
Data Structures

Note: Strange structure due to finals topics. Will improve later.

Binary trees and their balances

AVL trees

Vertices contain -1,0,+1 – difference of balances between the left and
the right subtree. Balance is just the maximum depth of the subtree.

Analysis: prove by induction that for depth k, there are between Fk
and 2k vertices in every tree. Since balance only shifts by 1, it’s pretty
simple.

RB trees

Vertices contain color (red and black). Chief condition: all paths to
the leaves are equally black. All leaves are considered to be black,
and a parent of a red vertex must be black.

Heaps
We usually do: INSERT, DELETEMIN, MERGE, DECREASEKEY,
INCREASEKEY, and DELETE.

Binary/regular heap

Standard static heap, insert and delete by balancing it upwards. Con-
struction in O(n), lookup in O(logn).

Binomial heap

Recursive definition of binomial trees, binomial heap is just a collec-
tion of binomial trees. Every tree must be present only once. INSERT
is just adding an element and merging heaps. Merging is like adding
binary numbers, so it happens fast. Adding n elements again in O(n).

Leftist heap

D:dtl(x) ≡ minimum distance from x to leaf (downwards).

Leftist rule: left son has dtl ≥ to the right son.

Only one tree, compared to binomial, but worse amortized complexity.

Fibonacci heap

Vertices of any degree, main assertion: v has k sons means that there
are at least Fk+2 vertices below v. Fibonacci heap H.

MERGE is just concatenation. FINDMIN is either lazy or not,
DELETEMIN removes children, merges them together, and concate-
nates the result into H.

When doing DECREASEKEY(v) and INCREASEKEY(v), we also
balance the supertree after removing the tree at v – go up the hier-
archy, and cut any marked parent out of the tree and concatenate it
with H. Increase also rips apart the vertex v, concatenates children
into H, and finally concatenates {v} as a trivial tree.

Tries
Compressing dictionary structure in a tree. General tries can grow
based on the dictionary, and quite fast. Long paths are inefficient,
so we define compressed tries, which are tries with no non-splitting
vertices. Initialization O(Σl) for uncompressed tries, O(l + Σ) for
compressed (we are only making one initialization of a vertex – the
last one).

T:Assuming all l-length sequences come with uniform probability and
we have a sampling of size n, E[c− trie size] = logkd.

P:qd ≡ probability trie has depth d. E[c− triesize] =
∑
d d(qd −

qd+1) =
∑
d qd.

Calculate opposite event – trie is within depth d − 1. Then prefixes

from n must decode all words uniquely, so: P [unique] =

(
kd

n

)
kn(d−l)(
kl

n

) .

qd ≤ 1−P [unique] = 1−
n−1∏
i=0

(1−i/kd−1) ≤ 1−e−n2/kd−1 ≤ n2/kd−1.

The substitution of the product to e is done through integration.

Suffix trees

B-trees
General (a,b)-trees: Every vertex has at least a and at most b sons.
Also a ≥ 2 and b ≥ 2a − 1, so we can split vertices efficiently. Does
not hold for root.

O:(2,4)-trees are RB-trees.

B-trees are simply (a, b) trees where (a, b) is m/2 and m, respectively.

Extensions: We can delay splitting, if it is inconvenient, by simply
moving elements to our siblings. We can then split 2 into 3, or 3 into
4 – such trees are called B∗-trees.

Also we can have redundant data, prefix trees, variable length data,
or finger trees.

General hashing
Traditional operations: MEMBER, INSERT, DELETE.

D:Notation: Universe U , of size u. Sampling S of size s. Hash func-
tion h. List size usually l. Domain of hash function either U or S,
depends on universality. Codomain of hash function (buckets) M of
size m. Load factor α ≡ s/m.

Separated chains
Assume the following:

• h splits items into buckets independently and equally. Think
h(x) = x mod m.

• S is randomly independently chosen from U .

Separated chains ≡ just linked lists for each bucket.

P [one list of size exactly l] =
(s
l

)
(1/m)l(1− 1/m)n−l. Since this is a

binomial distribution, easily E[chain length] =
∑

(lP [len = l]) = α.

Expected maximum list length

P [max
i

len(j) ≥ j) ≤
∑
i

P [len(i) ≥ j] ≤ m
(s
j

)
(1/m)j

=

∏j−1
k=0(s− k)

j!
(1/m)j−1 ≤ s(s/m)j−1/j!.

Bound s by nearest larger factorial k0!. Then k0 = O( log s
log log s

).

Clearly, the smallest j0 such that s(s/m)j−1/j! ≤ 1 is smaller than
k0.

