Graph polynomials and matroid invariants by counting graph homomorphisms

Delia Garijo ${ }^{1} \quad$ Andrew Goodall ${ }^{2}$
Patrice Ossona de Mendez ${ }^{3}$ Jarik Nešetřil ${ }^{2}$ Guus Regts ${ }^{4}$
and Lluís Vena²
${ }^{1}$ University of Seville
${ }^{2}$ Charles University, Prague
${ }^{3}$ CAMS, CNRS/EHESS, Paris
${ }^{4}$ University of Amsterdam

27 January 2016 Technion, Haifa

Chromatic polynomial

Definition by evaluations at positive integers
$k \in \mathbb{N}, \quad P(G ; k)=\#\{$ proper vertex k-colourings of $G\}$.

Chromatic polynomial

Definition by evaluations at positive integers
$k \in \mathbb{N}, \quad P(G ; k)=\#\{$ proper vertex k-colourings of $G\}$.

$$
P(G ; k)=\sum(-1)^{j} b_{j}(G) k^{|V(G)|-j}
$$

$$
b_{j}(G)=\#\{j \text {-subsets of } E(G) \text { containing no broken cycle }\}
$$

Chromatic polynomial

Definition by evaluations at positive integers

$k \in \mathbb{N}, \quad P(G ; k)=\#\{$ proper vertex k-colourings of $G\}$.

$$
P(G ; k)=\sum_{1 \leq j \leq|V(G)|}(-1)^{j} b_{j}(G) k^{|V(G)|-j}
$$

$b_{j}(G)=\#\{j$-subsets of $E(G)$ containing no broken cycle $\}$.

$$
(-1)^{|V(G)|} P(G ;-1)=\#\{\text { acyclic orientations of } G\}
$$

Chromatic polynomial

Definition by evaluations at positive integers

$k \in \mathbb{N}, \quad P(G ; k)=\#\{$ proper vertex k-colourings of $G\}$.

$$
P(G ; k)=\sum_{1 \leq j \leq|V(G)|}(-1)^{j} b_{j}(G) k^{|V(G)|-j}
$$

$b_{j}(G)=\#\{j$-subsets of $E(G)$ containing no broken cycle $\}$.

$$
\begin{aligned}
& (-1)^{|V(G)|} P(G ;-1)=\#\{\text { acyclic orientations of } G\} \\
& u v \in E(G), \quad P(G ; k)=P(G \backslash u v ; k)-P(G / u v ; k)
\end{aligned}
$$

Independence polynomial

Definition by coefficients

$$
I(G ; x)=\sum_{1 \leq j \leq|V(G)|} b_{j}(G) x^{j},
$$

$b_{j}(G)=\#\{$ independent subsets of $V(G)$ of size $j\}$.

Independence polynomial

Definition by coefficients

$$
I(G ; x)=\sum_{1 \leq j \leq|V(G)|} b_{j}(G) x^{j},
$$

$b_{j}(G)=\#\{$ independent subsets of $V(G)$ of size $j\}$.

$$
v \in V(G), \quad I(G ; x)=I(G-v ; x)+x I(G-N[v] ; x)
$$

Independence polynomial

Definition by coefficients

$$
I(G ; x)=\sum_{1 \leq j \leq|V(G)|} b_{j}(G) x^{j}
$$

$b_{j}(G)=\#\{$ independent subsets of $V(G)$ of size $j\}$.

$$
v \in V(G), \quad I(G ; x)=I(G-v ; x)+x I(G-N[v] ; x)
$$

(Chudnovsky \& Seymour, 2006) $K_{1,3} \not \mathscr{I}_{i} G \Rightarrow I(G ; x)$ real roots

$$
b_{j}(G)^{2} \geq b_{j-1}(G) b_{j+1}(G), \quad\left(\text { implies } b_{1}, \ldots, b_{|V(G)|} \text { unimodal }\right)
$$

