
Combinatorial optimization

Graph algorithms
Union-find

Creating and updating an equivalence. Operations UNION (union of
two classes) and FIND (detect equivalence class). FIND actually out-
puts a canonical representative.

Tarjan’s UF employs:

• Path compression – compress any path that you go through by
linking it at a root.
• Union by rank – every representative remembers its r(v) (rank).

When doing UNION, declare higher ranking vertex as represen-
tative. If ranks equal, increase rank.

T:With n elements, m operations UNION/FIND take O((n +
m) log∗ n).

P: Create buckets of vertices based on their rank. In the bucket k
there are vertices of rank ((2 ↑ k − 1), 2 ↑ k].

O:In k-th bucket, there are at most n/(2 ↑ k) vertices P(Obs.):There
are at most n/2r vertices of rank r, because of how rank merges trees.
Apply this result to the buckets.

Now, do the accounting.

Minimum spanning tree

Minimum is counted based on the weight function. We say a tree is
lighter if T is better than another T ′.

D:Light edges ≡ we can swap them in a T to get a lighter spanning
tree.

O:We can arrive at any minimum spanning tree from any tree using
swap operations.

D:Blue edge ≡ lightest edge of some edge cut.

D:Red edge ≡ heaviest edge on a cycle.

Meta-algorithm: try to avoid red edges while gathering blue edges.

ALGJarnik’s algorithm with a Fib. heap

• Put all elements in a heap.
• Extract minimum edge uv (u ∈ T, v /∈ T ), add to T .
• For all neighbours w of v which aren’t in T :
• If edge wv is lighter than any edge to w in heap, add it.
• DECREASKEY the edge that is heavier than wv, if you added

it.

Complexity: O(m+ nlogn).

Note: oftentimes we can use Courcelle’s Theorem to get fast algori-
thms on hard problems, if our structure is bounded by treewidth or
other parameter.

Algebraic and arithmetic algorithms
Strassen

Euclid’s Algorithm

RSA

Working with Qn

Polytope theory
D:Polyhedron: P = {x ∈ Rn|Ax ≤ b}.
D:Convex set: ∀x, yλ1x+ λ2y ∈ C.

D:Convex hull:

Basic property of convex sets: if an element is outside, it can be se-
parated by a hyperplane, but an element on the inside cannot.

D:Halfspace: {x|cT x ≤ δ}.
D:Polytope: Convex hull of a finite set of vertices.

D:Vertex: A point in a polytope/polyhedron which isn’t a convex
combination of any two points.

D:Simplex: Convex hull of an affinely independent set of vertices.

D:Geometric duality: To a point a 6= 0 in Rd we assign the hyper-
plane h = {x|ax = 1} and to a hyperplane not passing through the
origin we do the same, assign to it the point a.

D:Az ≡ the set of vectors of A satisfying aiz = bi.

T:v vertex of P ⇔ r(Av) = n

P:⇒: Az not full rank → find c : Azc = 0. v is then a conv. combi-
nation of v + δc, v − δc for some δ > 0.

⇐: v not a vertex → find two elements which combine to it;
Av(x− y) = 0.

T:A bounded polyhedron with t vertices ⇔ P = conv(x1, . . . , xt).

P:First implication P =
⋂

Γ. Hyperplanes are of dimension d−1, ap-
ply induction. Get set of vertices Vi for each hyperplane. ∪V is then
the set of vertices of P . If there is a x ∈ P , it is on a line, and this
line is bounded by at least two hyperplanes, but the elements on the
hyperplanes can be expressed as a convex combination, as so x is a
conv. combination also.

Second implication by duality.

O:Cyclic polytopes have n vertices and roughly
(n−d/2

d/2

)
facets. Cyclic

polytopes also maximize the number of faces in each dimension for n.

D:Projection of x onto a a closed, convex, nonempty set K is a point
p ∈ K that minimizes distance ||p− x||.
T(Projection theorem):K closed, convex, nonempty in Rn, p(x) pro-
jection of x. Then ∀z ∈ K, (z − p)T (b− p) ≤ 0.

LP
The standard LP setting (everything without indices are vectors):

min cT x,
Ax = b,
x ≥ 0,

We can always move to inequalities, change min to max, as long as
we stay linear.

T(Farkas Lemma):Exactly one is true:

• ∃x ≥ 0 : Ax = b
• ∃y : AT y ≥ 0, bT y < 0.

P:

Not two at the same time:

Ax = b→ 0 ≤ xTAT y = yTAx = yT b < 0.