Split the EMS sum until the probability drops below one:

EMS =
∑
j

P [max
i

len(j) ≥ j] ≤ j0 + 1/j0 = O(
log s

log log s
).

Number of tests

D:Tests ≡ number of comparisons after insertion.

Expected number of tests with an unsuccessful insertion: we test
all elements if the list is nonempty, otherwise just 1 test. (Since
E has no memory, assume j is one fixed value.) In total: 1P [ list
empty]s+

∑
l lP [len(j) = l] = e−α + α.

Expected number of succesful tests: 1+ expected list length after each
insertion: 1 + n− 1/2m = 1 + α/2.

Replacement lists

If we want to avoid allocating the memory for the separated chains,
we can create chains inside the hash table itself. The simplest solution
is the replacement lists, where we simply link a collision to the next
free cell in the hash table, and create a linked list. This solution is
rather slow for DELETE, because we have to rearrange the list.

Number of tests is however still the same.

Two-pointer hashing

Two pointers mean that in the hash entry j, we store the link to the
beginning of the linked list for j, which can begin elsewhere. INSERT
and DELETE are simpler.

The number of tests is greater.

Coalesced hashing: EISCH, LISCH

Have no shared memory, still index within the hash tables. Lists
coalesce – they grow together if they collide. Early v. Late insertion.

Coalesced hashing with external memory: VISCH, EISCH,
LISCH

Linear adding

Double hashing



Universal hashing
Using universal hashing, we want to simulate random choice of S from
U , which is not always true. We assume S is given, we construct a
set of hashing functions that will ensure uniform choice.

D:A system of functions is c-universal ≡ only a few elements collide:

∀x, y ∈ U, x 6= y : |{i ∈ I;hi(x) = hi(y)}| ≤
c|I|
m

.

O:There exists a c-universal system for any S.

P:Assume U is just 1 . . . N for some prime. Choose functions of type
ha,b(x) = (ax + b mod N) mod m. If ha,b(x) = ha,b(y), then the
two functions have a common remainder i and both r, s such that
i + rm = i + sm mod N . Therefore, the number of solutions is at
most |{(i, r, s)}| = mdN/me2. The system is therefore universal for
c ≡ dN/me2/(N/m)2.

Perfect hashing

Sorting in external/internal memory

Lower bounds for ordering (decision trees)
TODO:That old lower bound, plus some probabilistic results from
PALG.

Dynamization
One semidynamization approach needs the following condition:
f(x,A) & f(x,B) = f(x,A∪B). Some problems are not decomposable
like this (convex hull).

Our approach is based on a binomial heap.

Semidynamization

Represent dynamic structure as a list of sizes exactly 2i. All sizes 2i

are basically buckets. INSERT means inserting into the first empty
bucket and concatenating with all previous buckets. MEMBER goes
through all buckets. Both have time O(XlogX), which may be O(X)
if X = nε>0. INSERT has this complexity amortized.

To make INSERT with worst case O(X logX), keep more structures
of the same size and “portion” the steps with batches of PS(i)/2i.
The last structure of one bucket i will be semi-constructed, the re-
maining are complete. If you finish one structure Ai, take two from
the previous bucket and start merging a new one. Once you finish IN-
SERT and there are ≥ 2 finalized structures Ai on the highest level,
move them to the bucket i+ 1 and finish.

Full Dynamization

In order to implement DELETE, take a number (say 1/8) and keep
buckets full by 2i with lazy deletion ensuring that you start reworking
it only after there is less than 1/8 undeleted elements. Once you have
too few elements, try to merge the bucket with the previous bucket
Ai−1, reworking both in the process.

Self-correcting structures
Lists.

• MFR: move first element to front.
• TR: slowly increase element’s position when accessed.
• TIMESTAMP: have timestamps, move back based on them.

T:Expected time of MFR PMFR ≤ 2POPT .

P:Proving only for MEMBER(x). Call βx probability that x on in-
put. Build Markov chain based on βx. Markov chain is irreducible,
aperiodic, has a stationary distribution γπ . π is a list of elements, B
is the ground set.

D:δ(x, y) ≡
∑
{γπ |π(x) < π(y)}.

O:POPT =
∑n
i=1 iβi.

O:PMFR =
∑
x∈B βx(1 +

∑
y δ(y, x)).

O:δ(x, y) = βx
βx+βy

.

Calculate the result using the previous observations.

Splay trees.

Trees with no data for balancing, only ZIG, ZIG-ZIG, and ZIG-ZAG
rules. Splay any element to the root.

Static optimality:

Dynamic optimality:

Relaxed search trees
Relaxation ≡ attempt at accomodating parallelism through laziness.


