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Abstract

A survey of basic techniques of Fourier analysis on a finite Abelian
group Q with subsequent applications in graph theory. In particular,
evaluations of the Tutte polynomial of a graph G in terms of cosets of the
Q-flows (or dually Q-tensions) of G. Other applications to spanning trees
of Cayley graphs and group-valued models on phylogenetic trees are also
used to illustrate methods.

1 Introduction

Fourier analysis on finite vector spaces over F2, where the Fourier transform
is also known as the Walsh-Hadamard transform, has been a rich source for
applications in combinatorics. This is due to the fact that many combinatorial
problems involve subsets of a finite set, and a subset of an m-set can be repre-
sented by its incidence vector in Fm

2 . See for example [13, 14] for the relationship
of the Fourier transform to matroid duality and more generally to duals of func-
tions defined on subsets of a finite set. As observed elsewhere [2, 24], Fourier
analysis on other finite Abelian groups has not been so widespread in combi-
natorics, even though many of the methods used for (vector spaces over) F2

extend mutatis mutandis to (modules over) arbitrary Abelian groups. In [8, 9]
Biggs uses the Fourier transform on an Abelian group Q of order q to exhibit
the duality between interaction models defined in terms of vertex q-colourings
of a graph (such as the q-state Potts model) and models defined in terms of Q-
flows of a graph (such as the ice model on 4-regular graphs when Q = F3). The
purpose of this article is to give further advertisement to how the elementary
techniques of Fourier analysis on finite Abelian groups may be used to derive
theorems in graph theory.

Properties of the Fourier transform relevant to our aims are outlined in
Section 2. No avail is made of the Bonami-Gross-Beckner hypercontractive in-
equality for functions on finite vector spaces over F2 that has been of such utility
in studying the phenomena of influences of Boolean variables and thresholds of

1



monotone Boolean functions: see for example the recent survey article [21] and
references therein. A graphical application of this inequality in its version for
functions on finite modules over finite cyclic groups can be found in [2].

Our graphical applications appear in Section 3, although in Section 2 there
is a further illustrative example involving spanning trees of a Cayley graph
drawing upon a known result from [27]. Cayley graphs are a natural object
for study in graph theory by Fourier methods, since the Fourier transform di-
agonalises the adjacency matrix of a Cayley graph on an Abelian group. The
most substantial application explored in Section 3 is in the search for new com-
binatorial interpretations for evaluations of the Tutte polynomial, an activity
that has occupied the author elsewhere [16], and in this regard much influenced
as a doctoral student by the perspicacious and patient supervision of Dominic
Welsh.

2 Preliminaries

For background in the theory of Abelian groups and modules see for example
[18]. An accessible introduction to Fourier analysis on finite groups and its
applications can be found in [31]. A recent and exhaustive source for coding
theory is [20]. Proofs can be found in these books for many of the facts quoted
in this section, although gradually proofs will be included for results that are
not so readily located in the literature.

For a consideration of analogues of the MacWillams extension and duality
theorems in coding theory over finite (possibly non-commutative) rings see [36],
in which there is an illuminating account of the role of generating characters.
For a generalisation of matroid duality as defined over vector spaces to analogous
structures defined over modules over finite rings see [32].

Abelian groups, rings, modules

Let R be an Abelian group written additively. R admits the structure of a
commutative ring. Indeed, by the structure theorem for finite Abelian groups, if
` is the exponent of R (the least common multiple of the orders of its elements)
then there is a unique sequence of positive integers q1, q2, . . . , qm such that
2 ≤ q1 | q2 | · · · | qm = ` and

R ∼= Zq1 ⊕ Zq2 ⊕ · · · ⊕ Zqm .

This direct sum of additive groups can be interpreted as a direct sum of rings
(the cyclic group Zq is the additive group of the ring of integers modulo q). Mul-
tiplication in this case is componentwise: the product of x = (x1, x2, . . . , xm),
y = (y1, y2, . . . , ym) ∈ Zq1 ⊕ Zq2 ⊕ · · · ⊕ Zqm

is xy = (x1y1, x2y2, . . . , xmym).
However, alternative multiplicative structures on R are possible. When the

additive group R is the m-fold direct sum Zp⊕Zp⊕· · ·⊕Zp for prime p, R may
be endowed with the structure of the finite field Fq for q = pm.
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Assume now that R is a commutative ring. If further R = Qm is the m-fold
direct sum of another commutative ring Q, then R has the additional structure
of a module over Q. In the sequel this will be the form R takes: m will be the
number of edges in a graph G and elements of Qm will be vectors indexed by
edges of G. When Q = Fq is a finite field on q elements Qm is a vector space
over Q.

Characters

For an additive Abelian group R, a character of R is a homomorphism χ : R→ C
from the additive group R to the multiplicative group of C. If the exponent of
R is ` then characters map R to the multiplicative subgroup of `th roots of
unity in C. The set of characters form a group under pointwise multiplication.
When R is a finite Abelian group R̂ is isomorphic to R. If R = R1 ⊕ R2 then
R̂ ∼= R̂1 × R̂2. In particular, if R = Qm is the m-fold direct sum of an Abelian
group Q, then Q̂m ∼= Q̂m.

For each x ∈ R, write χx for the image of x under a fixed isomorphism
of R with R̂. In particular, the principal (trivial) character χ0 is defined by
χ0(y) = 1 for all y ∈ R, and χ−x(y) = χx(y) for all x, y ∈ R, where the bar
denotes complex conjugation.

Now introduce a multiplicative structure on R to make it into a commutative
ring. A character χ ∈ R̂ is a generating character for R if χx(y) = χ(xy) for
each character χx ∈ R̂. If the commutative ring R has a generating character
for its additive group then χx(y) = χy(x).

Examples of rings with generating characters are the ring of integers Zq

modulo q, which has generating character χ(x) = e2πix/q, and the finite field
Fq for prime power q = pm, which has generating character χ(x) = e2πiTr(x)/p,
where Tr(x) = x+ xp + · · ·+ xpm−1

is the trace of x. Direct sums of rings with
generating characters also have generating characters, so that given an Abelian
group R there is always a ring with the additive structure of R which has
a generating character. The ring F2[X,Y ]/(X2, XY, Y 2) with additive group
isomorphic to Z2 ⊕ Z2 ⊕ Z2 does not have a generating character; see [36] for
the reason why.

If R = Qm is the m-fold direct sum of a commutative ring Q and ψ a
generating character for Q, then χ defined by χ(x1, . . . , xm) := ψ(x1) · · ·ψ(xm)
for (x1, . . . , xm) ∈ Qm is a generating character for Qm. The Euclidean inner
product (dot product) on Qm is defined for x = (x1, . . . , xm), y = (y1, . . . , ym) ∈
Qm by x · y = x1y1 + · · · + xmym. Since ψ(x1) · · ·ψ(xm) = ψ(x1 + · · ·xm), it
follows that ψ has the property that χx(y) = χ(xy) = ψ(x · y) for x, y ∈ Qm.
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The algebra CR

Denote by CR the vector space over C of all functions from R to C. This is an
inner product space with Hermitian inner product 〈 , 〉 defined for f, g ∈ CR by

〈f, g〉 =
∑
x∈R

f(x)g(x).

Associated with this inner product is the Euclidean norm ‖f‖2 of f , defined
by

‖f‖2
2 = 〈f, f〉 =

∑
x∈R

|f(x)|2.