Flow polynomial

> Definition (Evaluation at positive integers)
> $k \in \mathbb{N}, \quad F(G ; k)=\#\left\{\right.$ nowhere-zero \mathbb{Z}_{k}-flows of $\left.G\right\}$.

$$
F(G ; k)= \begin{cases}F(G / e)-F(G \backslash e) & e \text { ordinary } \\ 0 & e \text { a bridge } \\ (k-1) F(G \backslash e) & e \text { a loop }\end{cases}
$$

Tutte polynomial

Definition

For graph $G=(V, E)$,

$$
T(G ; x, y)=\sum_{A \subseteq E}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)},
$$

where $r(A)$ is the rank of the spanning subgraph (V, A) of G.

Tutte polynomial

Definition

For graph $G=(V, E)$,

$$
T(G ; x, y)=\sum_{A \subseteq E}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)},
$$

where $r(A)$ is the rank of the spanning subgraph (V, A) of G.

$$
T(G ; x, y)= \begin{cases}T(G / e ; x, y)+T(G \backslash e ; x, y) & e \text { ordinary } \\ x T(G / e ; x, y) & e \text { a bridge } \\ y T(G \backslash e ; x, y) & e \text { a loop }\end{cases}
$$

and $T(G ; x, y)=1$ if G has no edges.

Counting graph homomorphisms

 Sequences giving graph polynomials Cycle matroid invariants Open problems
Graph polynomials

Graph homomorphisms

Definition

Graphs G, H.
$f: V(G) \rightarrow V(H)$ is a homomorphism from G to H if $u v \in E(G) \Rightarrow f(u) f(v) \in E(H)$.

Definition

Graphs G, H.
$f: V(G) \rightarrow V(H)$ is a homomorphism from G to H if $u v \in E(G) \Rightarrow f(u) f(v) \in E(H)$.

Definition

H with adjacency matrix $\left(a_{s, t}\right)$, weight $a_{s, t}$ on $s t \in E(H)$,

$$
\operatorname{hom}(G, H)=\sum_{f: V(G) \rightarrow V(H)} \prod_{u v \in E(G)} a_{f(u), f(v)}
$$

Definition

Graphs G, H.
$f: V(G) \rightarrow V(H)$ is a homomorphism from G to H if
$u v \in E(G) \Rightarrow f(u) f(v) \in E(H)$.

Definition

H with adjacency matrix $\left(a_{s, t}\right)$, weight $a_{s, t}$ on $s t \in E(H)$,

$$
\operatorname{hom}(G, H)=\sum_{f: V(G) \rightarrow V(H)} \prod_{u v \in E(G)} a_{f(u), f(v)}
$$

$$
\begin{aligned}
\operatorname{hom}(G, H) & =\#\{\text { homomorphisms from } G \text { to } H\} \\
& =\#\{H \text {-colourings of } G\}
\end{aligned}
$$

when H simple $\left(a_{s, t} \in\{0,1\}\right)$ or multigraph $\left(a_{s, t} \in \mathbb{N}\right)$

Example 1

Examples

Strongly polynomial sequences of graphs

Example 1

$\left(K_{k}\right)$

$\operatorname{hom}\left(G, K_{k}\right)=P(G ; k)$

chromatic polynomial

Problem 1

Which sequences $\left(H_{k}\right)$ of graphs are such that, for all graphs G, for each $k \in \mathbb{N}$ we have

$$
\operatorname{hom}\left(G, H_{k}\right)=p(G ; k)
$$

for polynomial $p(G)$?

Problem 1

Which sequences $\left(H_{k}\right)$ of graphs are such that, for all graphs G, for each $k \in \mathbb{N}$ we have

$$
\operatorname{hom}\left(G, H_{k}\right)=p(G ; k)
$$

for polynomial $p(G)$?

Example

For all graphs $G, \operatorname{hom}\left(G, K_{k}\right)=P(G ; k)$ is the evaluation of the chromatic polynomial of G at k.

