Factorization Norms and Hereditary Discrepancy

Jiří Matoušek, Aleksandar Nikolov, Kunal Talwar Presented by Martin Böhm Spring School 2015

Discrepancy

D(Discrepancy): We work in a universe U = [n], and we are given a list of sets \mathcal{F} , where each $f \in \mathcal{F}$ is a subset of U. Our goal is to color the universe by two colors so that all sets in \mathcal{F} are as balanced as possible.

Formally, given a coloring $x \in \{-1,1\}^n$, we have $\operatorname{disc}(\mathcal{F},x) :=$ $\max_{F \in \mathcal{F}} |\sum_{i \in F} x_i|$ and our minimization goal disc (\mathcal{F}) = $\min_{x \in \{-1,1\}^n} \operatorname{disc}(\mathcal{F}, x).$

Problem: Assuming $P \neq NP$ and assuming that m = O(n), we cannot distinguish between \mathcal{F} with discrepancy 0 and \mathcal{F} with discrepancy \sqrt{n} .

D(Hereditary discrepancy): herdisc(\mathcal{F}) = max_{$J \subseteq U$} disc($\mathcal{F}|_J$).

D(Discrepancy for matrices): Given a matrix $A \in \mathbb{R}^{m \times n}$, we define disc(A) = min_{x \in \{-1,1\}^n} ||Ax||_{\infty}. We also define herdisc(A) = $\max_{J \subset [n]} \operatorname{disc}(A_J).$

Previous work

D(Detlb): A determinant lower bound for a matrix $A \in \mathbb{R}^{m \times n}$ is

$$\det \operatorname{lb}(A) = \max_{k} \max_{B \in \mathbb{R}^{k \times k}, B \subseteq A} |\det B|^{1/k}.$$

T: herdisc $(A) > (1/2) \cdot \text{detlb}(A)$.

T: herdisc(A) $\leq O(\log(mn)\sqrt{\log n})$ detlb(A).

Problem 1: The function detlb is not a norm.

Problem 2: Nobody knows how to compute detlb.

Norms

D(Norm): Given a vector space V say over \mathbb{C} , a norm is a function $n: V \to \mathbb{R}$ such that the following holds:

1. n(av) = an(v) for a vector v and a scalar a.

2. $n(u+v) \le n(u) + n(v)$ for a pair of vectors u, v,

3. if n(u) = 0 then u is a zero vector.

Some useful norms:

- 1. $||u||_p = (\sum_i |u_i|^p)^{1/p}$ an l_p norm.
- 2. $||A||_{p \to q} = \max_{||x||_q=1} ||Ax||_p l_p \to l_q$ operator norm.
- 3. $||A||_* = \sum_{i=1}^m \sigma_i$ the nuclear norm, where σ_i is a singular value of A.

D(SV decomposition): Let $M \in \mathbb{R}^{m \times n}$. Then there exists a decomposition $M = U\Sigma V^{T}$, where U, V are orthogonal matrices and Σ is a diagonal matrix with non-negative real entries named singular values.

New results

D(Gamma-2): We define the γ_2 function from $A \in \mathbb{R}^{m \times n}$ to \mathbb{R} as follows

$$\gamma_2(A) = \min_{A = BC} ||B||_{2 \to \infty} ||C||_{1 \to 2}.$$

T(Known.): $\gamma_2(A)$ is a norm.

T(Known.): $\gamma_2(A)$ can be computed using a semidefinite program of size polynomial to A.

T(Main theorem 1): herdisc $(A) \ge \gamma_2(A)/c \log m$

T(Main theorem 2): herdisc(A) $< \gamma_2(A) \cdot c \sqrt{\log m}$

Note: Both inequalities are asymptotically tight.

Other results: Applications of the previous bounds in data structure lower bounds, new bounds on combinatorial discrepancy of axisparallel rectangles in \mathbb{R}^d , easier proofs of previously-known bounds, and more.

Some properties of γ_2

O: $||B||_{2\to\infty}$ is equal to $\max_{r \text{ row of } B} \{||r||_2\}.$ **O:** $||C||_{1 \to 2}$ is equal to max_c column of $C\{||c||_2\}$. T: $\gamma_2(A) = \min_{A=BC} \{ \max_{r \text{ row of } B} \{ \|r\|_2 \} \cdot \max_{c \text{ column of } C} \{ \|c\|_2 \} \}.$

O: $\gamma_2(A_{I,J}) < \gamma_2(A)$. **O:** $\gamma_2(A^T) = \gamma_2(A)$. **T**(Non-trivial): $\gamma_2(A+B) < \gamma(A) + \gamma(B)$.

Graphical interpretation

D(Ellipsoid): A zero-centered ellipsoid is defined as $\{x \in \mathbb{R}^n | x^T M x \leq x \in \mathbb{R}^n | x^T M x < x \in \mathbb{R}^n \}$ 1} for a positive definite matrix M (with a positive square root $M^{1/2}$) Alternately, a zero centered ellipsoid is a continuous image of a ball, i.e. $\{Bx; \|x\|_2 \leq r\}$ for a radius r and a matrix B.

D: For a zero-centered ellipsoid E, we define $||E||_{\infty}$ to be the the maximum $||u||_{\infty}$ over all points $u \in E$.

T: $\gamma_2(A) = \min\{||E||_{\infty} \text{ for } E \text{ ellipsoid, } E \text{ contains columns of } A.\}$

A semidefinite program

 $\gamma_2(A) = \min t$ $\forall i \in \{1, 2, \dots, m+n\} : X_{ii} < t$ $\forall i \in \{1, \ldots, m\}, j \in \{1, \ldots, n\} X_{i, m+i} = a_{ij}$ $\forall i \in \{1, \dots, m\}, j \in \{1, \dots, n\} X_{n+i, j} = a_{ji}$ $X \succ 0$

O: The variable t becomes tight in at least two rows, one corresponding to B and one to C.

From the dual we can get the following characterization:

T(Known.): $\gamma_2(A) = \max\{\|P^{1/2}AQ^{1/2}\|_* \text{ for } P, Q \text{ diagonal, nonneg-}$ ative, with Tr(P) = Tr(Q) = 1.

Finally, a theorem with proof

T: For any $m \times n$ matrix A of rank r,

$$detlb(A) \le \gamma_2(A) \le O(\log r) detlbA.$$

In the proof we use a variant of Binet Cauchy formula:

T(Binet-Cauchy): Let $A \in \mathbb{R}^{m \times n}$ be a matrix, and $B \in \mathbb{R}^{m \times n}$ be a matrix. Then we have

$$\det(AB) = \sum_{S \in \binom{[n]}{m}} \det(A_{[m],S}) \det(B_{S,[m]}).$$

C: For some choice of columns J, $\det(A_J)^2 \geq \frac{1}{\binom{n}{2}} \det(AA^T)$.

T(Weighted Binet-Cauchy): Let A be a $k \times n$ matrix, and let W be a nonnegative diagonal unit-trace $n \times n$ matrix. Then there exists a k-element set $J \subseteq [n]$ such that

$$|detA_J|^{1/k} \ge \sqrt{k/e} \cdot |\det(AWA^T)|^{1/2k}.$$