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Discrepancy
D(Discrepancy): We work in a universe U = [n], and we are given
a list of sets F , where each f ∈ F is a subset of U . Our goal is to
color the universe by two colors so that all sets in F are as balanced
as possible.

Formally, given a coloring x ∈ {−1, 1}n, we have disc(F , x) :=
maxF∈F |

∑
i∈F xi| and our minimization goal disc(F) =

minx∈{−1,1}n disc(F , x).

Problem: Assuming P 6= NP and assuming that m = O(n), we can-
not distinguish between F with discrepancy 0 and F with discrepancy√
n.

D(Hereditary discrepancy): herdisc(F) = maxJ⊆U disc(F|J ).

D(Discrepancy for matrices): Given a matrix A ∈ Rm×n, we de-
fine disc(A) = minx∈{−1,1}n‖Ax‖∞. We also define herdisc(A) =
maxJ⊆[n] disc(AJ ).

Previous work
D(Detlb): A determinant lower bound for a matrix A ∈ Rm×n is

detlb(A) = max
k

max
B∈Rk×k,B⊆A

| detB|1/k.

T: herdisc(A) ≥ (1/2) · detlb(A).

T: herdisc(A) ≤ O(log(mn)
√

logn)detlb(A).

Problem 1: The function detlb is not a norm.

Problem 2: Nobody knows how to compute detlb.

Norms
D(Norm): Given a vector space V say over C, a norm is a function
n : V → R such that the following holds:

1. n(av) = an(v) for a vector v and a scalar a,
2. n(u+ v) ≤ n(u) + n(v) for a pair of vectors u, v,
3. if n(u) = 0 then u is a zero vector.

Some useful norms:

1. ‖u‖p = (
∑

i |ui|p)1/p – an lp norm.
2. ‖A‖p→q = max‖x‖q=1‖Ax‖p – lp → lq operator norm.

3. ‖A‖∗ =
∑m

i=1 σi – the nuclear norm, where σi is a singular
value of A.

D(SV decomposition): Let M ∈ Rm×n. Then there exists a decom-
position M = UΣV T , where U, V are orthogonal matrices and Σ is
a diagonal matrix with non-negative real entries named singular val-
ues.

New results
D(Gamma-2): We define the γ2 function from A ∈ Rm×n to R as
follows

γ2(A) = min
A=BC

‖B‖2→∞‖C‖1→2.

T(Known.): γ2(A) is a norm.

T(Known.): γ2(A) can be computed using a semidefinite program of
size polynomial to A.

T(Main theorem 1): herdisc(A) ≥ γ2(A)/c logm

T(Main theorem 2): herdisc(A) ≤ γ2(A) · c
√

logm

Note: Both inequalities are asymptotically tight.

Other results: Applications of the previous bounds in data struc-
ture lower bounds, new bounds on combinatorial discrepancy of axis-
parallel rectangles in Rd, easier proofs of previously-known bounds,
and more.

Some properties of γ2

O: ‖B‖2→∞ is equal to maxr row of B{‖r‖2}.
O: ‖C‖1→2 is equal to maxc column of C{‖c‖2}.
T:

γ2(A) = min
A=BC

{ max
r row of B

{‖r‖2} · max
c column of C

{‖c‖2}}.

O: γ2(AI,J ) ≤ γ2(A).

O: γ2(AT ) = γ2(A).

T(Non-trivial): γ2(A+B) ≤ γ(A) + γ(B).

Graphical interpretation
D(Ellipsoid): A zero-centered ellipsoid is defined as {x ∈ Rn|xTMx ≤
1} for a positive definite matrix M (with a positive square root M1/2).

Alternately, a zero centered ellipsoid is a continuous image of a ball,
i.e. {Bx; ‖x‖2 ≤ r} for a radius r and a matrix B.

D: For a zero-centered ellipsoid E, we define ‖E‖∞ to be the the
maximum ‖u‖∞ over all points u ∈ E.

T: γ2(A) = min{‖E‖∞ for E ellipsoid, E contains columns of A.}

A semidefinite program

γ2(A) = min t

∀i ∈ {1, 2, . . . ,m+ n} : Xii ≤ t
∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}Xi,m+j = aij

∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}Xn+i,j = aji

X � 0

O: The variable t becomes tight in at least two rows, one correspond-
ing to B and one to C.

From the dual we can get the following characterization:

T(Known.): γ2(A) = max{‖P 1/2AQ1/2‖∗ for P,Q diagonal, nonneg-
ative, with Tr(P ) = Tr(Q) = 1}.

Finally, a theorem with proof

T: For any m× n matrix A of rank r,

detlb(A) ≤ γ2(A) ≤ O(log r)detlbA.

In the proof we use a variant of Binet Cauchy formula:

T(Binet-Cauchy): Let A ∈ Rm×n be a matrix, and B ∈ Rm×n be a
matrix. Then we have

det(AB) =
∑

S∈
(
[n]
m

) det(A[m],S) det(BS,[m]).

C: For some choice of columns J , det(AJ )2 ≥ 1(
n
k

) det(AAT ).

T(Weighted Binet-Cauchy): Let A be a k × n matrix, and let W be
a nonnegative diagonal unit-trace n × n matrix. Then there exists a
k-element set J ⊆ [n] such that

|detAJ |1/k ≥
√
k/e · | det(AWAT )|1/2k.


