
Complexity
Note: Strange structure due to finals topics. Will improve later.

D:A deterministic Turing machine with k tapes Mk is a tuple
(Σ, Q, δ, q0, F). δ is the usual transition function, Q the set of all
states, Σ language, F accepting states, q0 starting state.

D:A nondeterministic Turing machine is a machine such that δ pro-
duces a set of future states instead of just one state.

Notation: In this text, L will always be a language, and Φ,Ψ functi-
ons as well as f, g. M,N are DTM unless stated otherwise, Mk with
k tapes.

TODO:Blum complexity measure.

TODO:Recursive, computable notions.

Speedups and compressions
T(Alphabet compression.):If f is a time-constructible function f :
N → N with a TM with alphabet Γ, then f is computable in time
4 log |Γ|T (n) with a 4-character alphabet TM.

P:Use alphabet 0, 1,→, |. Encode ternary and higher objects into bi-
nary.

T(Linear space compression): L is accepted by Mk with S(n), then
∀r ∈ N∃Nk such that Nk accepts L with SN (n) = dS(n)/re.
P:Since we do not care about time, we can encode a r-tuple of cha-
racters into one character. We also need special characters so that we
know on which character is our tape. Moving may then be replaced
with changing a ab̧c to abç.

R:∀r ∈ N : DSPACE(S(n)) = DSPACE(S(n)/r).

R:∀r ∈ N : NSPACE(S(n)) = NSPACE(S(n)/r).

T(Tape reduction):If we have a Mk accepting L, then there is M1

accepting L with equal S(n).

P:Again, we do not care about time, so we simply store all k charac-
ters on one tape and and have special characters for storing state of
the emulated heads.

T(Tape time reduction):If we have a Mk accepting L in time T (n),
there is a M1 accepting it in time 5kT (n)2.

P:Input is at the beginning of the 1 tape. Encode the other tapes
after it. Create a larger alphabet with all characters having an extra
flag whether the head is on them or not. Sweep the tape twice, first
time load the marked characters to your “registers”, the second time
do the transition.

L:Let k ≥ 2, r > 0. If we have a Mk accepting L with time complexity
T (n), there is a N that accepts L in time n+ dn/re+ 6dt/re].
P:Assume we can write on the input tape. First, encode the input on
the first work tape and make it r times denser. Then use input tape
as work tape. In every step, read one character to the left and one
character to the right of the current head position. This can be done
in 4 moves. In r steps of the original Mk, only r characters can be
changed from the current head position. The Mk could only modify
two of the three positions, and we can edit them using 2 steps. Of
course, this increases the complexity of the transition function.

T(Linear Speedup):Let k ≥ 2, ε > 0. Then if Mk accepts L in time
T (n) ≥ ω(n), there exists N s.t. it accepts L in time εT (n).

P:Simply choose r in the Lemma based on ε, usually things like 21/ε.

Constructible functions
D:A function Φ : N→ N is recursive if there is a TM that can compute
1f(n) with input of size 1n.

D:A function Φ is T/S-enumerable in T/S O(f) ≡ it is recursive and
∃ TM such that the TM enumerates it within cf(n) steps for input of
size n.

D:A function Φ is T/S-constructible (time-constructible or space-
constructible) ≡ ∃ a TM such that it halts after exactly Φ(n) steps
for input of size n.

L:Let f1 + f2 and f2 be a T-constructible functions and ∃ε >
0∃n0∀n ≥ n0f1(n) ≥ εf2(n) + (1 + ε)n. Then f1 is time constructible
also.

P:Apply speedup to find a machine pacing exactly at f1.

T(Time Equivalence):Let f : N→ N be a function s.t. ∃ε > 0∃n0∀n ≥
n0 : f(n) ≥ (1 + ε)n. Then f time-enumerable in time O(f)⇔ f time
constructible.

P:Backwards direction immediate, forwards direction by previous
lemma.

T(Space Equivalence):Space-enumerability and constructibility coin-
cide.

P:We can use space compression to get it exactly, no lemmas required.

T:Every time constructible f is space constructible.

Complexity classes
TODO:DSPACE, DTIME

T:Φ recursive function → ∃ recursive language L /∈
DTIME/DSPACE(Φ(n)). P: Diagonal argument. Order ma-
chines, inputs L ≡ {xi|Mi does not accept xi in time Φ(|xi|)}.
T:

• Φ,Ψ : N → N and Ψ ∈ Ω(Φ) with Ψ being space-constructible
→ ∃L ∈ DSPACE(Ψ) \DSPACE(Φ).

• Φ,Ψ : N → N and Ψ ∈ Ω(Φ log Φ) with Ψ being time-
constructible → ∃L ∈ DTIME(Ψ) \DTIME(Φ).

