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Lasserre Hierarchy
Notation: Let Pt([n]) := {I ⊆ [n] | |I| ≤ t} be the set of all index
sets of cardinality at most t and let y ∈ RP2t+2([n]) be a vector with
entries yI for all I ⊆ [n] with |I| ≤ 2t+ 2.

D(Moment matrix): Mt+1(y) ∈ RPt+1([n]) × Pt+1([n]):

Mt+1(y))I,J := yI∪J ∀|I|, |J | ≤ t+ 1.

D(Moment matrix of slacks): For the `-th (` ∈ [m]) constraint of the
LP AT x ≥ b, we create M`

t (y) ∈ RPt([n])×Pt([n]):

M`
t (y)I,J := (

n∑
i=1

AliyI∪J∪{i})− blyI∪J

D(t-th level of the Lasserre hierarchy): Let K = {x ∈ Rn | Ax ≥ b}.
Then Last(K) is the set of vectors y ∈ RP2t+2([n]) that satisfy

Mt+1(y) � 0; M`
t (y) � 0 ∀` ∈ [m]; y∅ = 1.

Furthermore, let Lasproj
t := {(y{1}, . . . , y{n}) | y ∈ Last(K)} be the

projection on the original variables.

Intuition: Mt+1(y) � 0 ensures consistency (y behaves locally as
a distribution) while M`

t (y) � 0 guarantees that y satisfies the l-th
linear constraint.

T(Lasserre properties from Martin K’s lecture): Let K = {x ∈ Rn |
Ax ≥ b} and y ∈ Last(K). Then the following holds:

(a) conv(K ∩ {0, 1}n) = Lasproj
n (K) ⊆ . . . ⊆ Lasproj

0 (K) ⊆ K.

(b) We have 0 ≤ yI ≤ yJ ≤ 1 for all I ⊇ J with 0 ≤ |J | ≤ |I| ≤ t.

(c) Let I ⊆ [n] with |I| ≤ t. Then

K ∩ {x ∈ Rn | xi = 1 ∀i ∈ I} = ∅ =⇒ yI = 0.

(d) Let I ⊆ [n] with |I| ≤ t. Then

y ∈ conv({z ∈ Last−|I|(K) | z{i} ∈ {0, 1} ∀i ∈ I}).

(e) Let S ⊆ [n] be a subset of variables such that not many can be
equal to 1 at the same time:

max{|I| : I ⊆ S;x ∈ K;xi = 1 ∀i ∈ I} ≤ k < t.

Then we have

y ∈ conv({z ∈ Last−k(K) | z{i} ∈ {0, 1} ∀i ∈ S}).

(f) For any |I| ≤ t we have yI = 1⇔
∧
i∈I(y{i} = 1).

(g) For |I| ≤ t: (∀i ∈ I : y{i} ∈ {0, 1}) =⇒ yI =
∏
i∈I y{i}.

(h) Let |I|, |J | ≤ t and yI = 1. Then yI∪J = yJ .

Vector representation: For each event
⋂
i∈I(xi = 1) with |I| ≤ t

there is a vector vI representing it in a consistent way:

L(Vector Representation Lemma): Let y ∈ Last(K). Then there
is a family of vectors (vI)|I|≤t such that 〈vI ,vJ 〉 = yI∪J for all

|I|, |J | ≤ t. In particular ‖vI‖22 = yI and ‖v∅‖22 = 1.

From vectors to distributions
Binary setting

Solution in x ∈ conv(K ∩ {0, 1}n) → a probability distribution over
integral solutions in K. For t-round Lasserre we cannot have a glob-
ally feasible probability distribution, but instead one that is locally
consistent.

L: Let y ∈ Last(K). Then for any subset S ⊆ [n] of size |S| ≤ t there
is a distribution DS over 0, 1S such that

Prz∼DS

∧
i∈I

(zi = 1)

 = yI∀I ⊆ S.

General 2CSP setting

All 2CSP problems can be restated using SDPs with constraints hid-
den in the maximization clause, so we do not depend on the moment
matrices.

D: Let V = [n] be a set of vertices and [k] the set of possible values.
An m-local distribution is a distribution DT over the set of assign-
ments [k]T of the vertices of some set T ⊆ V of size at most m + 2.
The choice +2 is for convenience.

D: A collection {DT |T ⊆ V, |T | ≤ m + 2} of m-local distributions is

consistent if all pairs of distributions DT ,DT ′
are consistent on their

intersection T ∩T ′. By this we mean that any event defined on T ∩T ′
has the same probability in DT and in DT ′

.

Notation trick: If we have n vertices and |T | ≤ m, instead of the
entire collection {DT |T ⊆ V, |T | ≤ m + 2} we talk instead about
a set of m-local random variables X1, X2, . . . , Xn. We can think of
those random variables as variables Xi coming from the distribution
D{i}. Note that these variables are not jointly distributed random
variables, but for each subset of at most m+ 2 of them, one can find
a sample space DT where the corresponding variables XT

i are jointly
distributed.

More notation.