The vector space CR has the additional structure of an algebra under either
of the following two definitions of multiplication:

(i) the pointwise product f · g of f, g ∈ CR, defined for x ∈ R by f · g(x) =
f(x)g(x),

(ii) the convolution f ∗ g of f, g ∈ CR, defined for x ∈ R by

f ∗ g(x) =
∑
y∈R

f(y)g(x− y)

The r-fold convolution f ∗f ∗· · ·∗f is abbreviated to f∗r, the r-fold pointwise
product f · f · · · f to fr. Note that for functions f1, . . . , fr ∈ CR,

f1 ∗ f2 ∗ · · · ∗ fr(x) =
∑

x1,...,xr∈R
x1+···+xr=x

f1(x1)f2(x2) · · · fr(xr).

The set {1x : x ∈ R} of indicator functions defined by

1x(y) =
{

1 x = y,
0 x 6= y,

form an orthonormal basis for CR, with 〈1x, 1y〉 = 1x(y). The indicator
function notation is extended to subsets S of R by setting 1S =

∑
x∈S 1x.

The characters of R are also orthogonal in this inner product space,

〈χx, χy〉 =
{
|R| x = y,
0 x 6= y,

(1)

and form an orthogonal basis for CR.
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The Fourier transform

Fix an isomorphism x 7→ χx of R with R̂ and let χ be a generating character
for R such that χx(y) = χ(xy).

For f ∈ CR the Fourier transform f̂ ∈ CR is defined for y ∈ R by

f̂(y) = 〈f, χy〉 =
∑
x∈R

f(x)χy(−x).

The definition of the Fourier transform depends on the choice of isomorphism
R→ R̂, x 7→ χx but is independent of this choice up to an automorphism of R.

The Fourier transform maps the basis of indicator functions to the basis of

characters: 1̂y = χ−y. The Fourier inversion formula ̂̂f(x) = |R|f(−x), gives
the inverse transform

f(x) =
1
|R|

〈f̂ , χ−x〉 =
1
|R|

∑
y∈R

f̂(y)χx(y). (2)

Note that 1̂R = |R|10 and 1̂0 = 1R, since 〈1R, χy〉 = 〈χ0, χy〉 = |R|10(y).
Suppose g is a translation of f , i.e. g(x) = f(x+z) for fixed z and all x ∈ R.

Then ĝ(x) = f̂ · χ−z(x) is a modulation of f̂(x). Now suppose g is a dilation of
f by an invertible element of R, i.e. g(x) = f(ux) for fixed unit u and all x ∈ R.
Then ĝ(x) = f̂(u−1x) is a dilation of f̂ by u−1.

The orthogonality of characters (1) yields Plancherel’s identity

〈f, g〉 =
1
|R|

〈f̂ , ĝ〉, (3)

a special case of which is Parseval’s identity

‖f‖2
2 =

1
|R|

‖f̂‖2
2. (4)

Identities (2), (3) and (4) depend only on the fact (1) that the characters
{χx : x ∈ R} form an orthogonal basis for CR. That each χx is a homomorphism
of R into the multiplicative group of C leads to the following key property. The
Fourier transform gives an isomorphism of the algebra CR with multiplication
pointwise product with the algebra CR with multiplication convolution: for
y ∈ R

f̂ ∗ g(y) = f̂ · ĝ(y), (5)

f̂ · g(y) =
1
|R|

f̂ ∗ ĝ(y). (6)

Subgroups, submodules, annihilators, orthogonals

For a subgroup C of the additive group R, the annihilator C] of C is defined

C] := {x ∈ R : ∀y∈C χx(y) = 1},
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the set of x for which the kernel of χx contains C. The annihilator C] is a
subgroup of R isomorphic to R/C.

A second key property of the Fourier transform is that it takes indicators of
subgroups to (scalar multiples of) indicators of their annihilators:

1̂C(y) =
∑
x∈C

χx(y) = |C|1C](y). (7)

By (2), (5) and (7) there follows the Poisson summation formula∑
x∈C

f(x+ z) =
1
|C]|

∑
x∈C]

f̂(x)χz(x).

Suppose now that R = Qm for some commutative ring Q.
The orthogonal to C (with respect to the Euclidean inner product) is defined

by
C⊥ = {y ∈ Qm : ∀x∈C x · y = 0}.

The orthogonal to C and annihilator of C coincide provided certain condi-
tions are met:

Lemma 2.1 Let Q be a commutative ring possessing a generating character
and C a Q-submodule of Qm. Then C] = C⊥.

Proof. If ψ is a generating character for Q, then Qm has generating character
χ, for which χx(y) = χ(xy) = ψ(x · y) for all x, y ∈ Qm. Hence C⊥ ⊆ C], since
ψ(x · y) = ψ(0) = 1 for all y ∈ C⊥ and x ∈ Qm. Suppose χx(y) = ψ(x · y) = 1
for all y ∈ C. Then for all a ∈ Q we have 1 = ψ(x ·ay) = ψ(a(x ·y)). This forces
x · y = 0 since this equation holds for all a ∈ Q and ψ is a generating character
for Q. �

For Q-submodule C of Qm, denote the coset {x + z : x ∈ C} of C in
the additive group Qm by C + z, an element of the quotient module Qm/C.
Abbreviating sums of the form

∑
x∈C+z g(x) = g∗1C(z) by the notation g(C+z),

the Poisson summation formula says that

f(C + z) =
1

|C⊥|
f̂ · χz(C⊥) (8)

whenever C is a Q-submodule of a ring Qm that has a generating character.
In later applications the submodule C will be the image or kernel of a linear

transformation defined by a matrix indexed by the vertices and edges of a graph,
or, in the last application, the paths and edges of a rooted tree. In making use
of (8) it will be helpful to record the following facts.

Consider a linear transformation T : Qm → Qn ofQ-modules. The transpose
linear transformation T t : Qn → Qm is adjoint to T (relative to the Euclidean
inner product) in that Tx · y = x · T ty for all x ∈ Qm, y ∈ Qn.

Lemma 2.2 Let Q be a commutative ring with a generating character, T :
Qm → Qn a linear transformation and T t : Qn → Qm its transpose. Then
(imT t)⊥ = kerT and (kerT )⊥ = imT t.
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Proof. If y ∈ kerT then, for all x ∈ Qn, T tx · y = x · Ty = x · 0 = 0. If
y 6∈ kerT then Ty 6= 0 and T tx · y = x · Ty which is non-zero for some x ∈ Qn

(for example x a unit vector with non-zero position coinciding with a non-zero
position of Ty).

Although (kerT )⊥ = (imT t)⊥⊥ ⊇ imT t holds for any ring Q, that Q has
a generating character is needed to show equality. Consider that, by (7) and
Lemma 2.1, 1̂imT t = |imT t|1ker T , and use the Fourier inversion formula (2) to
deduce that qm1imT t = |imT t|1̂ker T . With kerT a Q-submodule of Qm,

| kerT |1(ker T )⊥ = 1̂ker T =
qm

|imT t|
1imT t .

This implies that (kerT )⊥ = imT t, qm = |imT t| · | kerT |. �

Hamming weight, Krawtchouck polynomials

For each a ∈ Q and x ∈ Qm, define na(x) := #{j : xj = a}, the number of
occurences of a in x. The Hamming weight |x| := m − n0(x) is the number of
non-zero entries of x. The sets Sj := {x ∈ Qm : |x| = j} are often called shells
(or levels), and ∪0≤j≤iSj spheres.

The Krawtchouck polynomial Kj(k;m, q) of degree j is defined for 0 ≤ j, k ≤
m by

Kj(k;m, q) = [zj ] (1+(q−1)z)m−k(1−z)k =
∑

0≤i≤j

(−1)i(q−1)j−i

(
k

i

)(
m− k

j − i

)
.