P: Part 1. Create a machine M which allocates Ψ memory and ac-
cepts only if any single-tape machine Mw refuses w in space Ψ. If this
language was in DSPACE(Φ), there would be a machine N recognizing
this. This machine N can be assumed to be single-tape and always
stops. We can emulate this machine, and so we have a contradiction.

Part 2. Similarly, only we use Φ log Φ for the tape reduction theorem.
We set time to be so high that the would-be machine can be emulated
safely.

T(Relationship Theorem):

• DTIME ⊆ NTIME.
• DSPACE ⊆ NSPACE.
• DTIME ⊆ DSPACE.
• NTIME ⊆ DSPACE for s-c. functions.

• L ∈ DSPACE(Φ(n))∧Φ(n) ≥ logn→ L ∈ DTIME(c
Φ(n)
L), with

cL ≡ c(L).

• L ∈ NSPACE(Φ(n))∧Φ(n) ≥ logn→ L ∈ DTIME(c
Φ(n)
L), with

cL ≡ c(L).

• L ∈ NTIME(Φ(n))→ L ∈ DTIME(c
Φ(n)
L) with cL ≡ c(L).

Savitch Theorem
T(Savitch):If Φ(n) ≥ logn and Φ is space-constructible →
NSPACE(Φ(n)) ⊆ DSPACE(Φ2(n)).

P:USTCON is an NL-complete problem. (Basically, any problem in
NL can be solved through graph search of the state space.) We can
solve USTCON by recursion – basically, for every middle vertex v, we
check whether there is a k/2 sv-path and k/2 vt path. Recursion takes
O(logn) steps and we remember O(logn) at every step – O(log2 n)
units of memory in total.

R:PSPACE = NPSPACE.

NP-complete problems
T(Cook-Levin):There exists a NPc problem.

P:Proved for cscTILE. Simulate operations on the Turing machine
tape by tiling.

Standard transformations:

cscTILE ∝ cscSAT : xijk = 1 ≡ position (i, j) contains a tile of type
k. Add clauses that ensure validity of transformations of tiles.

cscSAT ∝ csc 3− SAT : Unwrap the long clauses into smaller ones
using substitution.

csc 3− SAT ∝ csc 3− COLOR: Set a triangle to define T/F colours.
Connect all literal vertices to the third colour. Use a gadget so that
no three variables in the clause get F.

cscSAT ∝ cscCLIQUE: Set vertices to literals so that every clique
is an internally consistent assignment.

PSPACE

D:PSPACE ≡ a class of problems solvable with polynomial space.

D:cscTQBF ≡ language on a universe of fully quantified Boolean
formulas, containing true ones.

T:cscTQBF is a PSPACE-complete problem.

P:cscTQBF ∈ PSPACE: If it has n variables and formula is of size
m, evaluating it recursively uses poly(n + m) memory. In fact, you
can do it in O(n + m) space since you restrict yourself on the same
formula.

cscTQBF is complete: Transform every problem searching on a Tu-
ring machine to a cscTQBF in a similar way like in the Savitch the-
orem. Specifically, there exists a SAT formula that can decide adja-
cency, use it inductively to declare formulas that calculate 2i−1 adja-
cency.

Polynomial Hierarchy
D:Σp

2 is a class x ∈ L ≡ ∃u ∈ 0, 1|q(x)|∀v ∈ 0, 1|q(x)|M(x, u, v) = 1.

Contains NP and coNP. EXACT INDSET example.

D:Πp
2 complement of Σp

2. Contains EXACT INDSET also.

D:Σp
i and Πp

i defined analogously.

O:If P = NP then PH = P .

P:Induction, simply use P = NP to do away with the extra ∃.
T:If there is a PH-complete language, then PH collapses.

P:(Sketch.) If there is such a language, it is a member of some class,
and then the higher classes collapse.

T:Σi − SAT is a Σp
i -complete problem.

Pseudopolynomial alg., Strong NP-
completeness
D: An algorithm is strongly NP-complete ≡ it is NP-complete even if
all its input numerical variables are bounded by the size of the input.

O:Bin packing is strongly NP-complete.

O:Subset sum, backpack problem and its related problems are not
strongly NP complete, because they employ pseudopolynomial algo-
rithms.

#P, #P-completeness
D:#P ≡ a class of enumerating problems (i.e. functions) where the
associated decision problems are polynomial.

D:A function from {0, 1}∗ to {0, 1}∗ is in FP ≡ it can be computed
by a TM in polynomial time.

Q:FP = #P is an analog of P = NP.

D:A function g is in FP f if it can be computed by a polynomial-time
TM with oracle access to f .

D:A function f is #P-complete if it is in #P and every g ∈ #P is in
FP f .

T:If #CYCLE has a polynomial-time solution then P = NP .

T:#SAT is #P-complete.

Some #P problems can be approximated easily, others not so much.
Even easy problem like #CYCLE or #PM are hard. #PM is #P-
complete.

