Graph polynomials from simple graph sequences

Delia Garijo ${ }^{1}$ Andrew Goodall ${ }^{2}$
Patrice Ossona de Mendez ${ }^{2,3}$ Jarik Nešetřil ${ }^{2}$
${ }^{1}$ University of Seville
${ }^{2}$ Charles University, Prague
${ }^{3}$ CAMS, CNRS/EHESS, Paris

26 March 2015
Hraniční zámeček, Hlohovec

Polynomials and homomorphisms equences giving graph polynomials Coloured rooted tree construction interpretation schemes
Some problems
rance expert

Chromatic polynomial

Definition by evaluations at positive integers
 $k \in \mathbb{N}, \quad P(G ; k)=\#\{$ proper vertex k-colourings of $G\}$.

Chromatic polynomial

Definition by evaluations at positive integers

$$
k \in \mathbb{N}, \quad P(G ; k)=\#\{\text { proper vertex } k \text {-colourings of } G\}
$$

$$
u v \in E(G), \quad P(G ; k)=P(G \backslash u v ; k)-P(G / u v ; k)
$$

Chromatic polynomial

Definition by evaluations at positive integers

$k \in \mathbb{N}, \quad P(G ; k)=\#\{$ proper vertex k-colourings of $G\}$.

$$
u v \in E(G), \quad P(G ; k)=P(G \backslash u v ; k)-P(G / u v ; k)
$$

Tutte polynomial

$T(G ; x, y)$ universal graph invariant for deletion-contraction of edge e:

$$
T(G ; x, y)=T(G / e ; x, y)+T(G \backslash e ; x, y)
$$

$$
T(G ; x, y)=x T(G / \text { bridge; } x, y), \quad T(G ; x, y)=y T(G \backslash \text { loop } ; x, y) .
$$

Chromatic polynomial

Definition by evaluations at positive integers

$k \in \mathbb{N}, \quad P(G ; k)=\#\{$ proper vertex k-colourings of $G\}$.

$$
u v \in E(G), \quad P(G ; k)=P(G \backslash u v ; k)-P(G / u v ; k)
$$

Tutte polynomial

$T(G ; x, y)$ universal graph invariant for deletion-contraction of edge e:

$$
T(G ; x, y)=T(G / e ; x, y)+T(G \backslash e ; x, y)
$$

$$
T(G ; x, y)=x T(G / \text { bridge; } x, y), \quad T(G ; x, y)=y T(G \backslash \text { loop } ; x, y) .
$$

For example,

$$
P(G ; k)=(-1)^{|V(G)|-c(G)} k^{c(G)} T(G ; 1-k, 0) .
$$

Independence polynomial

Definition by coefficients

$$
\begin{gathered}
I(G ; x)=\sum_{1 \leq j \leq|V(G)|} b_{j}(G) x^{j} \\
b_{j}(G)=\#\{\text { independent subsets of } V(G) \text { of size } j\}
\end{gathered}
$$

Independence polynomial

Definition by coefficients

$$
I(G ; x)=\sum_{1 \leq j \leq|V(G)|} b_{j}(G) x^{j}
$$

$$
b_{j}(G)=\#\{\text { independent subsets of } V(G) \text { of size } j\}
$$

$$
v \in V(G), \quad I(G ; x)=I(G-v ; x)+x I(G-N[v] ; x)
$$

Definition

Graphs G, H. $f: V(G) \rightarrow V(H)$ is a homomorphism from G to H if $u v \in E(G) \Rightarrow f(u) f(v) \in E(H)$.

Definition

Graphs G, H.
$f: V(G) \rightarrow V(H)$ is a homomorphism from G to H if $u v \in E(G) \Rightarrow f(u) f(v) \in E(H)$.

Definition

H with adjacency matrix $A=\left(a_{s, t}\right)$, weight $a_{s, t}$ on $s t \in E(H)$,

$$
\operatorname{hom}(G, H)=\sum_{f: V(G) \rightarrow V(H)} \prod_{u v \in E(G)} a_{f(u), f(v)}
$$

Definition

Graphs G, H.
$f: V(G) \rightarrow V(H)$ is a homomorphism from G to H if $u v \in E(G) \Rightarrow f(u) f(v) \in E(H)$.

Definition

H with adjacency matrix $A=\left(a_{s, t}\right)$, weight $a_{s, t}$ on $s t \in E(H)$,

$$
\begin{aligned}
\operatorname{hom}(G, H) & =\sum_{f: V(G) \rightarrow V(H)} \prod_{u v \in E(G)} a_{f(u), f(v)} \\
& =p_{A}(G) \quad \text { partition function }
\end{aligned}
$$

Definition

Graphs G, H.
$f: V(G) \rightarrow V(H)$ is a homomorphism from G to H if $u v \in E(G) \Rightarrow f(u) f(v) \in E(H)$.

