
Graph theory
Note: Strange structure due to finals topics. Will improve later.

Graph coloring
T:A d-degenerate graph can be coloured with d+1 colours.

P:Greedy.

T(Brooks):A graph can be coloured using ∆ colours if it’s not an odd
cycle or a complete graph.

P:The choosability version of this follows from ERT theorem.

T(Vizing):A graph is edge-colorable using either ∆ or ∆ + 1 colours.

P:Induction on ||G||. For a coloring of G− uv, one colour is missing
in δ(u) and one in δ(v). A maximal graph on those two color classes
has a path from u to v, otherwise done.

Choose vertices xy0. Find a maximal set of vertices of δ(x) such that
the colour missing at y0 is the colour of the edge xy1, the colour
missing at y1 is present on the edge xy2 etc.

Take last xyk and its missing colour β. Create Kempe chain to some
yi to x. Switch to yi, find Kempe chain again. Contradiction.

T(Thomassen):Every planar graph is 5-choosable.

P:Every face bounded by a triangle, outer face a cycle. Suppose
one vertex is coloured 1, other 2 and the rest on the outer face have
L(v) = 3 and the inside vertices L(v) = 5. Then G colourable.

Apply induction, look for chord, remove vertices if outer face chord-
less.

Erdos-Rubin-Taylor

D:G is a Gallai block ≡ G is Kn or C2k+1.

D:G is a Gallai tree ≡ connected and (maximal) Gallai blocks form
a tree.

O:Graph connected, lists of degree-size, one bigger. Then G is col-
orable.

R:1-connected graph with articulation can be coloured.

T(Erdos-Rubin-Taylor):G connected. G degree-choosable ↔ G 6=
Gallai tree.

L(ERT lemma):G2−conn., G not a Gallai tree block. Then ∃v ∈ G
and v′ 6 v′′ ∈ δ(G) s.t. G− v′ − v′′ conn.

P(ERT lemma): G 3-connected: pick any non-adjacent vertices.

G only 2-conn.: Pick a x, y cut such that the minimal component is
minimal.

• xy ∈ ||G||: Pick v, v′ two neighbours of y. Use Menger’s theorem
to assert victory.
• xy /∈ ||G||: Choose the same v′, v′′ neighbors of y. Define Zx:

vertices connected to x after removing v′, v′′. Define Zy analo-
gously.
Consider C0 ≡ the smallest G − x − y. Both Zx and Zy have
empty intersection with it, or we’re done.
In the end, only v′ is connected to x and y, apply induction
on H = G/v′. Case analysis based on whether or not is H
complete.

L(Application of ERT Lemma):G 2-connected, not a Gallai block.
Then it is deg-choosable.

P:Assume there are different lists L(u), L(v). We can find u, v that
are neighbors with this property. Think of u as root. Colour the
rest of the graph greedily because v suddenly has more colours than
neighbors.

So there are no such lists. All the vertices are of the same degree. If
it’s an odd cycle, we are done. If not, use ERT lemma and find two
vertices and use the greedy argument.

P(Erdos-Rubin-Taylor): G connected. Proving stronger assertion: If
G is not connected, it is a Gallai tree and each block has a “desig-
nated” list which it all shares.

By induction on block size. One block: okay. More blocks: cut off
corner block, proceed by induction.

R(Brooks):If a graph G is connected, it can either be coloured with
lists of size deg or it is a Kl or a C2k+1.

L(Kernel lemma): Let G be a graph with associated lists for colour-
ing. If G has an orientation with d+(v) < |Sv | everywhere, and this
orientation also has a kernel for every induced subgraph, then H can
be coloured by Sv .

P: Induction. Take a colour α, find all vertices that have it in their
lists, find their kernel. Colour kernel, remaining vertices still fulfill
conditions, induce.

T(Galvin):χ′(G) = χ′L(G) for bipartite graphs.

P:We need to find an orientation for the line graph sasisfying the
lemma. Take two partitions. Take k-coloring. Assign orientation
based on colouring, and based on where the two edges meet (X or Y ).
Prove condititons.

Q(Hadwiger):k-colorability implies a minor of Kk.

Proven for 5, 6.

Q(List Coloring Conjecture):Edge choosability and edge colorability
coincide.

Perfect graphs

D:A perfect graph is a graph which has ∀G ⊆ind G
′ : χ(G′) = ω(G′).

O:Bipartite graphs, interval graphs, chordal graphs are perfect.

T(Weak Perfect Graph Theorem):G is perfect ⇔ G is perfect.

T(Strong Perfect Graph Theorem):G is perfect ⇔ contains no odd
hole or antihole (of size ≥ 5).

Regular graphs
T(Moore):G d-regular without K3,K4 and with exactly n = d2 + 1
vertices: d ∈ 2, 3, 7, 17.