Example 2: add loops

Example 3: add ℓ loops

Example 3: add ℓ loops

$$
\begin{aligned}
& \operatorname{hom}\left(G, K_{k}^{\ell}\right)=\sum_{f: V(G) \rightarrow[k]} \ell^{\#\{u v \in E(G) \mid f(u)=f(v)\}} \\
= & k^{c(G)}(\ell-1)^{r(G)} T\left(G ; \frac{\ell-1+k}{\ell-1}, \ell\right) \text { (Tutte polynomial) }
\end{aligned}
$$

Example 4: add loops weight $1-k$

$$
\operatorname{hom}\left(G, K_{k}^{1-k}\right)=\sum_{f: V(G) \rightarrow[k]}(1-k)^{\#\{u v \in E(G) \mid f(u)=f(v)\}}
$$

Example 4: add loops weight $1-k$

$$
\begin{gathered}
\left(K_{k}^{1-k}\right) \\
\operatorname{hom}\left(G, K_{k}^{1-k}\right)=\sum_{f: V(G) \rightarrow[k]}(1-k)^{\#\{u v \in E(G) \mid f(u)=f(v)\}} \\
=\left.(-1)^{|E(G)|}\right|^{|V(G)|} F(G ; k) \text { (flow polynomial) }
\end{gathered}
$$

Example 5

$$
\left(K_{1}^{1}+K_{1, k}\right)
$$

Example 5

$$
\left(K_{1}^{1}+K_{1, k}\right)
$$

$$
\operatorname{hom}\left(G, K_{1}^{1}+K_{1, k}\right)=I(G ; k)
$$

Examples

Strongly polynomial sequences of graphs

Example 6

$$
\left(K_{2}^{\square k}\right)=\left(Q_{k}\right) \text { (hypercubes) }
$$

Example 6

$$
\left(K_{2}^{\square k}\right)=\left(Q_{k}\right) \text { (hypercubes) }
$$

Proposition (Garijo, G., Nešetřil, 2015)

$\operatorname{hom}\left(G, Q_{k}\right)=p\left(G ; k, 2^{k}\right)$ for bivariate polynomial $p(G)$

Examples

Strongly polynomial sequences of graphs

Example 7

$\operatorname{hom}\left(C_{3}, C_{3}\right)=6, \operatorname{hom}\left(C_{3}, C_{k}\right)=0$ when $k=2$ or $k \geq 4$

Definition

$\left(H_{k}\right)$ is strongly polynomial (in k) if $\forall G \exists$ polynomial $p(G)$ such that $\operatorname{hom}\left(G, H_{k}\right)=p(G ; k)$ for all $k \in \mathbb{N}$.

Definition

$\left(H_{k}\right)$ is strongly polynomial (in k) if $\forall G \exists$ polynomial $p(G)$ such that $\operatorname{hom}\left(G, H_{k}\right)=p(G ; k)$ for all $k \in \mathbb{N}$.

Example

- $\left(K_{k}\right),\left(K_{k}^{1}\right)$ are strongly polynomial
- $\left(K_{k}^{\ell}\right)$ is strongly polynomial (in k, ℓ)

Definition

$\left(H_{k}\right)$ is strongly polynomial (in k) if $\forall G \exists$ polynomial $p(G)$ such that $\operatorname{hom}\left(G, H_{k}\right)=p(G ; k)$ for all $k \in \mathbb{N}$.

Example

- $\left(K_{k}\right),\left(K_{k}^{1}\right)$ are strongly polynomial
- $\left(K_{k}^{\ell}\right)$ is strongly polynomial (in k, ℓ)
- $\left(Q_{k}\right)$ not strongly polynomial (but polynomial in k and 2^{k})

Definition

$\left(H_{k}\right)$ is strongly polynomial (in k) if $\forall G \exists$ polynomial $p(G)$ such that $\operatorname{hom}\left(G, H_{k}\right)=p(G ; k)$ for all $k \in \mathbb{N}$.