In particular,K0(k;m, q) = 1,K1(k;m, q) = m(q−1)−qk, andKm(k;m, q) =
(−1)k(q − 1)m−k.

The Fourier transform of indicator functions of shells are given (see for ex-
ample [20]) by

1̂Sj
(x) = Kj(|x|;m, q). (9)

For C a Q-submodule of Qm, by the Poisson summation formula (8),

|C ∩ Sj | = #{x ∈ C : |x| = j} =
1

|C⊥|
∑

x∈C⊥

Kj(|x|;m, q).

Spanning trees of Cayley graphs

Our first application of the Fourier transform to graph theory is adapted from
[27, chapter 5] to which the reader is referred for further details.

Given an additive group R with subset S ⊆ R satisfying −S = S, the Cayley
graph Cayley(R;S) is defined to have vertices elements of R and edges joining
x and y whenever x − y ∈ S. The characters χx of the Abelian group R form
eigenvectors of the adjacency matrix of Cayley(R;S), with eigenvalues given by
the Fourier transform 1̂S(x).
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A Hamming graph is a Cayley graph on Qm with S = Sj for some 1 ≤ j ≤ m.
Them-dimensional hypercube is the caseQ = F2 and S = S1, where two vertices
x, y are adjacent if and only if x, y ∈ Fm

2 differ in exactly one place.
Let f ∈ CR have support S = {x ∈ R : f(x) 6= 0} and the property that

f(−x) = f(x). The function f may be thought of as assigning non-zero C-
valued weights to the edges of Cayley(R;S). Define the linear transformation
M : CR → CR by

Mg(x) =
∑
y∈R

f(y)g(x+ y) = f ∗ g(x).

For a given vertex x of Cayley(R;S), Mg(x) is the ‘f -weighted average’ of the
values of g at the vertices adjacent to x. With

Mχz(x) =
∑
y∈R

f(y)χz(y)χz(x) = f̂(z)χz(x),

χz is an eigenvector of M for each z ∈ R. By expressing the Laplacian of
Cayley(R;S) in terms of M and then appealing to Kirchoff’s Matrix Tree The-
orem, the result of [27, exercise 5.68] is that∑

T

∏
e∈T

f(e) =
1
|R|

∏
0 6=y∈R

(
f̂(0)− f̂(y)

)
,

where the left-hand summation is over the edge-sets of all spanning trees T of
Cayley(R;S). In particular,

#{spanning trees of Cayley(R;S)} =
1
|R|

∏
0 6=y∈R

(|S| − 1̂S(y)). (10)

Taking R = Qm for Q of size q and f = 1S1 , where S1 = {x ∈ Qm : |x| = 1},

#{spanning trees of Cayley(Qm;S1)} = qqm−m−1
∏

1≤k≤m

k(
m
k )(q−1)k

, (11)

since 1̂S1(y) = K1(|y|;m, q) = m(q−1)−q|y| and #{y ∈ Qm : |y| = k} = |Sk| =(
m
k

)
(q − 1)k. Stanley [27, example 5.6.10] gives as an example (11) for the case

Q = F2, remarking that a direct combinatorial proof is not known.
By (10) and (9) the number of spanning trees of Cayley(Qm;Sj) is given by

q−m
∏

1≤k≤m

(Kj(0;m, q)−Kj(k;m, q))(
m
k )(q−1)k

.

Weight enumerators

Before defining weight enumerators a technical lemma is recorded.
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Lemma 2.3 Let R be an Abelian group and R = R1⊕R2. Suppose that f ∈ CR

is defined for x ∈ R by f(x) = g(x1)h(x2) for functions g ∈ CR1 and h ∈ CR2 .
Then f̂(x) = ĝ(x1)ĥ(x2), with Fourier transforms defined on the appropriate
spaces.

In particular, if R = Qm for an Abelian group Q and f ∈ CR is defined for
each x = (x1, . . . , xm) ∈ Qm by

f(x) = f1(x1)f2(x2) · · · fm(xm),

where f1, . . . , fm ∈ CQ, then

f̂(x) = f̂1(x1)f̂(x2) · · · f̂m(xm),

where the Fourier transforms on the right-hand side are on CQ.

Let Q be a commutative ring with a generating character, h : Q → C and
C a submodule of Qm. For each z ∈ Qm the complete weight enumerator of the
coset C + z of C is defined by

cwe(C + z;h) :=
∑

x∈C+z

∏
a∈Q

h(a)na(x). (12)

(It is usual to take the values h(a) as indeterminates ta so that the complete
weight enumerator is a q-variable polynomial in {ta : a ∈ Q}, but we shall
mainly be interested in evaluations of the complete weight enumerator in C.)
The MacWilliams duality theorem for complete weight enumerators states that

cwe(C;h) =
1

|C⊥|
cwe(C⊥; ĥ), (13)

where ĥ is the Fourier transform of h, ĥ(b) =
∑

a∈Q h(a)χa(−b).
The identity (13) is proved by defining f : Qm → C for x = (x1, . . . , xm) by

f(x) = h(x1)h(x2) · · ·h(xm),

so that the complete weight enumerator is equal to f(C), and using Lemma 2.3
and the Poisson summation formula (8) with z = 0.

The Hamming weight enumerator of C + z is the specialisation of (12) ob-
tained by setting h(0) = t for indeterminate t and h(a) = 1 for a 6= 0:

hwe(C + z; t) :=
∑

x∈C+z

tn0(x) =
∑

x∈C+z

tm−|x|.

Specialising (13) to the Hamming weight enumerator, the MacWilliams du-
ality theorem states that

hwe(C; t) =
(t− 1)m

|C⊥|
hwe(C⊥,

t− 1 + q

t− 1
), (14)

where q = |Q|.
In the following, recall that for a function g : Qm → C the notation g(C+z)

stands for
∑

x∈C g(x+ z).
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Lemma 2.4 Let Qm be a commutative ring with a generating character. For
submodule C of Qm and r ≥ 1 functions f1, . . . , fr : Qm → C∑

C+z∈Qm/C

f1(C + z) · · · fr(C + z) =
1

|C⊥|r−1

∑
x1,...,xr∈C⊥

x1+···+xr=0

f̂1(x1) · · · f̂r(xr).

(15)
Also, for r ≥ 1 and 2r functions f1, . . . , f2r : Qm → C,∑

C+z∈Qm/C

f1(C + z) · · · fr(C + z)fr+1(C + z) · · · f2r(C + z)

=
1

|C⊥|2r−1

∑
x1,...,x2r∈C⊥

x1+···+xr=xr+1+···+x2r

f̂1(x1) · · · f̂r(xr)f̂r+1(xr+1) · · · f̂2r(x2r). (16)

Proof. By (2), (5), (6), (7) and Lemma 2.1, the left-hand side of (15) is

1
|C|

∑
z∈Qm

f1 ∗1C ·f2 ∗1C · · · fr ∗1C(z) =
1
|C|

· |C|
r

qmr
· qm · f̂1 ·1C⊥ ∗ · · · ∗ f̂r ·1C⊥(0)

=
1

|C⊥|r−1

∑
x1+···+xr=0

f̂1(x1)1C⊥(x1) · · · f̂r(xr)1C⊥(xr),

which is the right-hand side of (15). The second statement (16) can be deduced
from (15) by using the fact that if g : Qm → C then ĝ(y) = ĝ(−y). �

On setting f1 = · · · = fr = fr+1 = · · · = f2r in Lemma 2.4 we obtain the
following.