O:For a Moore graph and its adjacency matrix, A2 = J−A+(d−1)I.

P(Moore):We know that Sp(J) = {n, 0d−1}. Because of observation,
the eigenvalues also obey the polynomial property. Therefore, we have
λ2 + +λ− (d− 1)1 = n or 0.

For the main eigenvalue d, we get the condition d2 + 1 = n. For the
remaining conditions the right side is zero. Solving it as a quadratic

equation, we get solutions for λ1 and λ2 which are not d. The dis-
criminant will be

√
4d− 3. Condition on it being rational or not, and

you get the remaining numbers.

T(Turan):∀r > 1, n every graph without a Kr subgraph and
ex(n,Kr) edges is a Turan graph T r−1.

P:Among complete k-partite graphs, Turan graphs have the most
edges. Among Turan graphs, T r−1 has the most edges. We need to
prove that a graph with ex(n,Kr) edges is a complete multipartite
graph.

If not, non-adjacency is not equivalence, and so find three conflicting
vertices. Duplicating some yields the contradiction.

O:tr−1(n) ≤ n2/2 r−2
r−1

.

D:Density d(A,B) = ||(A,B)||/|A||B|.
D:An ε-regular pair (A,B) for given ε has the property that every set
(X,Y ) of size at least εX, εY respectively has density d(X,Y ) ε-close
to d(A,B).

D:An ε-regular partition for given ε satisfies the following:

• |V0| ≤ ε|V |.
• |Vi| = |Vj |.
• All but most εk2 pairs are not ε-regular.

L(Regularity lemma):For every ε and every m∃M such that every
graph of size ≥ m admits an ε-regular partition.

T(Erdos-Stone):For all r ≥ 2, s ≥ 1, ε > 0∃n0 such that all graphs
with more vertices and at least tr−1(n) + εn2 edges contain Ks

r as a
subgraph.

L(Removal lemma): TBD.

Graph connectivity
T(Menger):G graph. Then minimum number of vertices separating
A from B in G is equal to the maximum number of disjoint A − B
paths in G.

P:Induction on ||G||. If G has no k disjoint A−B paths, contract one
edge e = xy. G/e contains an A − B separator Y of less than k ver-
tices. One of them must be the contracted ve. Therefore Y −ve+x+y
must be a separator in G of exactly k vertices.

Consider now G − e. Every A − X separator in G − e is an A − B
separator in G, and so each such separator has at least k vertices.
Therefore, there are k disjoint A − X paths and k disjoint B − X
paths. These paths do not meet outside X, and can be extended to
A−B paths.

T(Mader):

L:There is a function h such that every graph of average degree h(r)
contains Kr as a topological minor.

P:We show by induction on m = r . . .
(r
2

)
that every graph with av-

erage degree ≥ 2m has a topological minor X with r vertices and m
edges.

Induction start can be done easily with a maximal cycle. Now, con-
sider d(G) ≥ 2m. Assume G connected. Find maximal set U s.t.
d(G/U) ≥ 2m. Vertex with minimum degree is acceptable, so there
exists such a nonempty set, and δ(U) 6= ∅.



Take neighborhood δ(U). If there is any vertex with degree ¡ 2m−1,
we can add it. Thus, minimum/average degree is ≥ 2m−1. Apply
induction. Take topological minor and connect two vertices through
U , which is connected.

T:k-linked implies f(k)-connected.

P:Prove it for f(k) = h(3k)+2k. Find topological minor of K3k. Use
Menger on its vertices and 2k vertices S and T . Choose k vertices in
K3k that do not have endvertices on the 2k disjoint paths by Menger.
Connect the paths.

Special properties of oriented graphs

Algebraic properties of graphs

Spectral theory

D:λ is an eigenvalue ≡ ∃x : Ax = λx.

O:Au− λu = 0↔ det|A− λI| = 0.

O:A has a base of eigenvectors ↔ ∃X : X∗X = E and X∗AX =
I ∗ (λ1, λ2, . . . ).

R:G graph, A its adjacency matrix→ there are n different real eigen-
values of A.

R:G graph d-regular → Λmax = d.

O:There exist cospectral graphs, for example K1,4 and C4 + v.

Flows and Tutte polynomial

T(Recipe Theorem): Let f(G, x, y) be a function on graphs such that
for some α, β, γ, it satisfies the following recurences:

• f(Kn) = γn,
• f(G) = xf(G/e) if e is a loop,
• f(G) = yf(G \ e) if e is a coloop (bridge),
• f(G) = αf(G/e) + βf(G \ e) otherwise.

Then it can be computed using the formula

f(G, x, y) = γc(G)αr(G)βr∗(G)T (G, x/α, y/β).

O:Chromatic polynomial can be expressed as P (G; z) =
zc(G)(−1)r(G)T (G, 1− z, 0).