1. {Xi|XS} ≡ a random variable obtained by conditioning XS∪i
i

on variables {X(S∪{i})
j |j ∈ S};

2. P [Xi = Xj |XS ] ≡ P [XS∪i∪j
i = XS∪i∪j

j |XS∪i∪j
S ].

D(Lasserre hierarchy in the prob. setting):

An m-round Lasserre solution of a 2CSP problem consists of m-local
random variables X1, X2, . . . , Xn and vectors vS,α for all S ⊆

( V
m+2

)
and all local assignments α ∈ [k]S , if the following holds ∀S, T ⊆
V, |S ∪ T | ≤ m+ 2, ∀α ∈ [k]S , β ∈ [k]T :

〈vS,α, vT,β〉 = P [XS = α,XT = β].

We usually want a solution for Max 2CSP, so we add a maximization
clause, for instance maxP(i,j,Π)∈I [(xi, xj ∈ Π)].

O: A covariance matrix E[(X−E[X])(X−E[X])T ] is always positive
semidefinite for a random vector X.

C: For a fixed local assignment xS ∈ [k]S (where |S| ≤ m) and fixed
a, b, it holds that the matrix

(
Cov(Xia, Xjb|XS = xS)

)
i,j∈V is posi-

tive semidefinite for the m-th level of the Lasserre hierarchy.

Main results

D: The τ−threshold rank of a regular graph G, denoted rank≥τ (G),
is the number of eigenvalues of the normalized adjacency matrix of
G that are larger than τ . We can define this for any Max 2-Csp
problem, by taking the adjacency graph of the predicates.

T: There is a constant c such that for every ε > 0, and every Max
2-Csp instance I with objective value v and alphabet size k, the fol-
lowing holds:

The objective value sdpopt(I) of the r-round Lasserre hierarchy for
r ≥ k · rank≥τ (I)/εc is within ε of the objective value v of I, i.e.,
sdpopt(I) ≤ v + ε.

Moreover, there exists a polynomial time rounding scheme that finds
an assignment x satisfying valI(x) > v−ε given optimal SDP solution
as input.

T: There is an algorithm, based on rounding r rounds of the Lasserre
hierarchy and a constant c, such that for every ε > 0 and input in-
stance I of Unique Games with objective value v, alphabet size k,
satisfying rank≥τ (I) ≤ εcr/k, where τ = εc, the algorithm outputs
an assignment x satisfying valI(x) > v − ε.

T: There is an algorithm, based on rounding r rounds of the Lasserre
hierarchy and a constant c, such that for every ε > 0 and input Unique
Games instance I with objective value 1− ε and alphabet size k, sat-

isfying r ≥ ck ·min{ncε1/3 , rank≥1−cε(I)}, the algorithm outputs an
assignment x satisfying valI(x) > 1/2.

A sample 2CSP: MaxCut

D: SDP relaxation of MaxCut:

maximize E
i,j∈E

‖vi − vj‖2 subject to ‖v‖2i = 1 ∀i ∈ V.

Step 1. Use an m-round Lasserre to get a collection of m-local vari-
ables X1, X2, . . . , Xn. For an edge ij, its contribution to the SDP
objective is:

P
Dij

[Xi 6= Xj ] = ‖vi − vj‖2 .

Step 2. Our goal is sampling that is close to sampling Dij . Try first
independent sampling from marginals Di.

O(Local correlation): On an edge (i, j), the local distribution Dij is
far from the independent sampling distribution Di × Dj only if the
random variables Xi, Xj are correlated.

O(Correlation helps): If two variables Xi, Xj are correlated, then
sampling/fixing the value of Xi reduces the uncertainty in the value
of Xj . More precisely:



E
{Xi}

Var[Xj |Xi] = Var[Xj ]−
1

Var[Xi]
[Cov(Xi, Xj)]

2 .

The reduction in uncertainty is actually related to the global expected
correlation:

E
j∈V

Var[Xj ]− E
i∈V

E
{Xi}

[
E
j∈V

Var[Xj |Xi]
]
≥ E
i,j∈V

|Cov(Xi, Xj)|2.

Step 3. Assume that average local correlation is at least ε, that is

E
ij∼G

〈vi,vj〉 ≥ ε .

Use PSD of correlations, apply the following Lemma for vectors
vi ≡ u⊗2

i :

L(Local Correlation vs. Global Correlation on Low-Rank Graphs):
Let v1, . . . ,vn be vectors in the unit ball. Suppose that the vectors
are correlated across the edges of a regular n-vertex graph G,

E
ij∼G

〈vi,vj〉 ≥ ρ .

Then, the global correlation of the vectors is lower bounded by

E
i,j∈V

|〈vi,vj〉| ≥ Ω(ρ)/rank≥Ω(ρ)(G) .

where rank≥ρ(G) is the number of eigenvalues of adjacency matrix of
G that are larger than ρ.

Step 4. If the independent sampling is at least ε−far from correlated
sampling over the edges, we can use the previous Lemma and reduce
the average variance. Therefore, after rank≥ε2 (G)/ε2 steps, we are
done.