Corollary 2.5 Let Qm be a commutative ring with a generating character. For
submodule C of Qm, function f : Qm → C and integer r ≥ 2,∑
C+z∈Qm/C

f(C+z)r =
1

|C⊥|r−1

∑
x1,...,xr−1∈C⊥

f̂(x1) · · · f̂(xr−1)f̂(−x1−x2−· · ·−xr−1).

For integer r ≥ 1, ∑
C+z∈Qm/C

|f(C + z)|2r

=
1

|C⊥|2r−1

∑
x1,...,x2r∈C⊥

x1+···+xr=xr+1+···+x2r

f̂(x1) · · · f̂(xr)f̂(xr+1) · · · f̂(x2r).

Another special case of Lemma 2.4 in conjunction with Lemma 2.3 will be
useful later:
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Corollary 2.6 Let Qm be a commutative ring with a generating character. For
submodule C of Qm and functions h, k : Q→ C∑

C+z∈Qm/C

cwe(C + z;h)cwe(C + z; k) =
1

|C⊥|
cwe(C⊥; ĥ · k̂).

Proof. Set r = 1 in identity (16) of Lemma 2.4 and define f1, f2 : Qm → C by
f1(x) = h(x1)h(x2) · · ·h(xm), f2(x) = k(x1)k(x2) · · · k(xm) for x = (x1, x2, . . . , xm).
Lemma 2.3 and the definition (12) of the complete weight enumerator now give
the result.�

3 Graphical applications

Let G = (V,E) be a graph on n vertices and m edges with an arbitrary orienta-
tion assigned to its edges, and Q a commutative ring on q elements possessing
a generating character. The number of components of G is denoted by k(G).
The rank r(E) of G is n− k(G).

Consider the linear transformation T : QE → QV defined by the n × m
incidence matrix T = (Tv,e) of G with (v, e) entry

Tv,e =

 1 v the positive end of e,
−1 v the negative end of e,
0 v not incident with e.

The boundary operator T takes an edge colouring x ∈ QE and colours a
vertex with the net flow of colours into it:

(Tx)v =
∑
e∈E

Tv,exe.

The coboundary operator T t : QV → QE ,

(T ty)e =
∑
v∈V

Tv,eyv,

takes a vertex colouring y ∈ QV and colours a directed edge e = (u, v) with
the difference yv − yu of colours on its endpoints. A loop (v, v) always has
coboundary 0.

For a graph G = (V,E) with boundary operator T : QE → QV , kerT is
the submodule of Q-flows of G and imT t is the submodule of Q-tensions of G.
By Lemma 2.2, (kerT )⊥ = imT t provided Q has a generating character, and
always (imT t)⊥ = kerT . There are qn−k(G) Q-tensions of G and qm−n+k(G)

Q-flows of G. To each Q-tension y ∈ imT t there are qk(G) vertex Q-colourings,
all of whose coboundaries are equal to y.

The boundary polynomial of G is the Hamming weight enumerator of the
submodule of Q-flows of G,

hwe(kerT ; s) =
∑

x∈ker T

sm−|x|,

11



and the coboundary polynomial the Hamming weight enumerator of the sub-
module of Q-tensions of G,

hwe(imT t; t) =
∑

y∈im T t

tm−|y| = q−k(G)
∑

z∈QV

tm−|T tz|.

The boundary and coboundary polynomials are related by the MacWilliams
duality identity (14). The exponent m − |T tz| in the second expression for
the coboundary polynomial is the number of monochrome edges in the vertex
Q-colouring z, i.e. edges whose endpoints have the same colour. This relates
the coboundary polynomial more transparently to the partition function of the
q-state Potts model of statistical physics. See for example [33, 35].

For F ⊆ E the rank r(F ) of F is defined to be the rank of the subgraph
(V, F ) obtained from G by deleting the edges in E\F . The Tutte polynomial of
G is defined by

T (G; s, t) =
∑
F⊆E

(s− 1)r(E)−r(F )(t− 1)|F |−r(F ). (17)

For more information about the Tutte polynomial see for example Dominic’s
book [33] or survey paper [34]. Many evaluations of the Tutte polynomial of
a graph have interpretations in terms of combinatorial properties of the graph,
some more surprising than others. So for example that T (G; 1, 1) counts span-
ning trees of a connected graph G is clear upon observing that r(F ) = |F | if
and only if (V, F ) is acyclic and r(F ) = r(E) if and only if (V, F ) is spanning.
But that T (G;−1,−1) = (−1)m(−2)d where d is the dimension of bicycle space
of G might appear less so [25]. For boundary map T : Fm

2 → Fn
2 , the bicycle

space of G is kerT ∩ imT t, the subspace of elements that are both flows (cycles)
and tensions (cocycles). Also not obvious from the definition (17) is that the
coefficients of T (G; s, t) are non-negative integers: they count spanning trees of
G according to their internal activity and external activities; see for example
[11, 10] for an explanation of these terms. Below we shall obtain evaluations of
the Tutte polynomial of the form

s
n−k(G)
2 t

m−n+k(G)
2 T (G;

s1
s2
,
t1
t2

). (18)

If s2 = 0 then (18) is well-defined, despite appearances, with value
t
m−n+k(G)−`(G)
2 s

n−k(G)
1 t

`(G)
1 , where `(G) is the number of loops in G; similarly,

if t2 = 0 then (18) is equal to sn−k(G)−b(G)
2 s

b(G)
1 t

m−n+k(G)
1 , where b(G) is the

number of bridges (coloops) in G.
In order to obtain our evaluations of the Tutte polynomial we use the fact (see

for example [35]) that the boundary and coboundary polynomials are speciali-
sations of Tutte polynomial on the hyperbola Hq := {(s, t) : (s− 1)(t− 1) = q}.
If T : Qm → Qn is the boundary operator on G and |Q| = q then

hwe(kerT ; s) = (s− 1)m−n+k(G)T (G; s,
s− 1 + q

s− 1
), (19)
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and
hwe(imT t; t) = (t− 1)n−k(G)T (G;

t− 1 + q

t− 1
, t). (20)

The Ashkin-Teller model and the 4-state Potts model

Let G be a graph on n vertices and m edges, C the subspace of F2-flows of G,
and C̃ the subspace of F4-flows of G. (So C⊥ is the subspace of F2-tensions and
C̃⊥ the subspace of F4-tensions.) The Cartesian product C × C is isomorphic
to C̃ and (C × C)⊥ = C⊥ × C⊥ is isomorphic to C̃⊥.

Let {0, 1, ω, ω = 1 + ω} be the set of elements of F4. Identify the subspaces
C × C and C⊥ × C⊥ of Fm

2 × Fm
2 with their images C̃ and C̃⊥ in Fm

4 under
the isomorphism F2 × F2 → F4 defined by (0, 0) 7→ 0, (1, 1) 7→ 1, (0, 1) 7→
ω, (1, 0) 7→ ω.

The partition function of the Ashkin-Teller model [5] is an evaluation of the
complete weight enumerator of the subspace of F4-tensions

cwe(C̃⊥; t0, t1, tω, tω) =
∑

z∈C̃⊥

t
n0(z)
0 t

n1(z)
1 tnω(z)

ω t
nω(z)
ω ,

with the specialisation t0 = t1tωtω and an assignment of positive real values
to t1, tω, tω (corresponding to interaction energies). The symmetric Ashkin-
Teller model takes the further specialisation tω = tω. The 4-state Potts model
(Hamming weight enumerator) is the specialisation t1 = tω = tω.

