Rounding Semidefinite Programming Hierarchies via Global Correlation

Boaz Barak, Prasad Raghavendra, David Steurer Presented by Martin Böhm Combinatorics and Graph Theory PhD Seminar, 2014, MFF UK

Lasserre Hierarchy

Notation: Let $\mathcal{P}_t([n]) := \{I \subseteq [n] \mid |I| \leq t\}$ be the set of all index sets of cardinality at most t and let $y \in \mathbb{R}^{\mathcal{P}_{2t+2}([n])}$ be a vector with entries y_I for all $I \subseteq [n]$ with $|I| \leq 2t + 2$.

D(Moment matrix): $M_{t+1}(y) \in \mathbb{R}^{\mathcal{P}_{t+1}([n])} \times \mathcal{P}_{t+1}([n])$:

$$M_{t+1}(y)_{I,J} := y_{I\cup J} \quad \forall |I|, |J| \le t+1$$

D(Moment matrix of slacks): For the ℓ -th ($\ell \in [m]$) constraint of the **General 2CSP setting** LP $A^T x > b$, we create $M_t^{\ell}(y) \in \mathbb{R}^{\mathcal{P}_t([n]) \times \mathcal{P}_t([n])}$.

$$M_t^{\ell}(y)_{I,J} := (\sum_{i=1}^n A_{li} y_{I \cup J \cup \{i\}}) - b_l y_{I \cup J}$$

D(*t*-th level of the Lasserre hierarchy): Let $K = \{x \in \mathbb{R}^n \mid Ax > b\}$. Then $\operatorname{LAS}_t(K)$ is the set of vectors $y \in \mathbb{R}^{\mathcal{P}_{2t+2}([n])}$ that satisfy

 $M_t^{\ell}(y) \succeq 0 \quad \forall \ell \in [m];$ $M_{t+1}(y) \succeq 0;$ $y_{\emptyset} = 1.$

Furthermore, let $\operatorname{Las}_{t}^{\operatorname{proj}} := \{(y_{\{1\}}, \ldots, y_{\{n\}}) \mid y \in \operatorname{Las}_{t}(K)\}$ be the projection on the original variables.

Intuition: $M_{t+1}(y) \succeq 0$ ensures consistency (y behaves locally as a distribution) while $M_t^{\ell}(y) \succeq 0$ guarantees that y satisfies the l-th linear constraint.

T(Lasserre properties from Martin K's lecture): Let $K = \{x \in \mathbb{R}^n \mid x \in \mathbb{R}^n \mid x \in \mathbb{R}^n \mid x \in \mathbb{R}^n \}$ $Ax \geq b$ and $y \in Las_t(K)$. Then the following holds:

(a) $\operatorname{conv}(K \cap \{0,1\}^n) = \operatorname{Las}_n^{\operatorname{proj}}(K) \subset \ldots \subset \operatorname{Las}_n^{\operatorname{proj}}(K) \subset K.$

(b) We have
$$0 \le y_I \le y_J \le 1$$
 for all $I \supseteq J$ with $0 \le |J| \le |I| \le t$.

(c) Let $I \subseteq [n]$ with |I| < t. Then

$$K \cap \{x \in \mathbb{R}^n \mid x_i = 1 \ \forall i \in I\} = \emptyset \implies y_I = 0.$$

(d) Let $I \subseteq [n]$ with $|I| \leq t$. Then

$$y \in \operatorname{conv}(\{z \in \operatorname{Las}_{t-|I|}(K) \mid z_{\{i\}} \in \{0, 1\} \; \forall i \in I\}).$$

(e) Let $S \subseteq [n]$ be a subset of variables such that not many can be equal to 1 at the same time:

$$\max\{|I| : I \subseteq S; x \in K; x_i = 1 \ \forall i \in I\} \le k < t.$$

Then we have

$$y \in \operatorname{conv}(\{z \in \operatorname{Las}_{t-k}(K) \mid z_{\{i\}} \in \{0,1\} \; \forall i \in S\})$$

(f) For any $|I| \leq t$ we have $y_I = 1 \Leftrightarrow \bigwedge_{i \in I} (y_{\{i\}} = 1)$.

(g) For
$$|I| \le t$$
: $(\forall i \in I : y_{\{i\}} \in \{0, 1\}) \implies y_I = \prod_{i \in I} y_{\{i\}}$.

(h) Let $|I|, |J| \leq t$ and $y_I = 1$. Then $y_{I \cup J} = y_J$.