Definition

H with adjacency matrix $A=\left(a_{s, t}\right)$, weight $a_{s, t}$ on $s t \in E(H)$,

$$
\begin{aligned}
\operatorname{hom}(G, H) & =\sum_{f: V(G) \rightarrow V(H)} \prod_{u v \in E(G)} a_{f(u), f(v)} \\
& =p_{A}(G) \quad \text { partition function }
\end{aligned}
$$

H simple $\left(a_{s, t} \in\{0,1\}\right)$ or multigraph $\left(a_{s, t} \in \mathbb{N}\right)$:

$$
\begin{aligned}
\operatorname{hom}(G, H) & =\#\{\text { homomorphisms from } G \text { to } H\} \\
& =\#\{H \text {-colourings of } G\}
\end{aligned}
$$

Example 1

Example 1

$\left(K_{k}\right)$
$\operatorname{hom}\left(G, K_{k}\right)=P(G ; k)$
chromatic polynomial

Problem

Which sequences $\left(H_{k}\right)$ of graphs are such that, for all graphs G, there is a fixed polynomial $p(G)$ with

$$
\operatorname{hom}\left(G, H_{k}\right)=p(G ; k)
$$

for each $k \in \mathbb{N}$?

Problem

Which double sequences $\left(H_{k, \ell}\right)$ of graphs are such that, for all graphs G, there is a fixed bivariate polynomial $p(G)$ with

$$
\operatorname{hom}\left(G, H_{k, \ell}\right)=p(G ; k, \ell)
$$

for each $k, \ell \in \mathbb{N}$?

Graph polynomials
Graph homomorphisms

Examples

Strongly polynomial sequences of graphs

Example 2

Examples

Strongly polynomial sequences of graphs

Example 3

Examples

Strongly polynomial sequences of graphs

Example 3

Example 4

$$
\left(K_{1}^{1}+K_{1, k}\right)
$$

Examples

Strongly polynomial sequences of graphs

Example 4

$$
\left(K_{1}^{1}+K_{1, k}\right)
$$

$$
\operatorname{hom}\left(G, K_{1}^{1}+K_{1, k}\right)=I(G ; k)
$$

independence polynomial

Non-Example

$\left(C_{k}\right)$

Examples

Strongly polynomial sequences of graphs

Non-Example

$\left(C_{k}\right)$
$\operatorname{hom}\left(K_{1}, C_{k}\right)=k$,

Examples

Strongly polynomial sequences of graphs

Non-Example

$\operatorname{hom}\left(K_{1}, C_{k}\right)=k$,
$\operatorname{hom}\left(K_{2}, C_{1}\right)=1, \quad \operatorname{hom}\left(K_{2}, C_{k}\right)=2 k$ when $k \geq 2$

Examples

Strongly polynomial sequences of graphs

Non-Example

$$
\operatorname{hom}\left(K_{1}, C_{k}\right)=k,
$$

$\operatorname{hom}\left(K_{2}, C_{1}\right)=1, \quad \operatorname{hom}\left(K_{2}, C_{k}\right)=2 k$ when $k \geq 2$
$\operatorname{hom}\left(K_{3}, C_{1}\right)=1, \operatorname{hom}\left(K_{3}, C_{2}\right)=0, \operatorname{hom}\left(K_{3}, C_{3}\right)=6$, $\operatorname{hom}\left(K_{3}, C_{k}\right)=0$ when $k \geq 4$

Examples

Strongly polynomial sequences of graphs

Sort-of-Example 5

$$
\left(K_{2}^{\square k}\right)=\left(Q_{k}\right) \text { (hypercubes) }
$$

Sort-of-Example 5

Proposition (Garijo, G., Nešetril, 2013+)

$\operatorname{hom}\left(G, Q_{k}\right)=p\left(G ; k, 2^{k}\right)$ for bivariate polynomial $p(G)$

Definition

$\left(H_{k}\right)$ is strongly polynomial (in k) if $\forall G \exists$ polynomial $p(G)$ such that $\operatorname{hom}\left(G, H_{k}\right)=p(G ; k)$ for all $k \in \mathbb{N}$.

Definition

$\left(H_{k}\right)$ is strongly polynomial (in k) if $\forall G \exists$ polynomial $p(G)$ such that $\operatorname{hom}\left(G, H_{k}\right)=p(G ; k)$ for all $k \in \mathbb{N}$.

Example

- $\left(K_{k}\right),\left(K_{k}^{1}\right)$ are strongly polynomial
- $\left(K_{k}^{\ell}\right)$ is strongly polynomial (in $\left.k, \ell\right)$

Definition

$\left(H_{k}\right)$ is strongly polynomial (in k) if $\forall G \exists$ polynomial $p(G)$ such that $\operatorname{hom}\left(G, H_{k}\right)=p(G ; k)$ for all $k \in \mathbb{N}$.

Example

- $\left(K_{k}\right),\left(K_{k}^{1}\right)$ are strongly polynomial
- $\left(K_{k}^{\ell}\right)$ is strongly polynomial (in $\left.k, \ell\right)$
- $\left(Q_{k}\right)$ not strongly polynomial (but polynomial in k and $\left.2^{k}\right)$

Definition

$\left(H_{k}\right)$ is strongly polynomial (in k) if $\forall G \exists$ polynomial $p(G)$ such that $\operatorname{hom}\left(G, H_{k}\right)=p(G ; k)$ for all $k \in \mathbb{N}$.

Example

- $\left(K_{k}\right),\left(K_{k}^{1}\right)$ are strongly polynomial
- $\left(K_{k}^{\ell}\right)$ is strongly polynomial (in $\left.k, \ell\right)$
- $\left(Q_{k}\right)$ not strongly polynomial (but polynomial in k and 2^{k})
- $\left(C_{k}\right)$ not strongly polynomial (but eventually polynomial in k)

Definition

$\left(H_{k}\right)$ is strongly polynomial (in k) if $\forall G \exists$ polynomial $p(G)$ such that $\operatorname{hom}\left(G, H_{k}\right)=p(G ; k)$ for all $k \in \mathbb{N}$.

