.

T(GAP Hardness): There exist constants ¢ € IN, p € (0,1) such that
p-GAP qCSP is N P-hard.
L: PCP Theorem implies GAP Hardness.

L: Hardness of Approximation View is equivalent to GAP Hardness.

Exercise Session 1
Exercise 1. Prove that the theorem GAP Hardness implies the PCP
Theorem.

Exercise 2. Prove that any language L that has a PC P-verifier using
r random bits and ¢ adaptive queries also has a non-adaptive verifier
using 7 random bits and 29 queries.

Exercise 3. Prove that:

e PCP(0,0) = PCP(0,0(logn)) = P.

e PCP(0,0(poly(n))) = NP.

e PCP(O(poly(n)),0)) = co — RP.

e PCP(O(logn),0(1)) = PCP(O(logn), O(poly(n))).

Exercise 4. Prove that PCP(O(poly(n)),0(1)) C NP.

Reductions using PCP

D: Let P be a maximization problem. A gap-introducing reduction
from some N P-hard problem H to P is a reduction that comes with
two parameters, f and «. Given an instance i of the problem H, we
want to output an instance p € P such that:

e ifi € H: OPT(p) > f(p);
e ifi ¢ H: OPT(p) < a(lp|)f(p).

D: Let R, P be maximization problems. In a gap-preserving reduction
from R (with associated f1, «) to P (with associated fa,), we want
for every instance r € R output p € P such that:

* it OPT(r) > f1(r), then OPT(p) > f2(p).
e if OPT(r) < a(|r|)f1(r) then OPT(p) < B(|p|)f2(p)-

T (Stronger Hastad): NP C PCP175’1/2+6(0(10g n),3), and the ve-
rifier can only use functions odd and even on the three bits.

T (CSP view of Stronger Hastad): There exists no @ > 1/2 approxi-
mation algorithm for the odd/even CSP unless P=NP.

D: MAX 3-LIN is a maximization problem where the goal is to
satisfy as many linear equations as possible. GAP 3-LIN is the gap
version of MIAX 3-LIN.

0: GAP-3-LIN with parameters 1—¢, 1/24-¢ is hard to approximate
due to Stronger Hastad, even for equations modulo 2.

T(E3SAT 13/14): There exists no a > 13/14-approximation algo-
rithm for E3SAT unless P=NP.

T(E3SAT 7/8): There exists no a > 13/14-approximation algori-
thm for E3SAT unless P=NP.

T(VERTEX COVER 7/6): For all constants ¢ > 0, VERTEX CO-
VER is NP-hard to approximate within a factor of 7/6 — ¢.

Exercise Session 2

Exercise 1. Show an 1/2-approximation algorithm for the odd/even
CSP problem.

Exercise 2. Let MAX 3-MAJ be the optimization problem where
the input is a set of constraints over 3 boolean literals each, where each
constraint is of type “the majority of these three variables have value
1”. Show that there is no 2/3 + ¢-approximation for MAX 3-MAJ
unless P=NP.

Exercise 3. Let MAX 3—SAT(k) be a MAX 3-SAT problem
where each variable occurs at most k times. Give a gap-preserving
reduction from MAX 3—SAT(29) to MAX ?)—SAT(S)7 with appro-
priate parameters, to show hardness for MAX-3SAT(5).