Identifying z ∈ F4 with (x, y) ∈ F2 × F2, the Ashkin-Teller specialisation of
the complete weight enumerator of C̃⊥ is alternatively given by∑

z∈C̃⊥

(t1tωtω)n0(z)tnω(z)
ω t

nω(z)
ω t

n1(z)
1 =

∑
x,y∈C⊥

tn0(x)
ω t

n0(y)
ω t

n0(x+y)
1 . (21)

When t1 = 1 this reduces to hwe(C⊥; tω)hwe(C⊥; tω), and the Ashkin-Teller
model reduces to two independent Ising models (2-state Potts models).

From Corollary 2.5 the sum of the cubes of coset weight enumerators of the
subspace C of F2-flows is, with the help of (21), given by

∑
C+z∈Fm

2 /C

hwe(C + z; t)3 =
(t− 1)3m

|C⊥|2
∑

x,y∈C⊥

(
t+ 1
t− 1

)n0(x)+n0(y)+n0(x+y)

=
(t− 1)3m

|C⊥|2
·
(
t+ 1
t− 1

)m ∑
z∈C⊥×C⊥

(
t+ 1
t− 1

)2n0(z)

=
(t− 1)m(t2 − 1)m

|C⊥|2
hwe(C̃⊥;

(
t+ 1
t− 1

)2

).

Thus we have the following theorem, by using (20) to replace the Hamming
weight enumerator in the above expression by the Tutte polynomial on H4.
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Theorem 3.1 Let G = (V,E) be a graph on n vertices, m edges and k(G)
components, and let C be the subspace of F2-flows of G. Then, for t ∈ C,

∑
C+z∈Fm

2 /C

hwe(C+z; t)3 = (t+1)mtn−k(G)(t−1)2(m−n+k(G))T (G;
t2 − t+ 1

t
,

(
t+ 1
t− 1

)2

).

In particular, when t =
√
−1,∑

C+z∈Fm
2 /C

hwe(C + z;
√
−1)3 = (

√
−1− 1)m(−2)m−n+k(G)T (G;−1,−1). (22)

Also from Corollary 2.5 we have the identity

∑
C+z∈Fm

2 /C

hwe(C + z; t)2 = (2t)n−k(G)(t− 1)2(m−n+k(G))T (G;
t2 + 1

2t
,

(
t+ 1
t− 1

)2

),

(23)
this time giving a specialisation of the Tutte polynomial to H2, and which for
t =

√
−1 evaluates to (2

√
−1)m if G is Eulerian and 0 otherwise. Similarly

∑
C+z∈Fm

2 /C

|hwe(C + z; t)|2 = (t+ t)n−k(G)|t− 1|2(m−n+k(G))T (G;
|t|2 + 1
t+ t

,

∣∣∣∣ t+ 1
t− 1

∣∣∣∣2),
(24)

which for t =
√
−1 evaluates to 2m. Evaluations such as (22), (23) and (24)

yield information about the distribution of Hamming weights modulo 4 in cosets
of F2-flows: writing Nj = Nj(C + z) := #{x ∈ C + z : n0(x) ≡ j (mod 4)} for
j = 0, 1, 2,−1, we have hwe(C + z;

√
−1) = N0 −N2 +

√
−1(N1 −N−1).

Evaluations of the Tutte polynomial

In all of this section Q will be an Abelian group of order q which will be assumed
to have been given the further structure of a ring with a generating character
so as to be able to apply the results of Section 2. Let G = (V,E) be a graph on
n vertices, m edges and with k(G) components, C the Q-submodule of Q-flows
of G, and C⊥ the Q-submodule of Q-tensions of G.

Let A ⊆ Q and B = Am ⊆ Qm. Supposing C + z ∈ Qm/C is chosen
uniformly at random, what can be said about the probability distribution of
|C + z ∩ B|? When A = Q this distribution is clearly uniform, but when for
example A = Q \ 0, so that B = {x ∈ Qm : |x| = m}, the answer is not so clear.
In particular, the size of |C ∩B| in this case is (−1)m−n+k(G)T (G; 0, 1− q), the
number of nowhere-zero Q-flows of G.

Corollary 2.5 with f = 1B yields the rth moments of |C + z ∩B| as speciali-
sations of cwe(C̃⊥) where C̃ is the (r−1)-fold Cartesian product C×C×· · ·C,
equal to the set of Qr−1-flows of G, and C̃⊥ the set of Qr−1-tensions of G (using
a similar argument to above for Q = F2, r = 3).
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For r = 2, in order to have an evaluation of the Tutte polynomial on Hq the
evaluation of the complete weight enumerator of C⊥ provided by Corollary 2.6,∑

C+z∈Qm/C

|C + z ∩B|2 =
1

|C⊥|
cwe(C⊥; |1̂A|2), (25)

needs to be an evaluation of Hamming weight enumerator of C⊥; i.e. A must
have the property that |1̂A|2 is constant on Q \ 0. Identity (20) tells us that

1
|C⊥|

hwe(C⊥; t) =
(
t− 1
q

)n−k(G)

T (G;
t− 1 + q

t− 1
, t), (26)

so that if |1̂A|2 is constant on Q \ 0 then (26) yields an evaluation of the Tutte
polynomial on Hq interpreted in terms of the left-hand side of (25), and hence
the second moment of |C + z ∩ B| when a coset C + z is chosen uniformly at
random from Qm/C.

It will be convenient to use a variation on convolution of functions defined on
a ring R, namely the cross-correlation f ? g of two functions f, g ∈ CR, defined
by

f ? g(x) =
∑
y∈R

f(y)g(x+ y).

This has the property that

f̂ ? g(y) = f̂ · ĝ(y), (27)

and in particular f̂ ? f = |f̂ |2. Most pertinently for this section, for each a ∈ Q,

1A ? 1A(a) = #{(a1, a2) ∈ A×A : a1 − a2 = a},

and since a function g : Q→ C is constant on Q \ 0 if and only if ĝ is constant
on Q \ 0 it follows that |1̂A|2 has this property if and only if 1A ? 1A does.

For 2 ≤ s ≤ q, a (q, s, `)-difference set in Q is a subset A of s elements
of Q with the property that for each 0 6= a ∈ Q there are precisely ` pairs
(a1, a2) ∈ A×A such that a1 − a2 = a, i.e. 1A ? 1A is constant on Q \ 0. (There
are s pairs (a, a) ∈ A × A with difference equal to 0.) The parameters of a
(q, s, `)-difference set must satisfy s(s − 1) = (q − 1)`. For any Abelian group
Q on q ≥ 2 elements the set A = Q forms a (q, q, q)-difference set and the set
of nonzero elements A = Q \ 0 form a (q, q − 1, q − 2)-difference set in A. A
(q, s, `0, `1)-partial difference set in Q is a subset A of size s with the property
that for each 0 6= a ∈ A there are precisely `0 pairs (a1, a2) ∈ A× A such that
a1 − a2 = a and for each 0 6= a 6∈ A there are precisely `1 pairs (a1, a2) ∈ A×A
such that a1− a2 = a, i.e. 1A ? 1A is constant on A and constant on Q \ (A∪ 0).
If Q = Fq for prime power q ≡ 1 (mod 4) then the subset of non-zero squares
is a (q, q−1

2 , q−5
4 , q−1

4 )-partial difference set. For more on difference sets see for
example [7, 17, 22].

Equation (25) yields the following evaluation of the Tutte polynomial on Hq.
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Theorem 3.2 [16] Let G = (V,E) be a graph on n vertices, m edges and with
k(G) components. Let Q be an Abelian group of order q, C the set of Q-flows
of G, A a (q, s, `)-difference set in Q and B = Am. Then∑

C+z∈Qm/C

|C + z ∩B|2 = `n−k(G)(s− `)m−n+k(G)T (G;
s

`
,
s2

s− `
). (28)

Furthermore, the left-hand side of (28) is an evaluation of the Tutte polynomial
on Hq only if A is a difference set in Q.