O:Flow polynomial can be expressed as F (G; k) = (−1)r
∗(G)T (0, k−

1).

Matching theory
T(Hall):Bipartite graph has PM iff ∀A ⊆ X : δ(A) ≥ |A|. P:Use
Menger or mincut-maxflow on G. If there is not a perfect match-
ing, there exist A ⊆ X and B ⊆ Y such that |A| + |B| < |X|
there is no edge from X \ A to Y \ B. Then δ(X \ A) ⊆ B and
|δ(X \A)| ≤ |B| < |X| − |A| = |X \A|.
T(Tutte):A graph has a 1-factor iff ∀S : q(G\S) ≤ |S|, where q counts
the number of odd components.

P:Choose S0 maximal such that the inequality becomes an equality.
Prove then that even components have a PM, odd components with-
out a vertex have a PM and finally using Hall that S0 to {C|C odd }
has a PM.

Edmonds’ Algorithm: Find an Edmonds forest, contract flowers (odd
cycles).

Ramsey theorey
D:[X]k is a set of all k-tuples of X.

T(Infinite Ramsey):Let k, c be positive numbers, X infinite. If we
color [X]k by c colors, we find a monochromatic infinite subset.

P:Prove it by induction on k, with c fixed. Construct a series of sets
Xi and associated elements xi such that:

• Xi+1 = Xi − xi.
• All k-sets xi ∪ Z with Z from Xi+1 are monochromatic with

colour that we associate with xi.

Just pick xi arbitrarily and note that if you associate the colour of
xi to k − 1-sets of Xi − xi, you can apply induction on k and get
condition 2.

Since xi is an infinite set, at least one colour occurs infinitely many
times, and this colour is the monochromatic subset.

T(Finite Ramsey): For every k, c, r there exists n ≥ k such that all
[n]k colourings with c colours contain a monochromatic subset of size
r.

P:If not, for all n ≥ k there is a bad colouring. Use Konig’s Infinity
Lemma (compactness) and extend the bad colourings into an infinite
one. This contradicts infinite Ramsey.

T(Erdos-Szekeres):For k ≥ 2, l ≥ 2, every non-degenerate set of(k+l−4
k−2

)
+ 1 points in the plane contains a k-cup or a l-cap. Also

for less points, a set avoiding this exists.

P:Induction. Suppose that there is a set of
(k+l−4

k−2

)
+ 1 points an it

has neither. Choose L the list of last points of k−1-cups. Then X \L
has no k− 1 cup or l cap. Apply induction. L is therefore big enough
and (by induction) contains a l − 1 cap.

T(Van-der-Waarden):Given k, r there exists n0 such that if we colour
all sequences of length ≥ n0 with k colours, we get a monochromatic
arithmetic sequence of length r.

T(Hales-Jewett):∀a (cube size) and r (color number) there exists
N = HJ(a, r) such that colouring the cube AN with r colours pro-
duces a monochromatic combinatorial line.

P(VdW from HJ):Use f((x1, x2, . . . , xn)) =
∑

i xi. Given colouring
of [ft], colour element ∈ K with the colour c(f(x1, x2 . . . )). Note that
any combinatorial line is an arithmetic sequence.

Infinite combinatorics
T:Every connected graph contains a spanning tree.

P:Apply Zorn’s lemma on a set of finite inclusion-wise ordered span-
ning trees.

T(König’s Infinity Lemma):Let V0, V1, . . . , be an infinite sequence of
non-empty disjoint finite sets of vertices. G graph of their union. As-
sume that every vertex in Vi has a neighbor in Vi−1. Then G contains
a ray that traverses all the sets.

P:

Infinite Ramsey.

Structural properties of set systems
T(Sperner’s Theorem): Any set system on n elements has all an-
tichains of size ≤

( n
n/2

)
.

P:Follows from Bollobas’s theorem below.

T(Dilworth):

T(Sunflower lemma):If a s-regular set system F ≥ s!(k − 1)s, then it
contains a sunflower with k petals.

P:Induction. Base case simple. If there is a subset of k mutually
disjoint sets, we win, so assume there is not. Apply induction and
win.

T(Erdos-Ko-Rado): Ground set n ≥ 2k. If a k-regular set system F

has an intersection, then |F | ≤
(n−1
k−1

)
.

P:In PM cheatsheet.

D: Define n(k, l) as maximal n s.t. ∃A[1,n] &B[1,n] s.t.

1. |Ai| = k, |Bi| = l,
2. Ai ∩Bi = ∅,
3. i 6= j → Ai ∩Bj 6= ∅.

T(Bollobás’ lemma on intersections): n(k, l) =
(k+l

k

)
.

P:In PM cheatsheet.

T(Kruskal-Katona):