(¬1→ 2): Assume no Ax = b. Look at cone K = {Ax|x ≥ 0}. b /∈ K.
Project b onto K, get p. Use Projection Theorem: ∀z ∈ K, (z−p)T (b−
p) ≤ 0. Define y ≡ p−b. ∀x : (Ax−p)T (y) ≥ 0 (inequality switches due
to y). p = Aw in cone, so ∀x : (Ax−Aw)T (y) = (x−w)T (AT y) ≤ 0.
Choose x = w + (0, 0, 0, . . . , 1, . . . , 0). This extracts one column of A.
x ≥ 0, because w ≥ 0. So (AT y) ≥ 0.

yT b = (p − y)T y = pT y − yT y. Again, (Ax − p)T y ≥ 0, so pT y ≤ 0
for x ≡ 0. However, pT y 6= 0.

C:Exactly one is true:

• ∃x ≥ 0 : Ax ≤ b,
• ∃y ≥ 0 : AT y = 0, bT y < 0.

Duality

Assume minimazation. We are trying to get a lower bound on the
cT x. We can do this if we find a vector y such that yTAx = bT y, and
we try to make it happen so that yTA (coefficents of x) are below cT .
Therefore, we have a dual program:

max bT yAT y ≤ c

T(Weak duality):Solution of dual w ≤ z ≡ solution of primal.

P:Directly from argument above.

T(Strong duality):w = z.

P: Suppose primal bounded (and feasible), x∗ optimum. We now look
for y s.t. AT y ≤ c and bT y ≥ z = cT x∗. Suppose there is none, then
(applying Farkas corollary on modified matrices) there is x ≥ 0, λ ≥ 0
such that

Ax = λb,cT x < λz.

If λ 6= 0, we can normalize it to be λ = 1 and we have improvement
over an optimum. If λ = 0, we can go to −∞ with cost.

Integrality and ILP
Incidence matrix ≡ V × E.

D:A matrix M is totally unimodular ≡ every square submatrix has
determinant -1,0 or 1.

T:Suppose A is totally unimodular, then each vertex of the poly-
hedron {x|Ax ≤ b} is integral.

P:Vertex z. Use observation that Az = {col(A)|zj 6= 0} has full rank.
Therefore it is invertible. Since |detA′| = 1, all entries of the inverse
are integer.

T(Hoffman-Kruskal):A is unimodular ⇔ ∀b integer vector the poly-
hedron Ax ≤ b, x ≥ 0 is integer.

T:G bipartite ⇔ incidence matrix A is totally unimodular.

P:G not bipartite → take submatrix of odd cycle, calculate determi-
nant.

G bipartite. Take t × t matrix M , proceed by induction. if M has a
column of zeroes or with just one 1, all done. If each column has two
1s, split the matrix based on the partitions.

Simplex method



We work with a normalized problem, i.e.:

min cBxB + cNxN
s.t.ABxB +ANxN = b, xB , xN ≥ 0.

Idea: in a minimization problem, we can look at the solution we’re in
as a base xB (full vertices) plus additional vectors that sum us up to
b. We check if one xN can decrease the cost function. If so, increase
contribution of xN while satisfying equality.

Make sure that xB ≥ 0 until it breaks, then we basically added a new
vector to the base B.

Note: Many heuristics for pivot choice. Also we need to make sure
that removing an element of the basis k which doesn’t create a loop
in the next step. (The loop may happen if one element is already set
to 0 in the basis.) Pivoting rule that works: choose k, j minimal.

Q(Hirsch):For m hyperplanes in d dimensions the length of the shor-
test path between any two vertices of the arrangement is at most
m− d.

Not even a proof of the Hirsch conjecture would say much about the
Simplex algorithm. Existence of polynomial scheme is still open.

Ellipsoid method
Our problem is a modified problem: we want to find for a given poly-
tope Ax ≤ b a solution or answer that it’s empty.

D:A symmetric matrix A ∈ Rn+n is positive definite, if ∀x 6= 0 :
xTAx > 0.

T:TFAE:

• All eigenvalues are positive,
• Inversion matrix A−1 is also positive defiinite,
• ∃U : UTU = A. U will be denoted as A1/2.

D:A set {x|(x−a)TA−1(x−a) ≤ 1} is called an ellipsoid with center
a and defined by the (by the definition positive definite) matrix A.

D:Affine map: T = Qx+ s.

O:An ellipsoid is an affine map of E(0, I).

P:Translate it by A1/2 and a.

T:For affine maps, vol(T (X)) = | detQ|vol(X).

O:for vol(E(a,A)) holds that |detA1/2|n−n ≤ vol(E(a,A)) ≤
|detA1/2|2n.

O:If we can answer the existence of an element in polynomial time,
we can calculate LP in polynomial time.

P:Create a polytope in Rm+n which encapsulates both the primal and
the dual conditions. If an element exists, it necessarily is an optimum.

Finding initial ellipsoid.