Taking A = Q \ 0 in Theorem 3.2 gives∑
C+z∈Qm/C

|C + z ∩ (Q \ 0)m|2 = (q − 2)n−k(G)T (G;
q − 1
q − 2

, (q − 1)2).

When Q = Fq for prime power q ≡ −1 (mod 4), the set A of non-zero squares
in Fq forms a (q, q−1

2 , q−3
4 )-difference set. The set A ∪ 0 of squares then forms

a (q, q+1
2 , q+1

4 )-difference set, since Fq = A ∪ (−A) ∪ 0. Thus by Theorem 3.2,
when B is the set of vectors in Fm

q all of whose components are squares in Fq

and C the subspace of Fq-flows,∑
C+z∈Fm

q /C

|C + z ∩B|2 =
(
q + 1

4

)m

T (G; 2, q + 1).

Note that Amay not be a difference set in Q and yet give an evaluation of the
Tutte polynomial in Theorem 3.2, only not on Hq but a different hyperbola. For
example, if P is a subgroup of Q of size p and A = Q \P , then 1̂A = q10− p1P ]

which leads to an evaluation of the Tutte polynomial on Hq/p:∑
C+z∈Qm/C

|C + z ∩ (Q \ P )m|2 =
(
q − 2p
p

)n−k(G)

T (G;
q − p

q − 2p
,

(
q − p

p

)2

).

Henceforth we shall just seek evaluations on Hq when Q has order q so as to
avoid obscuring arguments by extra complications.

For subset A of Q, let nA(x) :=
∑

a∈A na(x) denote the number of entries
in x ∈ Qm belonging to A. Suppose now that A is partitioned into two sets A0

and A1 and that

B0 = {x ∈ Am : nA1(x) ≡ 0 (mod 2)}, B1 = {x ∈ Am : nA1(x) ≡ 1 (mod 2)}.

Note that |B0| = |B1| when |A0| = |A1|. The set C + z ∩ B is partitioned into
C + z ∩B0 and C + z ∩B1. How are the differences |C + z ∩B0| − |C + z ∩B1|
distributed when C + z ranges uniformly over Qm/C? The expected difference
|C + z ∩ B0| − |C + z ∩ B1| is (|B0| − |B1|)/|C⊥|, which is equal to zero if
|A0| = |A1|. Turning to the second moment, by Corollary 2.6∑

C+z∈Qm/C

(|C + z ∩B0| − |C + z ∩B1|)2 =
1

|C⊥|
cwe(C⊥; |1̂A0 − 1̂A1 |2). (29)

16



By (27), equation (29) yields an evaluation of the Tutte polynomial precisely
when 1A0 ? 1A0 + 1A1 ? 1A1 − 1A0 ? 1A1 − 1A1 ? 1A0 is constant on Q \ 0.

Suppose first that A = Q. For a partition of Q into two subsets A0 and A1,
1̂A0 − 1̂A1 = 21̂A0 − 1̂Q = 21̂A0 − q10. Hence |1̂A0 − 1̂A1 |2 is constant on Q \ 0
if and only if |1̂A0 |2 is constant on Q \ 0, i.e. A0 is a (q, s, `)-difference set in Q,
|1̂A0 − 1̂A1 |2 = (2s− q)210 +4(s− `)1Q\0, and (29) is an evaluation of the Tutte
polynomial in this case.

Theorem 3.3 Let G = (V,E) be a graph on n vertices, m edges and with k(G)
components. Let Q be an Abelian group of order q and C the set of Q-flows
of G. If A0 is a (q, s, `)-difference set in Q, A1 = Q \ A0, B0 = {x ∈ Qm :
nA1(x) ≡ 0 (mod 2)} and B1 = Qm \B0, then∑

C+z∈Qm/C

(|C + z ∩B0| − |C + z ∩B1|)2

= [q − 4(s− `)]n−k(G)[4(s− `)]m−n+k(G)T (G;
q

q − 4(s− `)
,
(2s− q)2

4(s− `)
) (30)

Furthermore, the left-hand side of (30) is an evaluation of the Tutte polynomial
on Hq only if A0 is a difference set in Q.

For example, when A0 = Q\0, A1 = {0}, the set B0 comprises elements with an
even number of zero entries and B1 those with an odd number. Here equation
(30) is∑

C+z∈Qm/C

hwe(C + z;−1)2 = (q − 4)n−k(G)4m−n+k(G)T (G;
q

q − 4
, (
q

2
− 1)2).

(31)
(When q = 2 equation (31) is (23) with t = −1. When q = 4 the right-hand
side of equation (31), equal to 4m, depends only on the number of edges of G.)

Take now A = Q \ 0, partitioned into subsets A0 and A1 = Q \ (A0 ∪ 0).
The condition now for (29) to be an evaluation of the Tutte polynomial is that
|21̂A0 − q10 + 1Q|2 is constant on Q \ 0. It is not difficult to show that this
equivalent to requiring that 1A0 ? 1A0 + 1A0∪0 ? 1A0∪0 is constant on Q \ 0 and
in turn that this is the case if and only if, for some constants s(= |A0|), `0, `, `1,

1A0 ? 1A0 = s10 + `01A0∩(−A0) + `1A0∆(−A0) + `11A\(A0∪(−A0)). (32)

Moreover, the constants necessarily satisfy `1 = `0 + 1 if A0 ∩ (−A0) 6= ∅ and if
A0 ∩ (−A0) = ∅ it must be the case that A0 ∪ (−A0) = A = Q \ 0 (for otherwise
the impossible condition 2`+ 1 = 2`1 arises).

If A0 is a (q, s, `0, `1)-partial difference set with `0 6= `1 then A0 = −A0

(since 1A0 ? 1A0(a) = 1A0 ? 1A0(−a) so that a ∈ A0 if and only if −a ∈ A0) and
A0 satisfies (32). If A0 is a (q, s, `)-difference set then it also satisfies (32) with
`0 = `1 = `. The conditions `1 = `0+1 if A0∩(−A0) 6= ∅ and A0∪(−A0) = Q\0
if A0 ∩ (−A0) = ∅ both force s = |A0| = q−1

2 and the following theorem results.
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Theorem 3.4 Let G = (V,E) be a graph on n vertices, m edges and with k(G)
components. Let Q be an Abelian group of odd order q ≥ 3 and C the set of
Q-flows of G. Suppose that Q\0 is partitioned into two subsets A0 and A1 each
of size q−1

2 . Let B0, B1 ⊆ (Q \ 0)m be defined by

B0 = {x ∈ (Q\0)m : nA1(x) ≡ 0 (mod 2)}, B1 = {x ∈ (Q\0)m : nA1(x) ≡ 1 (mod 2)}.

Then∑
C+z∈Qm/C

(|C + z ∩B0| − |C + z ∩B1|)2 = (−1)n−k(G)qm−n+k(G)T (G; 1− q, 0)

(33)
precisely when A0 (and A1) is a{

(q, q−1
2 , q−3

4 )-difference set in Q q ≡ −1 (mod 4),
(q, q−1

2 , q−5
4 , q−1

4 )-partial difference set in Q q ≡ 1 (mod 4).

Furthermore, the only partition of Q \ 0 into two sets A0 and A1 for which
the left-hand side of (33) is an evaluation of the Tutte polynomial on Hq is when
|A0| = |A1| and A0 is a (partial) difference set, with parameters as above.