Example

- $\left(K_{k}\right),\left(K_{k}^{1}\right)$ are strongly polynomial
- $\left(K_{k}^{\ell}\right)$ is strongly polynomial (in $\left.k, \ell\right)$
- $\left(Q_{k}\right)$ not strongly polynomial (but polynomial in k and 2^{k})
- $\left(C_{k}\right)$ not strongly polynomial (but eventually polynomial in k)

Proposition (de la Harpe \& Jaeger 1995)

Simple graphs $\left(H_{k}\right)$ form strongly polynomial sequence \forall connected $S \#\left\{\right.$ induced subgraphs $\cong S$ in $\left.H_{k}\right\}$ polynomial in k

Cotrees

cotree

...and the graph it represents

Cotrees

(0) disjoint
marked edge gives multiplicity of subtree pendant from its root-endpoint

By way of example: cotrees
General rooted tree construction
But this is not all of them...

...and the graph it represents

Example 1

$\left(K_{k}\right)$ - chromatic polynomial

Example 2

Example 3

$\left(K_{k}^{\ell}\right)$ — Potts model/ Tutte polynomial

Example 4

($K_{1}^{1}+K_{1, k}$) - Independence polynomial

Construction

[Garijo, G., Nešetřil, 2013+] Strongly polynomial sequences in k, l, \ldots by representation of graphs by coloured rooted trees (such as cotrees, clique-width parse trees, m-partite cotrees, tree-depth embeddings in closures of rooted trees) with edges marked by polynomials in $k, l \ldots$.

Definition

Generalized Johnson graph $J_{k, \ell, D}, D \subseteq\{0,1, \ldots, \ell\}$ vertices $\binom{[k]}{\ell}$, edge $u v$ when $|u \cap v| \in D$

Definition

Generalized Johnson graph $J_{k, \ell, D}, D \subseteq\{0,1, \ldots, \ell\}$ vertices $\binom{[k]}{\ell}$, edge $u v$ when $|u \cap v| \in D$

- Johnson graphs $D=\{k-1\}$
- Kneser graphs $D=\{0\}$

Definition

Generalized Johnson graph $J_{k, \ell, D}, D \subseteq\{0,1, \ldots, \ell\}$ vertices $\binom{[k]}{\ell}$, edge $u v$ when $|u \cap v| \in D$

- Johnson graphs $D=\{k-1\}$
- Kneser graphs $D=\{0\}$

Proposition (de la Harpe \& Jaeger, 1995; Garijo, G., Nešetřil, 2013+)
For every ℓ, D, sequence $\left(J_{k, \ell, D}\right)$ is strongly polynomial (in k).

Definition

Generalized Johnson graph $J_{k, \ell, D}, D \subseteq\{0,1, \ldots, \ell\}$ vertices $\binom{[k]}{\ell}$, edge $u v$ when $|u \cap v| \in D$

- Johnson graphs $D=\{k-1\}$
- Kneser graphs $D=\{0\}$

Proposition (de la Harpe \& Jaeger, 1995; Garijo, G., Nešetřil, 2013+)

For every ℓ, D, sequence $\left(J_{k, \ell, D}\right)$ is strongly polynomial (in k).

However, apart from cocliques and cliques, and the same graphs with a loop on each vertex, the sequence ($J_{k, \ell, D}$) seems not to be generated by our coloured rooted tree construction.

Simple graph sequence $\left(H_{k}\right)$ strongly polynomial iff

- $\forall G \quad \exists$ polynomial $p(G) \quad \forall k \in \mathbb{N}: \quad \operatorname{hom}\left(G, H_{k}\right)=p(G ; k)$

Simple graph sequence $\left(H_{k}\right)$ strongly polynomial iff

- $\forall G \quad \exists$ polynomial $p(G) \quad \forall k \in \mathbb{N}: \quad \operatorname{hom}\left(G, H_{k}\right)=p(G ; k)$
- $\forall F \quad \exists$ polynomial $q(F) \quad \forall k \in \mathbb{N}: \quad \operatorname{ind}\left(F, H_{k}\right)=q(F ; k)$

Satisfaction sets

Quantifier-free formula ϕ with p free variables $\left(\phi \in \mathrm{QF}_{p}\right)$ with symbols from relational structure \mathbf{H} with domain $V(\mathbf{H})$.

Satisfaction set $\phi(\mathbf{H})=\left\{\left(v_{1}, \ldots, v_{n}\right) \in V(\mathbf{H})^{n}: \mathbf{H} \models \phi\right\}$.

Satisfaction sets

Quantifier-free formula ϕ with p free variables $\left(\phi \in \mathrm{QF}_{p}\right)$ with symbols from relational structure \mathbf{H} with domain $V(\mathbf{H})$.

Satisfaction set $\phi(\mathbf{H})=\left\{\left(v_{1}, \ldots, v_{n}\right) \in V(\mathbf{H})^{n}: \mathbf{H} \models \phi\right\}$.
e.g. for graph structure H (symmetric binary relation $x \sim y$ interpreted as x adjacent to y), and given graph G on n vertices,

$$
\phi_{G}=\bigwedge_{i j \in E(G)}\left(v_{i} \sim v_{j}\right)
$$

Satisfaction sets

Quantifier-free formula ϕ with p free variables $\left(\phi \in \mathrm{QF}_{p}\right)$ with symbols from relational structure \mathbf{H} with domain $V(\mathbf{H})$.