Vector representation: For each event $\bigcap_{i \in I} (x_i = 1)$ with $|I| \leq t$ there is a vector v_I representing it in a consistent way:

L(Vector Representation Lemma): Let $y \in Las_t(K)$. Then there is a family of vectors $(\mathbf{v}_I)_{|I| \leq t}$ such that $\langle \mathbf{v}_I, \mathbf{v}_J \rangle = y_{I \cup J}$ for all $|I|, |J| \le t$. In particular $\|\mathbf{v}_I\|_2^2 = y_I$ and $\|\mathbf{v}_{\emptyset}\|_2^2 = 1$.

From vectors to distributions

Binary setting

Solution in $x \in \operatorname{conv}(K \cap \{0,1\}^n) \to a$ probability distribution over integral solutions in K. For t-round Lasserre we cannot have a globally feasible probability distribution, but instead one that is locally consistent.

L: Let $y \in Las_t(K)$. Then for any subset $S \subseteq [n]$ of size |S| < t there is a distribution \mathcal{D}^S over $0, 1^S$ such that

$$Pr_{z \sim \mathcal{D}^S} \left[\bigwedge_{i \in I} (z_i = 1) \right] = y_I \forall I \subseteq S$$

All 2CSP problems can be restated using SDPs with constraints hidden in the maximization clause, so we do not depend on the moment matrices.

D: Let V = [n] be a set of vertices and [k] the set of possible values. An *m*-local distribution is a distribution \mathcal{D}^T over the set of assignments $[k]^T$ of the vertices of some set $T \subseteq V$ of size at most m+2. The choice +2 is for convenience.

D: A collection $\{\mathcal{D}^T | T \subseteq V, |T| \leq m+2\}$ of *m*-local distributions is consistent if all pairs of distributions $\mathcal{D}^T, \mathcal{D}^{T'}$ are consistent on their intersection $T \cap T'$. By this we mean that any event defined on $T \cap T'$ has the same probability in \mathcal{D}^T and in $\mathcal{D}^{T'}$.

Notation trick: If we have n vertices and |T| < m, instead of the entire collection $\{\mathcal{D}^T | T \subset V, |T| \leq m+2\}$ we talk instead about a set of *m*-local random variables X_1, X_2, \ldots, X_n . We can think of those random variables as variables X_i coming from the distribution $\mathcal{D}^{\{i\}}$. Note that these variables are **not** jointly distributed random variables, but for each subset of at most m + 2 of them, one can find a sample space \mathcal{D}^T where the corresponding variables X_i^T are jointly distributed.

More notation.

1. $\{X_i | X_S\} \equiv$ a random variable obtained by conditioning $X_i^{S \cup i}$ on variables $\{X_j^{(S\cup\{i\})}|j \in S\};$ 2. $P[X_i = X_j|X_S] \equiv P[X_i^{S\cup i\cup j} = X_j^{S\cup i\cup j}|X_S^{S\cup i\cup j}].$

D(Lasserre hierarchy in the prob. setting):

An *m*-round Lasserre solution of a 2CSP problem consists of *m*-local random variables X_1, X_2, \ldots, X_n and vectors $v_{S,\alpha}$ for all $S \subseteq \binom{V}{m+2}$ and all local assignments $\alpha \in [k]^S$, if the following holds $\forall S, T \subseteq$ $V, |S \cup T| \le m+2, \forall \alpha \in [k]^S, \beta \in [k]^T$:

$$\langle v_{S,\alpha}, v_{T,\beta} \rangle = P[X_S = \alpha, X_T = \beta].$$

We usually want a solution for MAX 2CSP, so we add a maximization clause, for instance max $P_{(i, j, \Pi) \in \mathcal{T}}[(x_i, x_j \in \Pi)].$

O: A covariance matrix $E[(X - E[X])(X - E[X])^T]$ is always positive semidefinite for a random vector X.

C: For a fixed local assignment $x_S \in [k]^S$ (where $|S| \leq m$) and fixed a, b, it holds that the matrix $(Cov(X_{ia}, X_{jb}|X_S = x_S))_{i,j \in V}$ is positive semidefinite for the *m*-th level of the Lasserre hierarchy.

Main results

D: The τ -threshold rank of a regular graph G, denoted rank $_{>\tau}(G)$, is the number of eigenvalues of the normalized adjacency matrix of G that are larger than τ . We can define this for any MAX 2-CSP problem, by taking the adjacency graph of the predicates.

T: There is a constant c such that for every $\varepsilon > 0$, and every MAX 2-CSP instance \mathcal{I} with objective value v and alphabet size k, the following holds:

The objective value $sdpopt(\mathcal{I})$ of the *r*-round Lasserre hierarchy for $r > k \cdot \operatorname{rank}_{>\tau}(\mathcal{I})/\varepsilon^c$ is within ϵ of the objective value v of \mathcal{I} , i.e., $\operatorname{sdpopt}(\mathcal{I}) \leq v + \varepsilon.$

Moreover, there exists a polynomial time rounding scheme that finds an assignment x satisfying $\operatorname{val}_{\mathcal{I}}(x) > v - \varepsilon$ given optimal SDP solution as input.