There are (see for example [17]) difference sets and partial difference sets
not equivalent to the non-zero squares in a finite field but that have the Paley
parameters (q, q−1

2 , q−3
4 ) or (q, q−1

2 , q−5
4 , q−1

4 ). Theorem 3.4 with q = 3, A1 =
{−1} and G the line graph of a cubic graph is equivalent to [23, Theorem 1.1],
one of Matiyasevich’s restatements of the Four Colour Theorem.1

Theorem 3.4 shows that if A = Q \ 0 is to be partitioned into subsets A0

and A1 in such a way that (29) is an evaluation of the Tutte polynomial, then
|Q| is odd and |A0| = |A1|. Consider more generally a partition of A ⊆ Q size s
into r ≥ 2 subsets Ai each of size s/r and indexed by an additive Abelian group
I of order r. Define

Bi =
⋃

i1,...,im∈I
i1+···+im=i

Ai1 × · · · ×Aim , (34)

and B = ∪i∈IBi = Am. Let β : B → I be the function defined by β(x) = i if
x ∈ Bi.

Corresponding to the case r = 2 of (|C+z∩B0|−|C+z∩B1|)2, the quantity

r

(∑
i∈I

|C + z ∩Bi|2
)
− |C + z ∩B|2,

1A chapter of the author’s thesis [15] explores Matiyasevich’s use of Petersen’s ‘graph
polynomial’ in obtaining his results in greater detail. For a cyclic group Q = Zq the vector

space CQm
is isomorphic to the quotient of the vector space C[t1, . . . , tm] of polynomials in

m indeterminates by the ideal generated by the polynomials tqj −1, 1 ≤ j ≤ m. This links the
method of Fourier analysis on Qm with Alon and Tarsi’s more general polynomial method,
for which see in particular [3, 4, 1].
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always non-negative by the Cauchy-Schwarz inequality, is equal to zero if and
only if |C + z ∩ Bi| is independent of i. Moreover, since the Ai, and hence the
Bi, are all the same size, if x, y ∈ B are chosen uniformly at random then

s−2m
∑

C+z∈Qm/C

(
r
∑
i∈I

|C + z ∩Bi|2 − |C + z ∩B|2
)

= P(x− y ∈ C | β(x) = β(y))− P(x− y ∈ C)

is the correlation between the event that x, y lie in the same coset of C (i.e.
Tx = Ty where T : Qm → Qn is the boundary map, whose kernel is C) and the
event that x, y belong to the same set Bi (i.e. β(x) = β(y)).

Theorem 3.5 Let G = (V,E) be a graph on n vertices, m edges and with k(G)
components, Q an Abelian group of order q ≥ 3 and C the set of Q-flows of G.
Suppose that Q \ 0 is partitioned into r subsets Ai each of size q−1

r and indexed
by an additive Abelian group I of order r. Let Bi ⊆ (Q \ 0)m be defined by (34)
above and β : (Q \ 0)m → I be defined by β(x) = i if x ∈ Bi.

If x, y are chosen independently uniformly at random from (Q \ 0)m, then

P(x− y ∈ C | β(x) = β(y))− P(x− y ∈ C)

= (−1)n−k(G)(r − 1)(q − 1)−2mqm−n+k(G)T (G; 1− q, 0) (35)

if and only if
∑

i∈I 1Ai+j
? 1Ai

is constant on Q \ 0 for all j ∈ I.
Moreover, if any subset A of Q is partitioned into subsets Ai of equal size

such that the correlation on the left-hand side of (35) is an evaluation of the
Tutte polynomial on Hq, then |A| = q − 1 and the evaluation is equal to the
right-hand side of (35).

Proof. Suppose A ⊆ Q size s is partitioned into r ≥ 2 subsets Ai size s/r
indexed by I and Bi is defined as above (34). Define for each j ∈ I the function
hj : Q→ Z by

hj =
∑
i∈I

1Ai+j
? 1Ai

,

i.e. hj(a) counts the total multiplicity of a in the differences Ai+j −Ai for i ∈ I.
Note that hj(0) = s for j = 0 and hj(0) = 0 for j 6= 0

Let i 7→ πi be an isomorphism of I with the group of characters Î. Define
for each k ∈ I

fk =
∑
i∈I

πk(i)1Ai
.

Note that f0 = 1A. By orthogonality of the characters of I and by Corollary
2.6, ∑

C+z∈Qm/C

r

(∑
i∈I

|C + z ∩Bi|2
)
− |C + z ∩B|2
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=
∑

0 6=k∈I

∑
C+z∈Qm/C

|cwe(C + z; fk)|2 =
1

|C⊥|
∑

0 6=k∈I

cwe(C⊥; |f̂k|2).

With

|f̂k|2 =

∣∣∣∣∣∑
i∈I

πk(i)1̂Ai

∣∣∣∣∣
2

=
∑
j∈I

πk(j)
∑
i∈I

1̂Ai+j
1̂Ai

by (27) and Fourier inversion (2), for each b ∈ Q,

1
q
̂|f̂k|2(−b) =

∑
j∈I

πk(j)
∑
i∈I

1Ai+j
? 1Ai

(b)

=
∑
j∈I

πk(j)
∑
a∈Q

hj(a)1a(b) =
∑
a∈Q

1a(b)
∑
j∈J

hj(a)πk(j).

Define for each a ∈ Q the function ga : I → Z by ga(j) = hj(a) for each j ∈ I.
Then

1
q
̂|f̂k|2(−b) =

∑
a

ĝa(k)1a(b),

where the Fourier transform on the right-hand side is on CI , those on the left-
hand side on CQ. Thus |f̂k|2 is constant on Q \ 0 ⇔ ĝa = ĝb for all a, b ∈ Q \ 0
⇔ ga = gb for all a, b ∈ Q \ 0 ⇔ hj(a) = hj(b) for all a, b ∈ Q \ 0 and j ∈ I,
i.e. hj is a constant `j on Q \ 0 for all j ∈ I. If h0(a) = `0 for a 6= 0 then
r s

r ( s
r − 1) = (q − 1)`0; similarly for j 6= 0, if hj(a) = `j for a 6= 0 then

r( s
r )2 = (q − 1)`j . Hence, for |f̂k|2 to be constant on Q \ 0 it is necessary and

sufficient that

hj =
∑
i∈I

1Ai+j
? 1Ai

=

{
s10 + s(s−r)

(q−1)r 1Q\0 j = 0,
s2

(q−1)r 1Q\0 j 6= 0.

Note then that since s
(q−1)r (s − (s − r)) = s

q−1 ∈ Z, the integer s must be
a multiple of q − 1. Since s ≤ q and q ≥ 3 it follows that s = q − 1 and up to
translation A can be assumed to be equal to Q \ 0, partitioned into r | q − 1
subsets Ai. For a 6= 0,

ĝa(k) =
∑
j∈I

πk(j)hj(a) =
s(s− r)
(q − 1)r

− s2

(q − 1)r
= − s

q − 1
= −1

and ĝ0(k) =
∑

j∈I hj(0) = s = q − 1. Hence

1
q
̂|f̂k|2 =

∑
a∈Q

1aĝa(k) = (q − 1)10 − 1Q\0

and it follows that, for each 0 6= k ∈ I, |f̂k|2 = q1Q\0. This establishes the
theorem.�

20



To illustrate Theorem 3.5 with a concrete example, take Q = Fq, A =
Fq \ 0 = F×q and I = Zr. Let c be a multiplicative generator of F×q and define
Ai = {cj ∈ F×q : j ≡ i (mod r)}, so that A0 is the set of rth powers in F×q . Let
τ be an order r character of the multiplicative group F×q , so that ker τ = A0,
and set τ(0) = 0. For k ∈ Zr define τk to be the kth power of τ (i.e. regarding
the exponent k as an integer). Note that τ0 = 1Fq\0. The Fourier transform of
τk : Fq → C is the Gauss sum

τ̂k(b) =
∑
a∈Q

τk(a)χb(a),

where b 7→ χb is an isomorphism Fq → F̂q. It is a well known result (see for
example [6]) that |τ̂k|2 = q1Fq\0 for k 6= 0.