Satisfaction set $\phi(\mathbf{H})=\left\{\left(v_{1}, \ldots, v_{n}\right) \in V(\mathbf{H})^{n}: \mathbf{H} \models \phi\right\}$.
e.g. for graph structure H (symmetric binary relation $x \sim y$ interpreted as x adjacent to y), and given graph G on n vertices,

$$
\phi_{G}=\bigwedge_{i j \in E(G)}\left(v_{i} \sim v_{j}\right)
$$

$$
\phi_{G}(H)=\left\{\left(v_{1}, \ldots, v_{n}\right): i \mapsto v_{i} \text { is a homomorphism } G \rightarrow H\right\}
$$

Satisfaction sets

Quantifier-free formula ϕ with p free variables $\left(\phi \in \mathrm{QF}_{p}\right)$ with symbols from relational structure \mathbf{H} with domain $V(\mathbf{H})$.

Satisfaction set $\phi(\mathbf{H})=\left\{\left(v_{1}, \ldots, v_{n}\right) \in V(\mathbf{H})^{n}: \mathbf{H} \models \phi\right\}$.
e.g. for graph structure H (symmetric binary relation $x \sim y$ interpreted as x adjacent to y), and given graph G on n vertices,

$$
\begin{gathered}
\phi_{G}=\bigwedge_{i j \in E(G)}\left(v_{i} \sim v_{j}\right) \\
\phi_{G}(H)=\left\{\left(v_{1}, \ldots, v_{n}\right): i \mapsto v_{i} \text { is a homomorphism } G \rightarrow H\right\} \\
\left|\phi_{G}(H)\right|=\operatorname{hom}(G, H) .
\end{gathered}
$$

Strongly polynomial sequences of relational structures

Definition

Sequence $\left(\mathbf{H}_{k}\right)$ of relational structures strongly polynomial iff $\forall \phi \in Q F \quad \exists$ polynomial $r(\phi) \quad \forall k \in \mathbb{N}: \quad\left|\phi\left(\mathbf{H}_{k}\right)\right|=r(\phi ; k)$

Strongly polynomial sequences of relational structures

Definition

Sequence $\left(\mathbf{H}_{k}\right)$ of relational structures strongly polynomial iff $\forall \phi \in Q F \quad \exists$ polynomial $r(\phi) \quad \forall k \in \mathbb{N}: \quad\left|\phi\left(\mathbf{H}_{k}\right)\right|=r(\phi ; k)$

Lemma

Equivalently,

- $\forall \mathbf{G} \exists$ polynomial $p(\mathbf{G}) \forall k \in \mathbb{N} \quad \operatorname{hom}\left(\mathbf{G}, \mathbf{H}_{k}\right)=p(\mathbf{G} ; k)$,

Strongly polynomial sequences of relational structures

Definition

Sequence $\left(\mathbf{H}_{k}\right)$ of relational structures strongly polynomial iff $\forall \phi \in Q F \quad \exists$ polynomial $r(\phi) \quad \forall k \in \mathbb{N}: \quad\left|\phi\left(\mathbf{H}_{k}\right)\right|=r(\phi ; k)$

Lemma

Equivalently,

- $\forall \mathbf{G} \exists$ polynomial $p(\mathbf{G}) \forall k \in \mathbb{N} \quad \operatorname{hom}\left(\mathbf{G}, \mathbf{H}_{k}\right)=p(\mathbf{G} ; k)$, or
- $\forall \mathbf{F} \exists$ polynomial $q(\mathbf{F}) \forall k \in \mathbb{N} \quad \operatorname{ind}\left(\mathbf{F}, \mathbf{H}_{k}\right)=q(\mathbf{F} ; k)$.

Strongly polynomial sequences of relational structures

Definition

Sequence $\left(\mathbf{H}_{k}\right)$ of relational structures strongly polynomial iff $\forall \phi \in Q F \quad \exists$ polynomial $r(\phi) \quad \forall k \in \mathbb{N}: \quad\left|\phi\left(\mathbf{H}_{k}\right)\right|=r(\phi ; k)$

Lemma

Equivalently,

- $\forall \mathbf{G} \exists$ polynomial $p(\mathbf{G}) \forall k \in \mathbb{N} \quad \operatorname{hom}\left(\mathbf{G}, \mathbf{H}_{k}\right)=p(\mathbf{G} ; k)$, or
- $\forall \mathbf{F} \exists$ polynomial $q(\mathbf{F}) \forall k \in \mathbb{N} \quad \operatorname{ind}\left(\mathbf{F}, \mathbf{H}_{k}\right)=q(\mathbf{F} ; k)$.

Transitive tournaments $\left(\vec{T}_{k}\right)$ strongly polynomial sequence of digraphs.

Graphical QF interpretation schemes

I : Relational σ-structures $\mathbf{A} \quad \longrightarrow \quad$ Graphs H

Graphical QF interpretation schemes

I: Relational σ-structures $\mathbf{A} \longrightarrow \quad$ Graphs H

Definition (Graphical QF interpretation scheme)

Exponent $p \in \mathbb{N}$, formula $\iota \in \mathrm{QF}_{p}(\sigma)$ and symmetric formula $\rho \in \mathrm{QF}_{2 p}(\sigma)$.
For every σ-structure \mathbf{A}, the interpretation $I(\mathbf{A})$ has

$$
\text { vertex set } \quad V=\iota(\mathbf{A})
$$

edge set $E=\{\{\mathbf{u}, \mathbf{v}\} \in V \times V: \mathbf{A} \models \rho(\mathbf{u}, \mathbf{v})\}$.