L(Hadamard):|detC| ≤
∏
||Ci||.

L:C integral. Then |detC| ≤ 2<C>−n2
.

T:if P ≡ {x|Cx ≤ d} ⊆ Qn is a limited polytope and C, d are integral,
then all vertices of P are contained within a ball of origin (0, 0) and
radius R =

√
n2<C,d>+nlogn.

Simple iteration step

Ek = E(0, I), Hk = {x|x1 ≤ 0}.

Since the broken condition is in the direction of x1, we want to create
an ellipsoid of the form

E′ = {(x− te1)TZ−1(x− te1) ≤ 1}.

Z will be diagonal. We want to “shrink” along x1. Pick p < 1, d > 1
and set Z diagonal with the diagonal (1/p2, 1/d2, 1/d2, . . . ). We want
our ellipsoid to touch points e1, e2 and be volume-minimal with this
property.

First condition gives: (1 + t)2/p2 = 1. Second condition gives:
t2/p2 + 1/d2 = 1.

We know that vol(E) =
√
|detZ|vol(B). Calculate the volume, you

should get t = −1/n+ 1.

Complex iteration step

Affine transform the ellipsoid to the simple iteration step. You have
to do some rotation for the hyperplane, but it will not matter. Harder
calculations.

Ending observation

O:If a P = Ax ≤ b has full rank, then vol(P ) ≥ 2−(n+1)<C>+n3
.

P:Sketch. (Affinely) transform the polytope into n unit vectors and
0. Vertices are such that a subset of columns where Ax have full rank.
Use Cramer rule and calculate total volume.

Special matrices
Totally unimodular matrix.

Positive semidefinite matrix.

TSP

Matching and flow networks
Edmonds

Edmonds’ polytope:

f ∈ RE(G) :
∑
v

f(e) ≤ 1∑
e∈X

f(e) ≤ |X| − 1/2 for odd X.

Perfect matching polytope has equality in the first condition and the
second condition: ∑

e∈X
f(e) ≥ 1.

D:r-graph: Graph that is r-regular and all edge cuts of odd size are
at of size at least r.

Example of an r-graph: cubic bridgeless graphs.

T:Every r-graph has a uniform cover by perfect matchings.

P:Every element of the perfect matching polytope is a convex com-
bination of perfect matchings. set f(e) = 1/r everywhere, then this f
is in the polytope of PMP.

R:Every cubic bridgeless graph has a uniform cover by perfect
matchings (and also a perfect matching).

R:Every cubic bridgeless graph has a perfect matching such that it
contains no odd cut of size 3.

R:Every cubic bridgeless graph has perfect matchings M1, M2 such
that E(M1) ∪ E(M2) ≥ 3E/5.

P:Take one PM M that contains no odd cut of size 3. Define
f(e) = 1/5 on it and f(e) = 2/5 elsewhere. Then f(e) is in PMP.
Since f(E \M) = 2/5|E \M |, there is one perfect matching Mi that
attains this. Take M ∪Mi and get 1/3 + 2/32/5 = 3/5E.

Edmonds’ algorithm:

Find augmenting paths using an augmenting path BFS tree (Ed-
monds’ tree). If you find an augmenting path, good. If not, you may
find an odd cycle that started as an augmenting path. Contact this
cycle, find augmenting path in the next graph. Proceed until possible.

Total complexity: O(n2(n+m)).

Dinitz

ALGDinitz: Add augmenting flows, not just augmenting paths. Spe-
cifically:

• Create reserve network. Now we work only with that.
• Find shortest s− t path by DFS. Cut all longer s− t paths.
• Find blocking flow on the cleaned network. Whenever adding a
s− t path greedily, clean up the network.
• Add blocking flow. Iterate.

Cleanup takes only O(m) time per iteration, searching for blocking
flow takes O(nm).

O:Number of iterations is O(n).

P:The only new edges that get added in the next reserve network are
backwards edges, which only increase the shortest s − t length. Plus
(after cleanup) longer paths may become relevant, but still, shortest
s− t path increases before every reserve network construction, and so
we have O(n).

Integer capacities O:On integer capacities, we can bound the
running time of Dinitz by O(|f |n+mn).

P:Every augmenting path extends the flow by at least 1.

T:On integer capacities, we can make Dinitz run in time O(mnlogC).

P:We do it similarly to radix sort – create flows by writing C in bi-
nary, and then finding maximum flow using the first k-bits of each
capacity. After that, we multiply the flow by 2 (and add the smallest
bit) and start with a close-enough flow.

O:|fi| − 2|fi−1| ≤ m.

P:Max flow = min cut, but min cut has increased from |R| to at most
2|R|+m.

Now we use the previous observation on integer Dinitz and flow size
to get the result.

Matroid theory