Theorem 3.6 [16] Let G = (V,E) be a graph on n vertices, m edges, k(G)
components, and T : Fm

q → Fn
q the boundary operator. Let x = (x1, . . . , xm)

and y = (y1, . . . , ym) be chosen uniformly at random from (F×q )m. Suppose τ is
a multiplicative character of order r on F×q . Then

P(Tx = Ty | τ(x1 · · ·xm) = τ(y1 · · · ym))− P(Tx = Ty)

= (−1)n−k(G)(r − 1)(q − 1)−2mqm−n+k(G)T (G; 1− q, 0).

Phylogenetic trees

In our final graphical application a different linear transformation T : Qm → Qn

is considered with which to use the machinery set up in Section 2.
Rooted trees have been widely used in phylogenetics to model evolution;

see for example [26, 12, 30, 28, 29] to add further detail and context to the
following account. Let T be a rooted tree with n leaves and m edges. The
tree T represents the evolution of a set of n taxa: the leaves of the tree are the
observed taxa, the interior nodes representing hypothetical ancestors to subsets
of the taxa, and the root a hypothetical common ancestor.

Label the leaves T arbitrarily by [n] := {1, 2, . . . , n} and label the edges
by [m] in such as way that an edge labelled i ∈ [n] has as an endpoint the
leaf labelled i (and other edges are labelled arbitrarily by [m] \ [n]). Define
for each leaf i the path P (i) to be the set of edges on the unique path in T
from the root to the leaf i. Define for each edge j ∈ [m] the cluster C(j) by
C(j) = {i ∈ [n] : j ∈ P (i)}. Deleting the edge j splits the tree into two
components, one containing the root, the other containing the leaves in C(j).
The initial vertex of an edge j is the endpoint nearer the root, and its final
vertex the endpoint nearer the leaves in C(j).

Let Q be an additive Abelian group of order q. A Markov process on vertex
Q-colourings of T is defined by assigning to each edge j a transition probability
pj : Q×Q→ [0, 1], described by a square matrix indexed by Q, with (a, b) entry
pj(a, b) the conditional probability that the final vertex of j is coloured b given
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that the initial vertex of j is coloured a. When pj(a, b) =: fj(b − a) depends
only on the colour difference c = b−a, a simpler desciption of this model results.
For each edge j ∈ [m] and c ∈ Q there is associated a probability fj(c) that
the colour change along edge j is c: the probability that the final vertex of j is
coloured a+ c given that the initial vertex of j is coloured a.

In order to use the results of Section 2, assume that Q has the further
structure of a commutative ring with a generating character. Define the linear
transformation T : Qm → Qn for each i ∈ [n] and x ∈ Qm by

(Tx)i =
∑

j∈P (i)

xj ,

colouring the leaf i with the sum of the colours on the path from the root to i.
The transpose T t : Qn → Qm is the linear transformation

(T ty)j =
∑

i∈C(j)

yi,

colouring the edge j with the sum of the colours on the leaves that it separates
from the root. Let C = kerT , for which |C| = qm−n. By Lemma 2.2, C⊥ =
imT t and |C⊥| = qn.

The Jukes-Cantor model for evolution of purine-pyrimidine sequences takes
Q = Z2, and the Kimura model takes Q = Z2 ⊕ Z2, the additive group of
F4 = {0, 1, ω, ω}, for encoding nucleotide sequences —the purines, adenine and
guanine, and the pyrimidines, cystosine and thymine. Transitions are substitu-
tions within a family, transversions substitutions between families. If we take
(adenine, guanine, cystosine, thymine) = (0, 1, ω, ω) then a transition corre-
sponds to adding an element of {0, 1}, a transversion to adding an element of
{ω, ω).

The Kimura 3-parameter model takes the transition probability at an edge
j to be of the form

fj = p010 + p111 + pω1ω + pω1ω,

where p0 + p1 + pω + pω = 1, for which

f̂j = 10 + [1− 2(pω + pω)]11 + [1− 2(p1 + pω)]1ω + [1− 2(p1 + pω)]1ω.

The Kimura 2-parameter model distinguishes only between transitions and
transversions, i.e. pω = pω,

fj = p010 + p111 + pω1{ω,ω},

where p0 + p1 + 2pω = 1, and

f̂j = 10 + [1− 4pω]11 + [1− 2(p1 + pω)]1{ω,ω}.

The Jukes-Cantor model does not distinguish between the three types of
substitution, i.e. p1 = pω = pω := p/3,

fj = (1− p)10 +
p

3
1{1,ω,ω},
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f̂j = 10 + (1− 4p
3

)1{1,ω,ω}.

The Kimura models are analogous to the Ashkin-Teller model in non-symmetric
and symmetric versions, the Jukes-Cantor model to the 4-state Potts model.

Let f : Qm → [0, 1] be a probability distribution on the edge Q-colourings
of T , edge j receiving colour c with probability fj(c), fj =

∑
c∈Q fj(c)1c, and

f(x) = f1(x1) · · · fm(xm) for x = (x1, . . . , xm) ∈ Qm. Then for random variable
x on Qm with probability distribution f , the leaf-colouring Tx = y is a random
variable on Qn with probability distribution

fT (y) :=
∑

x∈Qm, Tx=y

f(x),

given by
fT (y) = f ∗ 1ker T (y′) = f(C + y′),

where y′ ∈ Qm is any edge colouring such that Ty′ = y. A convenient choice
for y′ is to set y′j = yj for j ∈ [n] and y′j = 0 for j ∈ [m] \ [n]. Hence by the
Poisson summation formula (8), for y ∈ Qn,

fT (y) = q−n
∑

x∈im T t

f̂(x)χx(y′) = q−n
∑

x∈im T t

f̂(x)χy(x′), (36)

where x′ ∈ Qn is the truncation of x to [n], x′i = xi for i ∈ [n]. Identity
(36) is a restatement in different language of a known result: for Q = Z2 and
fj = (1 − pj)10 + pj11, f̂j = 10 + (1 − 2pj)11 it is a theorem of Hendy and
Penny [19], which was subsequently generalised to elementary Abelian 2-groups
by Székely et al. [28], and finally to any Abelian group Q by Székely et al. [30].
To (36) we can add the following.

Theorem 3.7 Suppose f : Qm → [0, 1] defines a probability distribution on
the edge Q-colourings of a phylogenetic tree T and that x1, x2 are independent
random variables each with probability density function f . Then, the probability
that the same leaf Q-colouring of T results from x1 and x2 is given by

P(Tx1 = Tx2) = q−n
∑

x∈im T t

|f̂(x)|2.

In particular, if f is defined on each edge j ∈ [m] by fj = (1− p)10 + p
q−11Q\0,

where 0 ≤ p ≤ 1, and y1, y2 are independent random variables on Qn with
probability distribution fT then

P(y1 = y2) = q−n
∑

x∈im T t

(
1− pq

q − 1

)2|x|

.

The problem for phylogenetics is how far it is possible to determine the tree
T from knowledge of (an estimate of) the distribution fT alone.
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