Graphical QF interpretation schemes

Example

- (Complementation) $p=1, \iota=1$ (constantly true), $\rho(x, y)=\neg R(x, y)(R(x, y)$: adjacency between x and $y)$.

Graphical QF interpretation schemes

Example

- (Complementation) $p=1, \iota=1$ (constantly true), $\rho(x, y)=\neg R(x, y)(R(x, y)$: adjacency between x and $y)$.
- (Square of a graph) $p=1, \iota=1$, and $\rho(x, y)=R(x, y) \vee(\exists z R(x, z) \wedge R(z, y))$
(requires a quantifier, so not a QF interpretation scheme).

Graphical QF interpretation schemes

Example

- (Complementation) $p=1, \iota=1$ (constantly true), $\rho(x, y)=\neg R(x, y)(R(x, y)$: adjacency between x and $y)$.
- (Square of a graph) $p=1, \iota=1$, and $\rho(x, y)=R(x, y) \vee(\exists z R(x, z) \wedge R(z, y))$ (requires a quantifier, so not a QF interpretation scheme).
- $\left(K_{k}\right.$ from $\left.\vec{T}_{k}\right) p=1, \iota=1, \rho(x, y)=(x<y) \vee(y<x)$ ($x<y$ directed edge in \vec{T}_{k})

Graphical QF interpretation schemes

Example

- (Complementation) $p=1, \iota=1$ (constantly true), $\rho(x, y)=\neg R(x, y)(R(x, y)$: adjacency between x and $y)$.
- (Square of a graph) $p=1, \iota=1$, and $\rho(x, y)=R(x, y) \vee(\exists z R(x, z) \wedge R(z, y))$
(requires a quantifier, so not a QF interpretation scheme).
- $\left(K_{k}\right.$ from $\left.\vec{T}_{k}\right) p=1, \iota=1, \rho(x, y)=(x<y) \vee(y<x)$ ($x<y$ directed edge in \vec{T}_{k})
- $\left(C_{k}\right.$ from $\left.\vec{T}_{k}\right) p=1, \iota=1, \rho(x, y)=\rho^{\prime}(x, y) \vee \rho^{\prime}(x, y)$,

$$
\begin{array}{cl}
\rho^{\prime}(x, y)=[x<y \wedge(x<z<y \rightarrow z=x \vee z=y)] \vee & i, i+1 \\
{[\forall z(z<x \vee z=x) \wedge \forall z(y<z \vee y=z)]} & k, 1
\end{array}
$$

Example (Kneser graphs $J_{k, \ell,\{0\}}$)

- $p=\ell$,

$$
\begin{gathered}
\iota\left(x_{1}, \ldots, x_{\ell}\right)=\bigwedge_{i=1}^{\ell-1}\left(x_{i}<x_{i+1}\right) \\
\rho\left(x_{1}, \ldots, x_{\ell}, y_{1}, \ldots, y_{\ell}\right)=\bigwedge_{i, j} \neg\left(x_{i}=y_{j}\right)
\end{gathered}
$$

Example (Kneser graphs $J_{k, \ell,\{0\}}$)

- $p=\ell$,

$$
\begin{gathered}
\iota\left(x_{1}, \ldots, x_{\ell}\right)=\bigwedge_{i=1}^{\ell-1}\left(x_{i}<x_{i+1}\right) \\
\rho\left(x_{1}, \ldots, x_{\ell}, y_{1}, \ldots, y_{\ell}\right)=\bigwedge_{i, j} \neg\left(x_{i}=y_{j}\right)
\end{gathered}
$$

- graphs represented (interpreted in) coloured rooted trees.

Graphical QF interpretation schemes

I: Relational σ-structures $\mathbf{A} \longrightarrow \quad$ Graphs H

Lemma

There is

$$
\tilde{I}: \mathrm{QF} \text { (Graphs) } \quad \longmapsto \quad \mathrm{QF}(\sigma \text {-structures })
$$

such that

$$
\phi(I(\mathbf{A}))=\widetilde{I}(\phi)(\mathbf{A})
$$

In particular, $\left(\mathbf{A}_{k}\right)$ strongly polynomial $\quad \Rightarrow \quad\left(H_{k}\right)=\left(I\left(\mathbf{A}_{k}\right)\right)$ strongly polynomial.

From graphs to graphs

- All previously known operations preserving strongly polynomial property (complementation, line graph, disjoint union, join, direct product,...) special cases of interpretation schemes I from Marked Graphs (added unary relations) to Graphs.

From graphs to graphs

- All previously known operations preserving strongly polynomial property (complementation, line graph, disjoint union, join, direct product,...) special cases of interpretation schemes I from Marked Graphs (added unary relations) to Graphs.
- Cartesian product and other more complicated graph products are special kinds of such interpretation schemes too.