T: There is an algorithm, based on rounding r rounds of the Lasserre hierarchy and a constant c, such that for every $\varepsilon > 0$ and input instance \mathcal{I} of UNIQUE GAMES with objective value v, alphabet size k, satisfying rank $_{>\tau}(\mathcal{I}) \leq \varepsilon^c r/k$, where $\tau = \varepsilon^c$, the algorithm outputs an assignment \overline{x} satisfying $\operatorname{val}_{\tau}(x) > v - \varepsilon$.

T: There is an algorithm, based on rounding r rounds of the Lasserre hierarchy and a constant c, such that for every $\varepsilon > 0$ and input UNIQUE GAMES instance \mathcal{I} with objective value $1 - \varepsilon$ and alphabet size k, satisfying $r \geq ck \cdot \min\{n^{c\varepsilon^{1/3}}, \operatorname{rank}_{>1-c\varepsilon}(\mathcal{I})\}\$, the algorithm outputs an assignment x satisfying val $\tau(x) > 1/2$.

A sample 2CSP: MaxCut

D: SDP relaxation of MAXCUT:

maximize
$$\underset{i,j\in E}{\mathbb{E}} \|v_i - v_j\|^2$$
 subject to $\|v\|_i^2 = 1 \ \forall i \in V.$

Step 1. Use an *m*-round Lasserre to get a collection of *m*-local variables X_1, X_2, \ldots, X_n . For an edge *ij*, its contribution to the SDP objective is:

$$\mathbb{P}_{\mathcal{D}^{ij}}[X_i \neq X_j] = \|v_i - v_j\|^2.$$

Step 2. Our goal is sampling that is close to sampling \mathcal{D}^{ij} . Try first independent sampling from marginals \mathcal{D}^i .

O(Local correlation): On an edge (i, j), the local distribution \mathcal{D}^{ij} is far from the independent sampling distribution $\mathcal{D}^i \times \mathcal{D}^j$ only if the random variables X_i, X_j are *correlated*.

O(Correlation helps): If two variables X_i, X_j are correlated, then sampling/fixing the value of X_i reduces the uncertainty in the value of X_i . More precisely:

$$\mathop{\mathbb{E}}_{\{X_i\}} \operatorname{Var}[X_j | X_i] = \operatorname{Var}[X_j] - \frac{1}{\operatorname{Var}[X_i]} \left[\operatorname{Cov}(X_i, X_j) \right]^2.$$

The reduction in uncertainty is actually related to the global expected correlation:

$$\mathop{\mathbb{E}}_{j \in V} \operatorname{Var}[X_j] - \mathop{\mathbb{E}}_{i \in V} \mathop{\mathbb{E}}_{\{X_i\}} \left[\mathop{\mathbb{E}}_{j \in V} \operatorname{Var}[X_j | X_i] \right] \geq \mathop{\mathbb{E}}_{i, j \in V} |\operatorname{Cov}(X_i, X_j)|^2.$$

Step 3. Assume that average local correlation is at least ε , that is

$$\mathop{\mathbb{E}}\limits_{ij\sim G} \langle oldsymbol{v}_i,oldsymbol{v}_j
angle \geq arepsilon$$
 .

Use PSD of correlations, apply the following Lemma for vectors $v_i \equiv u_i^{\otimes 2}$:

L(Local Correlation vs. Global Correlation on Low-Rank Graphs): Let v_1, \ldots, v_n be vectors in the unit ball. Suppose that the vectors are correlated across the edges of a regular *n*-vertex graph G,

$$\mathop{\mathbb{E}}_{ij\sim G} \langle \boldsymbol{v}_i, \boldsymbol{v}_j \rangle \geq
ho$$
 .

Then, the global correlation of the vectors is lower bounded by

$$\mathbb{E}_{i,j\in V} |\langle \boldsymbol{v}_i, \boldsymbol{v}_j \rangle| \ge \Omega(\rho) / \operatorname{rank}_{\ge \Omega(\rho)}(G) \,.$$

where rank $\geq \rho(G)$ is the number of eigenvalues of adjacency matrix of G that are larger than ρ .

Step 4. If the independent sampling is at least ε -far from correlated sampling over the edges, we can use the previous Lemma and reduce the average variance. Therefore, after $rank_{\geq \varepsilon^2}(G)/\varepsilon^2$ steps, we are done.