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Definitions and Notation
D(k-Set-Packing):

Input: A family F ⊆ 2U of sets of size at most k.

Goal: Find a maximum size subfamily of F of pairwise disjoint sets.

T(Main Theorem): For any ε > 0 and any integer k ≥ 3 there is
a polynomial time (k + 1 + ε)/3-approximation algorithm for k-Set-
Packing.

N: F0 ≡ F \ F0.

N: For a vertex set X , N(X ) ≡ neighbors of vertices in X .

N: For a vertex set X , N [X ] ≡ N(X ) ∪ X .

D(Pathwidth): A graph G has pathwidth at most pw if it has a tree-
decomposition of treewidth at most pw where the decomposition itself
is a path.

D(Conflict graph): For a disjoint starting family F0 ⊆ F we define a
conflict graph ConF0

as a bipartite graph with vertex set F and edge

set {S1S2|S1 ∈ F0, S2 ∈ F0, S1 ∩ S2 6= ∅}.
We will use Con if the starting family is clear from context. We lose
some information in the conflict graph – namely the disjointness in-
formation for neighbors in F0.

D(Improving set. . . ): For a starting family F0 we call an improving
set X a set of vertices of F0 such that:

1. All members of X are pairwise disjoint;
2. |N(X )| < |X |, i.e. we can improve F0 using X .

D(. . . of bounded pathwidth): An improving set X with respect to
F′ ⊆ F has pathwidth at most pw if the subgraph of the conflict
graph induced by N [X ] is of pathwidth at most pw.

Part 1 – The FPT Algorithm
Color coding:

1. A dynamic-programming technique used to efficiently find a
small structure of bounded treewidth (a path, cycle, etc.) within
a larger graph.

2. Idea: Have a coloring function assign colors to vertices. Look
only for the substructure that is colorful.

3. Originally probabilistic: if the probability that the structure be-
comes colorful is non-trivial, we try many coloring functions and
get a polynomial, constant-error algorithm.

4. Can be derandomized by a standard argument.

L(Bounded pathwidth algorithm): Let pw, k (parameter of k-Set-
Packing) and r (size of the improving set we look for, later set to
O(log |F|)) be fixed. There exists an algorithm that:

1. given a disjoint family F0 ⊆ F and two coloring functions
cpath : F0 → [r − 1] and cuniv : U → [rk],

2. in time 2O(rk)|F|O(pw),
3. determines whether an improving set X of size at most r and

pathwidth at most pw exists, s.t. cpath is injective on NCon(X )
and cuniv is injective on

⋃
S∈X S.

P: Create an auxiliary digraph Gstate of size O(2r(k+1)|F|pw+1). Ev-
ery state (vertex of Gstate) will represent a partial pathwidth decom-
position. We will traverse this graph and look for a pathwidth decom-
position that is also an improving set.

Instead of the entire partial pathwidth decomposition, we store in
every state a triplet (Dpath, Duniv, B), where

1. Dpath are the colors of members of F0 we have already traversed
in the decomposition;

2. Duniv are the colors of the universe that we have seen so far
(inside sets of F0 that we have traversed);

3. B is a set of size at most pw + 1 – our current pathwidth de-
composition bag.

We add directed edges toGstate which correspond to progressing along
a pathwidth decomposition. We then run a graph search on Gstate.

The injectiveness of Dpath ensures that we do not go back in the
pathwidth decomposition; the injectiveness of Duniv ensures that the
visited sets of F0 are disjoint.

Clm: There exists a path in the graph Gstate from the vertex (∅, ∅, ∅)
to the vertex (Dpath, Duniv, ∅) for Dpath < Duniv/k if and only if
there exists an improving set X of size at most r of pathwidth at
most pw, such that Dpath is injective on N(X ) and Duniv is injective
on

⋃
S∈X S.

Part 2 – Constant Pathwidth Suffices
T(Main claim): Let k be an integer, ε > 0. Then there exist constants
c1(k, ε), c2(k, ε) such that for any disjoint family F0 ⊆ F for which
there is no improving set of size at most c1 logn that has pathwidth
at most c2, we have |OPT | ≤ ((k + 1)/3 + ε)|F0|.
P: Assume we are in a situation where there is no valid improving
set. Set C ≡ OPT ∩ F0, A0 ≡ F0 \ C, B0 ≡ OPT \ C. We restrict
ourselves to G[A0 ∪ B0]. We will create a sequence of 1/ε subgraphs
G[Ai ∪Bi] which have roughly the same properties as (A0, B0), that
is:

1. in G[Ai ∪ Bi] there is no subset X ⊆ Bi of size at most
2(k + 1)1/ε−i such that |N(X )| < |X |.

2. |A0 \Ai| = |B0 \Bi|, or equivalently |A0 \B0| = |Ai \Bi|.

Split Bi into sets B1
i , B2

i , B≥3
i , where the superscript indicates the

degree of the vertices.

We note the following two claims:

O: Either |B1
i | ≤ ε|OPT| ≤ ε|Ai| or we can construct G[Ai+1∪Bi+1].

Clm(Key claim): B2
i always satisfies |B2

i | ≤ (1 + ε)|Ai|.

If the two claims hold, we note that the number of edges satis-
fies ||G[Ai ∪ Bi]|| ≥ 1|B1

i | + 2|B2
i | + 3|B3

i |, but it also satisfies
||G[Ai ∪ Bi]|| ≤ k|Ai|. Summing up all inequalities together, we get
|Bi| ≤ ((k + 1)/3 + ε)|Ai| and finally |OPT| ≤ ((k + 1)/3 + ε)|F0|.

P(Key claim): Restrict the graph to only G ≡ G[Ai ∪ B2
i ]. For con-

tradiction, assume |B2
i | > (1 + ε)|Ai|.

The graph G is a bipartite graph where every vertex of the partition
B2

i has degree exactly two. We can look at this graph as a multigraph
G′ which has the vertex set Ai and edge set B2

i (understood as pairs
of Ai).

|B2
i | > (1+ε)|Ai| implies

||G′||
|G′| = 1+ε, which implies d(G′) = 2+2ε.

We find an improving set of size O(logG′) = O(logF) and of constant
pathwidth using Overcharged short cycle lemma below.

L(Short cycle lemma): Let G be a graph of minimal degree 3. Then
G contains a cycle of length at most O(logn).

L(Overcharged short cycle lemma): Let H be a multigraph, |H| = n,
δ(H) ≥ 3. Let we be a labeling on edges of H by a subset of
some alphabet Σ. Assume that for some γ, the following holds:
∀e ∈ E : we ≤ γ and ∀α ∈ Σ : |{occurences of α in all labels}| ≤ γ.

Then there exists a subtree T0 = (V0, E0) with root r and two edges
e1 and e2 outside T0 such that:

1. |V0| ≤ 4(log3/2 n+ 2),
2. both T0 + e1 and T0 + e2 contains a cycle,
3. T0 is a tree with at most 4 leaves,
4. If we set β ≡ dlog3/2(12γ2)e, then every pair of edges ea, eb ∈
T0 it holds that if their labels intersect, then |dist(ea, r) −
dist(eb, r)| ≤ β, where for an edge e = uv, dist(e, r) ≡
min(dist(u, r), dist(v, r)).

N: Denote P as the subtree of T0 such that P is connected and it
contains all endpoints of e1 and e2.

O: P + e1 + e2 has n vertices, but n+ 1 edges.

C: Let T0, e1, e2 be as in Overcharged short cycle lemma. Then the
graph P + e1 + e2 has a path decomposition of width at most 4β+ 3.