Example

- (Cartesian product of graphs G_{1} and G_{2})

$$
\begin{gathered}
\mathbf{A}=G_{1} \sqcup G_{2} \\
U_{i}(v) \quad \Leftrightarrow \quad v \in V\left(G_{i}\right), \\
R_{i}(u, v) \quad \Leftrightarrow \quad u v \in E\left(G_{i}\right) \quad(i=1,2)
\end{gathered}
$$

Example

- (Cartesian product of graphs G_{1} and G_{2})

$$
\mathbf{A}=G_{1} \sqcup G_{2}
$$

$$
\begin{aligned}
U_{i}(v) & \Leftrightarrow \quad v \in V\left(G_{i}\right), \\
R_{i}(u, v) \Leftrightarrow & u v \in E\left(G_{i}\right) \quad(i=1,2)
\end{aligned}
$$

Interpretation scheme I of exponent $p=2$ defined on $\left(U_{1}, U_{2}, R_{1}, R_{2}\right)$-relational structures \mathbf{A} by

$$
\begin{gathered}
\iota\left(x_{1}, x_{2}\right): U_{1}\left(x_{1}\right) \wedge U_{2}\left(x_{2}\right) \\
\rho\left(x_{1}, x_{2}, y_{1}, y_{2}\right):\left[R_{1}\left(x_{1}, y_{1}\right) \wedge\left(x_{2}=y_{2}\right)\right] \vee\left[\left(x_{1}=y_{1}\right) \wedge R_{2}\left(x_{2}, y_{2}\right)\right]
\end{gathered}
$$

- QF interpretation of transitive tournament \vec{T}_{k} yields a strongly polynomial sequence.
- QF interpretation of transitive tournament \vec{T}_{k} yields a strongly polynomial sequence.
e.g. generalized Johnson graphs $\left(J_{k, \ell, D}\right)$
- QF interpretation of transitive tournament \vec{T}_{k} yields a strongly polynomial sequence.
e.g. generalized Johnson graphs $\left(J_{k, \ell, D}\right)$
- Half-graphs are QF interpretations of \vec{T}_{k} together with \vec{T}_{2} and two unary relations to specify "upper" and "lower" vertices, and so form a strongly polynomial sequence.
upper
lower

join upper vertices to
lower vertices to the right
- Intersection graphs of chords of a k-gon form a strongly polynomial sequence

(a) Square

(b) Pentagon

(d) Heptagon

Conjecture

All strongly polynomial sequences of graphs $\left(H_{k}\right)$ such that $H_{k} \subseteq_{\text {ind }} H_{k+1}$ can be obtained by QF interpretation of a "basic sequence" (finite disjoint union of transitive tournaments of size polynomial in k with unary relations).

Conjecture

All strongly polynomial sequences of graphs $\left(H_{k}\right)$ such that $H_{k} \subseteq_{\text {ind }} H_{k+1}$ can be obtained by QF interpretation of a "basic sequence" (finite disjoint union of transitive tournaments of size polynomial in k with unary relations).

Theorem (G., Nešetřil, Ossona de Mendez, 2014+)

A sequence $\left(H_{k}\right)$ of graphs of uniformly bounded degree is a strongly polynomial sequence if and only if it is a QF-interpretation of a basic sequence.

Relational structures
Example interpretations
Everything?

- When is hom $\left(G\right.$, Cayley $\left.\left(A_{k}, B_{k}\right)\right)$ a fixed polynomial (dependent on G) in $\left|A_{k}\right|,\left|B_{k}\right|$, where $B_{k}=-B_{k} \subseteq A_{k}$?
- When is $\operatorname{hom}\left(G, \operatorname{Cayley}\left(A_{k}, B_{k}\right)\right)$ a fixed polynomial (dependent on G) in $\left|A_{k}\right|,\left|B_{k}\right|$, where $B_{k}=-B_{k} \subseteq A_{k}$?
- (hypercubes) hom $\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{2}^{k}, S_{1}\right)\right)$ polynomial in 2^{k} and k ($S_{1}=\{$ weight 1 vectors $\}$). [Garijo, G., Nešetril 2013+]
- When is $\operatorname{hom}\left(G, \operatorname{Cayley}\left(A_{k}, B_{k}\right)\right)$ a fixed polynomial (dependent on G) in $\left|A_{k}\right|,\left|B_{k}\right|$, where $B_{k}=-B_{k} \subseteq A_{k}$?
- (hypercubes) hom $\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{2}^{k}, S_{1}\right)\right)$ polynomial in 2^{k} and k ($S_{1}=\{$ weight 1 vectors $\}$). [Garijo, G., Nešetril 2013+]
- For $D \subset \mathbb{N}$, $\operatorname{hom}\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{k}, \pm D\right)\right.$) is polynomial in k for sufficiently large k iff D is finite or cofinite. [de la Harpe \& Jaeger, 1995]
- When is $\operatorname{hom}\left(G, \operatorname{Cayley}\left(A_{k}, B_{k}\right)\right)$ a fixed polynomial (dependent on G) in $\left|A_{k}\right|,\left|B_{k}\right|$, where $B_{k}=-B_{k} \subseteq A_{k}$?
- (hypercubes) hom $\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{2}^{k}, S_{1}\right)\right)$ polynomial in 2^{k} and k ($S_{1}=$ \{weight 1 vectors $\}$). [Garijo, G., Nešetřil 2013+]
- For $D \subset \mathbb{N}$, hom $\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{k}, \pm D\right)\right.$) is polynomial in k for sufficiently large k iff D is finite or cofinite. [de la Harpe \& Jaeger, 1995]
- Which graph polynomials defined by strongly polynomial sequences of graphs satisfy a reduction formula (size-decreasing recurrence) like the chromatic polynomial and independence polynomial?
- When is $\operatorname{hom}\left(G, \operatorname{Cayley}\left(A_{k}, B_{k}\right)\right)$ a fixed polynomial (dependent on G) in $\left|A_{k}\right|,\left|B_{k}\right|$, where $B_{k}=-B_{k} \subseteq A_{k}$?
- (hypercubes) hom $\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{2}^{k}, S_{1}\right)\right)$ polynomial in 2^{k} and k ($S_{1}=$ \{weight 1 vectors $\}$). [Garijo, G., Nešetřil 2013+]
- For $D \subset \mathbb{N}$, $\operatorname{hom}\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{k}, \pm D\right)\right.$) is polynomial in k for sufficiently large k iff D is finite or cofinite. [de la Harpe \& Jaeger, 1995]
- Which graph polynomials defined by strongly polynomial sequences of graphs satisfy a reduction formula (size-decreasing recurrence) like the chromatic polynomial and independence polynomial?
- Which strongly polynomial sequences of graphs give matroid invariants when suitably scaled like the chromatic polynomial?
- When is $\operatorname{hom}\left(G, \operatorname{Cayley}\left(A_{k}, B_{k}\right)\right)$ a fixed polynomial (dependent on G) in $\left|A_{k}\right|,\left|B_{k}\right|$, where $B_{k}=-B_{k} \subseteq A_{k}$?
- (hypercubes) hom $\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{2}^{k}, S_{1}\right)\right)$ polynomial in 2^{k} and k ($S_{1}=$ \{weight 1 vectors $\}$). [Garijo, G., Nešetřil 2013+]
- For $D \subset \mathbb{N}$, $\operatorname{hom}\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{k}, \pm D\right)\right.$) is polynomial in k for sufficiently large k iff D is finite or cofinite. [de la Harpe \& Jaeger, 1995]
- Which graph polynomials defined by strongly polynomial sequences of graphs satisfy a reduction formula (size-decreasing recurrence) like the chromatic polynomial and independence polynomial?
- Which strongly polynomial sequences of graphs give matroid invariants when suitably scaled like the chromatic polynomial? e.g. $\binom{k}{\ell}^{-c(G)} \operatorname{hom}\left(G, J_{k, \ell, D}\right)$ [de la Harpe \& Jaeger, 1995]

