
Quasi-Polynomial Local Search
for Restricted Max-Min Fair Allocation

Luká Poláek, Ola Svensson
Presented by Martin Böhm

Approximation and Online Algorithm Seminar, MFF UK

D(Max-min fair allocation): Given the set of R resources and P pla-
yers, find an allocation of resources to the players such that the least
satisfied player is satisfied as much as possible. Also known as the
Santa Claus problem.

D(Restricted max-min fair allocation): In our setting, while resources
have different values to all players (vij for the resource i-th player and
j-th resource) there are only two possible values that can arise for a
given player: vij = 0 or vij = vJ .

T(Main theorem): For any " 2 (0; 1] we can find a 1
4+ε -approximation

algoritthm for restricted max-min fair allocation in time nO(
1
ε logn),

where n = jPj+ jRj.

O: Our algorithm tries to do allocation for a given T which is said to
be the optimum solution. If T is not a feasible solution, it fails and
we can use this to apply a binary search on the optimal value of T .

Therefore, for the rest of the talk, we assume T is fixed and it is the
optimum solution of the restricted max-min fair allocation problem.
For the simplicity of the argument, we also assume T = 1 through
scaling of the values on input.

Configuration LP
D(Configuration LP): The configuration LP has exponentially many
conditions, based on every admissible assignment of the resources to
a player. More formally, it is the following linear program CLP (T)
parametrized by T :

min 0;

8i 2 P :
∑

C∈C(i,T)

xi,C � 1;

8j 2 R :
∑

i,C:j∈C,C∈C(i,T)

xi,C � 1;

x � 0:

D: The dual of the Configuration LP can be stated as:

max
∑
i∈P

yi �
∑
j∈R

zj ;

8i 2 P;8C 2 C(i; T) : yi �
∑
j∈C

zj ;

y; z � 0:

Local search
We will solve the problem by using a local search algorithm for a
special kind of hypergraph matching. � > 4 will be our approximation
parameter.

D: The ground set of our hypergraph will be P [R. A hyperedge e in
our setting will contain a player eP along with an inclusion-minimal
set of resources such that eP has assigned value at least 1=�.

D(Thin, fat edges): A fat edge will be an edge such that it contains
only one resource (of size at least 1=�. A thin edge is any non-fat
edge.

D(Length): The length of a fat edge will be set as 0, of any thin edge
as 1.

In our scenario, we will try to build an alternating path tree on our
hypergraph until we hit a certain depth. Suppose that we have already
created a partial matching M . The tree is contains two kinds of edges.
The first group are the edges we have decided to try to add (denoted
as A) and the other group are the edges in M which block the addition
of the edges in A – these will be denoted B.

D(Addable edge): An edge e is addable to the alternating path tree if
it is disjoint from any edge in A [B and it contains a player that is
already in our tree.

D(Blocking edge): An edge b in the matching M is blocking an edge
e if it intersects the edge in a resource.

D(Layers): For the sake of the analysis, we decompose the edge sets
A and B into classes based on the distance to the root, denoting them
as A0, B0, A1, B1 etc. We also denote Ati (Bti) to be the subset of

edges in Ai (Bi) which are thin, and similarly A
f
i (Bfi) for fat edges.

Local search algorithm

Input: a partial matching M .

Output: an increased matching, provided T is a feasible solution.

1 Find an unmatched player, make it a root of the tree.

2 While an addable edge is within distance 2 log(α−1)/3(jPj) + 1:

3 Find an addable edge e of minimum distance from the root.

4 Add e to the tree.

5 If it has blocking edges, add them to the tree also.

6 While e has no blocking edges:

7 Add e to the matching M .

8 Remove its parent edge b from the matching M .

9 Repeat the procedure for the grandparent of e.

10 Remove all edges that are in the same or greater distance as
the last edge added to the matching.

Analysis
O: The algorithm does go through all fat edges first, selecting an edge
of distance 1 only after the subtree of distance 0 has been traversed.

L(Runtime): For a desired approximation guarantee of 1=� = 1=(4 +

"), the algorithm terminates in time nO(
1
ε logn).

P: Create a signature vector:

(�jA0j; jB0j;�jA1j; jB1j; : : : ;�jA2kj; jB2kj;1):

We prove that any operation decreases the lexicographic size of the
vector. Since the length of the vector is bounded by the limit in the
algorithm, we get the desired runtime bound.

L(Key lemma): Let � > 4. Assuming that CLP (T) is feasible, if
there is no addable edge within distance 2D+1 from the root for some
integer D, then

(�� 4)

3

D∑
i=1

jBt2ij < jBt2D+2j:

C(Correctness): If � > 4 and CLP (T) is feasible, there always is an
addable edge within distance 2D + 1 for D = log(α−1)/3(jPj).

O: Every blocking edge can be mapped to exactly one vertex of P.

O: The size of each thin edge is at most 2=�.

O: Any part of a B-edge that is not contained in any A-edge must be
of size 1=�.

