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Discrepancy

D (Discrepancy): We work in a universe U = [n], and we are given
a list of sets F, where each f € F is a subset of U. Our goal is to
color the universe by two colors so that all sets in F are as balanced
as possible.

Formally, given a coloring =z € {—1,1}", we have disc(F,x)
maxper | ) ;ep il and our minimization goal disc(F) =
ming (1 1yn dise(F, z).

Problem: Assuming P # NP and assuming that m = O(n), we can-
not distinguish between F with discrepancy 0 and F with discrepancy

Vn.
D (Hereditary discrepancy): herdisc(F) = max jcy disc(F|s).

D(Discrepancy for matrices): Given a matrix A € R™*" we de-
fine disc(A) = mingc(_; 1yn|lAzllc. We also define herdisc(A) =
max jcpp] disc(Ay).

Previous work
D(Detlb): A determinant lower bound for a matrix A € R™*™ is

max | det B|M/*.

detlb(A) = max
k  BeRkxk BCA

T: herdisc(A) > (1/2) - detlb(A).
T: herdisc(A) < O(log(mn)+/logn)detlb(A).
Problem 1: The function detlb is not a norm.

Problem 2: Nobody knows how to compute detlb.

Norms

D(Norm): Given a vector space V say over C, a norm is a function
n : V — R such that the following holds:

1. n(av) = an(v) for a vector v and a scalar a,
2. n(u +v) < n(u) + n(v) for a pair of vectors u, v,
3. if n(u) = 0 then u is a zero vector.

Some useful norms:

L flully = (X, [wil?)/? — an 1, norm.

2. |Allp—q = max)z,=1llAz|lp — Ip — lq operator norm.

3. |All« = X, 0y — the nuclear norm, where o; is a singular

value of A.

D(SV decomposition): Let M € R™*™. Then there exists a decom-
position M = UXVT, where U,V are orthogonal matrices and ¥ is
a diagonal matrix with non-negative real entries named singular val-
ues.

New results
D(Gamma-2): We define the 2 function from A € R™*™ to R as
follows
A) = min ||B c .
72(4) = min [[Bll2—o0[|Cll1-2

T (Known.): v2(A) is a norm.

T (Known.): v2(A) can be computed using a semidefinite program of
size polynomial to A.

T (Main theorem 1): herdisc(A) > v2(A)/clogm
T (Main theorem 2): herdisc(A) < v2(A) - cy/logm
Note: Both inequalities are asymptotically tight.

Other results: Applications of the previous bounds in data struc-
ture lower bounds, new bounds on combinatorial discrepancy of axis-
parallel rectangles in R, easier proofs of previously-known bounds,
and more.

Some properties of .
O: || B|l2— o0 is equal to max; row of B{||7|2}-
O: [|C|l1-2 is equal to max, column of c{llc/l2}-
T:

{llrfl2} -

A) = i
v2(A) = min { max

O: v2(Ar,7) < 72(A).
O: 72(AT) = 72(A).
T (Non-trivial): y2(A + B) < v(A) + v(B).

max_ {lel2}}.

c column

Graphical interpretation

D (Ellipsoid): A zero-centered ellipsoid is defined as {z € R*|zT Mz <
1} for a positive definite matrix M (with a positive square root M1/2).
Alternately, a zero centered ellipsoid is a continuous image of a ball,
i.e. {Buz;||z|l2 < r} for a radius r and a matrix B.

D: For a zero-centered ellipsoid F, we define ||E||oc to be the the
maximum ||u||ec over all points u € E.

T: v2(A) = min{||F||c for E ellipsoid, F contains columns of A.}

A semidefinite program

v2(A) = mint
vie{1,2,....m+n}: X; <t
Vie{l,...,m},j€{1,...,n}X; mtj = aij
Vie{l,...,m},j€{1,...,n}Xntij = aj;
X*>0

O: The variable t becomes tight in at least two rows, one correspond-
ing to B and one to C.

From the dual we can get the following characterization:

T (Known.): y2(A) = max{||P/2AQ/2||, for P,Q diagonal, nonneg-
ative, with Tr(P) = Tr(Q) = 1}.

Finally, a theorem with proof

T: For any m X n matrix A of rank r,

detlb(A) < 72(A) < O(log r)detlbA.

In the proof we use a variant of Binet Cauchy formula:

T (Binet-Cauchy): Let A € R™*™ be a matrix, and B € R™*" be a
matrix. Then we have

det(AB) = Y det(Apy,),s) det(Bs,(m))-
se(ln))
C: For some choice of columns J, det(A )% > ﬁ det(AAT).
k

T (Weighted Binet-Cauchy): Let A be a k X n matrix, and let W be
a nonnegative diagonal unit-trace n X n matrix. Then there exists a
k-element set J C [n] such that

|detAs|Y/*® > \/k/e - |det(AW AT)|1/2F,