Paley graphs
Generating functions
References

Prime power $q=p^{d} \equiv 1(\bmod 4)$
Paley graph $P_{q}=\operatorname{Cayley}\left(\mathbb{F}_{q}\right.$, non-zero squares $)$,

Prime power $q=p^{d} \equiv 1(\bmod 4)$
Paley graph $P_{q}=\operatorname{Cayley}\left(\mathbb{F}_{q}\right.$, non-zero squares $)$,
Quasi-random graphs: $\operatorname{hom}\left(G, P_{q}\right) / \operatorname{hom}\left(G, G_{q, \frac{1}{2}}\right) \rightarrow 1$ as $q \rightarrow \infty$.

Prime power $q=p^{d} \equiv 1(\bmod 4)$
Paley graph $P_{q}=\operatorname{Cayley}\left(\mathbb{F}_{q}\right.$, non-zero squares),
Quasi-random graphs: $\operatorname{hom}\left(G, P_{q}\right) / \operatorname{hom}\left(G, G_{q, \frac{1}{2}}\right) \rightarrow 1$ as $q \rightarrow \infty$.

Proposition (Corollary to result of de la Harpe \& Jaeger, 1995)

$\operatorname{hom}\left(G, P_{q}\right)$ is polynomial in q for series-parallel G.
e.g. $\operatorname{hom}\left(K_{3}, P_{q}\right)=\frac{q(q-1)(q-5)}{8}$

Prime power $q=p^{d} \equiv 1(\bmod 4)$
Paley graph $P_{q}=\operatorname{Cayley}\left(\mathbb{F}_{q}\right.$, non-zero squares),
Quasi-random graphs: $\operatorname{hom}\left(G, P_{q}\right) / \operatorname{hom}\left(G, G_{q, \frac{1}{2}}\right) \rightarrow 1$ as $q \rightarrow \infty$.

Proposition (Corollary to result of de la Harpe \& Jaeger, 1995)

$\operatorname{hom}\left(G, P_{q}\right)$ is polynomial in q for series-parallel G.
e.g. $\operatorname{hom}\left(K_{3}, P_{q}\right)=\frac{q(q-1)(q-5)}{8}$

Prime $q \equiv 1(\bmod 4), q=4 x^{2}+y^{2}$, [Evans, Pulham, Sheehan, 1981]:

$$
\operatorname{hom}\left(K_{4}, P_{q}\right)=\frac{q(q-1)}{1536}\left((q-9)^{2}-4 x^{2}\right)
$$

Prime power $q=p^{d} \equiv 1(\bmod 4)$
Paley graph $P_{q}=\operatorname{Cayley}\left(\mathbb{F}_{q}\right.$, non-zero squares),
Quasi-random graphs: $\operatorname{hom}\left(G, P_{q}\right) / \operatorname{hom}\left(G, G_{q, \frac{1}{2}}\right) \rightarrow 1$ as $q \rightarrow \infty$.

Proposition (Corollary to result of de la Harpe \& Jaeger, 1995)

$\operatorname{hom}\left(G, P_{q}\right)$ is polynomial in q for series-parallel G.
e.g. $\operatorname{hom}\left(K_{3}, P_{q}\right)=\frac{q(q-1)(q-5)}{8}$

Prime $q \equiv 1(\bmod 4), q=4 x^{2}+y^{2}$, [Evans, Pulham, Sheehan, 1981]:

$$
\operatorname{hom}\left(K_{4}, P_{q}\right)=\frac{q(q-1)}{1536}\left((q-9)^{2}-4 x^{2}\right)
$$

Is hom $\left(G, P_{q}\right)$ polynomial in q and x for all graphs G ?

Prime power $q=p^{d} \equiv 1(\bmod 4)$
Paley graph $P_{q}=\operatorname{Cayley}\left(\mathbb{F}_{q}\right.$, non-zero squares $)$,
Quasi-random graphs: $\operatorname{hom}\left(G, P_{q}\right) / \operatorname{hom}\left(G, G_{q, \frac{1}{2}}\right) \rightarrow 1$ as $q \rightarrow \infty$.

Proposition (Corollary to result of de la Harpe \& Jaeger, 1995)

$\operatorname{hom}\left(G, P_{q}\right)$ is polynomial in q for series-parallel G.
e.g. $\operatorname{hom}\left(K_{3}, P_{q}\right)=\frac{q(q-1)(q-5)}{8}$

Prime $q \equiv 1(\bmod 4), q=4 x^{2}+y^{2}$, [Evans, Pulham, Sheehan, 1981]:

$$
\operatorname{hom}\left(K_{4}, P_{q}\right)=\frac{q(q-1)}{1536}\left((q-9)^{2}-4 x^{2}\right)
$$

Is hom $\left(G, P_{q}\right)$ polynomial in q and x for all graphs G ?

Theorem (G., Nešetřil, Ossona de Mendez, 2014+)

If $\left(H_{k}\right)$ is strongly polynomial then there are only finitely many terms that belong to a quasi-random sequence of graphs.

Beyond polynomials? Rational generating functions

- For strongly polynomial sequence $\left(H_{k}\right)$,

$$
\sum_{k} \operatorname{hom}\left(G, H_{k}\right) t^{k}=\frac{P_{G}(t)}{(1-t)^{|V(G)|+1}}
$$

with polynomial $P_{G}(t)$ of degree at most $|V(G)|$.

Beyond polynomials? Rational generating functions

- For strongly polynomial sequence $\left(H_{k}\right)$,

$$
\sum_{k} \operatorname{hom}\left(G, H_{k}\right) t^{k}=\frac{P_{G}(t)}{(1-t)^{|V(G)|+1}}
$$

with polynomial $P_{G}(t)$ of degree at most $|V(G)|$.

- For eventually polynomial sequence $\left(H_{k}\right)$ such as $\left(C_{k}\right)$,

$$
\sum_{k} \operatorname{hom}\left(G, H_{k}\right) t^{k}=\frac{P_{G}(t)}{(1-t)^{|V(G)|+1}}
$$

with polynomial $P_{G}(t)$.

Beyond polynomials? Rational generating functions

- For quasipolynomial sequence of Turán graphs $\left(T_{k, r}\right)$

$$
\sum_{k} \operatorname{hom}\left(G, T_{k, r}\right) t^{k}=\frac{P_{G}(t)}{Q(t)^{|V(G)|+1}}
$$

with polynomial $P_{G}(t)$ of degree at most $|V(G)|$ and polynomial $Q(t)$ with zeros r th roots of unity.

Beyond polynomials? Rational generating functions

- For quasipolynomial sequence of Turán graphs $\left(T_{k, r}\right)$

$$
\sum_{k} \operatorname{hom}\left(G, T_{k, r}\right) t^{k}=\frac{P_{G}(t)}{Q(t)^{|V(G)|+1}}
$$

with polynomial $P_{G}(t)$ of degree at most $|V(G)|$ and polynomial $Q(t)$ with zeros r th roots of unity.

- For sequence of hypercubes $\left(Q_{k}\right)$,

$$
\sum_{k} \operatorname{hom}\left(G, Q_{k}\right) t^{k}=\frac{P_{G}(t)}{Q(t)^{|V(G)|+1}}
$$

with polynomial $P_{G}(t)$ of degree at most $|V(G)|$ and polynomial $Q(t)$ with zeros powers of 2 .

Beyond polynomials? Algebraic generating functions

- For sequence of odd graphs $O_{k}=J_{2 k-1, k-1,\{0\}}$, is

$$
\sum_{k} \operatorname{hom}\left(G, O_{k}\right) t^{k}
$$

algebraic? (e.g. it is $\frac{1}{2}(1-4 t)^{-\frac{1}{2}}$ when $G=K_{1}$).

Paley graphs

Generating functions

Three papers

- P. de la Harpe and F. Jaeger, Chromatic invariants for finite graphs: theme and polynomial variations, Lin. Algebra Appl. 226-228 (1995), 687-722

Defining graphs invariants from counting graph homomorphisms. Examples. Basic constructions.

- D. Garijo, A. Goodall, J. Nešetřil, Polynomial graph invariants from homomorphism numbers. 40pp. arXiv: 1308.3999 [math.CO] Further examples. New construction using coloured rooted tree representations of graphs.
- A. Goodall, J. Nešetřil, P. Ossona de Mendez, Strongly polynomial sequences as interpretation of trivial structures. 21pp.
arXiv:1405.2449 [math.CO] General relational structures: counting satisfying assignments for quantifier-free formulas. Building new polynomial invariants by interpretation of "trivial" sequences of marked tournaments.