Example

- $\left(K_{k}\right),\left(K_{k}^{1}\right)$ are strongly polynomial
- $\left(K_{k}^{\ell}\right)$ is strongly polynomial (in k, ℓ)
- $\left(Q_{k}\right)$ not strongly polynomial (but polynomial in k and 2^{k})
- $\left(C_{k}\right),\left(P_{k}\right)$ not strongly polynomial (but eventually polynomial in k)

Definition

$\left(H_{k}\right)$ is strongly polynomial (in k) if $\forall G \exists$ polynomial $p(G)$ such that $\operatorname{hom}\left(G, H_{k}\right)=p(G ; k)$ for all $k \in \mathbb{N}$.

Example

- $\left(K_{k}\right),\left(K_{k}^{1}\right)$ are strongly polynomial
- $\left(K_{k}^{\ell}\right)$ is strongly polynomial (in $\left.k, \ell\right)$
- $\left(Q_{k}\right)$ not strongly polynomial (but polynomial in k and 2^{k})
- $\left(C_{k}\right),\left(P_{k}\right)$ not strongly polynomial (but eventually polynomial in k)

De la Harpe \& Jaeger (1995) construct families of strongly polynomial sequences, extended by Garijo, G. \& Nešetril (2015), and further by G., Nešetril \& Ossona de Mendez (2016) using quantifier-free interpretation schemes for finite relational structures (digraphs with added unary relations).

Gluing 1-labelled graphs

$G_{1} \sqcup G_{2}$

$G_{1} \sqcup_{1} G_{2}$

Gluing 2-labelled graphs

Whitney flip

Whitney 2-isomorphism theorem

Theorem (Whitney, 1933)

Two graphs G and G^{\prime} have the same cycle matroid if and only if G^{\prime} can be obtained from G by a sequence of operations of the following three types:
(cut) $G_{1} \sqcup_{1} G_{2} \longmapsto G_{1} \sqcup G_{2}$
(glue) $G_{1} \sqcup G_{2} \longmapsto G_{1} \sqcup_{1} G_{2}$
(flip) $G_{1} \sqcup_{2} G_{2} \longmapsto G_{1} \sqcup_{2} G_{2}^{T}$

Gluing product of graphs

Whitney 2-isomorphism theorem

Theorem (Whitney, 1933)

Two graphs G and G^{\prime} have the same cycle matroid if and only if G^{\prime} can be obtained from G by a sequence of operations of the following three types:
(cut) $G_{1} \sqcup_{1} G_{2} \longmapsto G_{1} \sqcup G_{2}$
(glue) $G_{1} \sqcup G_{2} \longmapsto G_{1} \sqcup_{1} G_{2}$
(flip) $G_{1} \sqcup_{2} G_{2} \longmapsto G_{1} \sqcup_{2} G_{2}^{T}$

Example

Any two forests with the same number of edges have the same cycle matroid.

Proper colourings and 1-gluing

Proper colourings and 1-gluing

Proper colourings and 1-gluing

$$
P\left(G_{1} \sqcup_{1} G_{2} ; k\right)=P\left(G_{1} \sqcup G_{2} ; k\right) / k=\frac{P\left(G_{1} ; k\right) P\left(G_{2} ; k\right)}{P\left(K_{1} ; k\right)}
$$

Proper colourings and 2-gluing

$$
P\left(G_{1} \sqcup_{2} G_{2}\right)=P\left(G_{1} \sqcup_{2} G_{2}^{T}\right)
$$

Proper colourings and 2-gluing

Chromatic polynomial as a cycle matroid invariant

Proposition

The graph invariant

$$
\frac{P(G ; k)}{k^{c(G)}}=\frac{\operatorname{hom}\left(G, K_{k}\right)}{k^{c(G)}}
$$

depends just on the cycle matroid of G.

Chromatic polynomial as a cycle matroid invariant

Proposition

The graph invariant

$$
\frac{P(G ; k)}{k^{c(G)}}=\frac{\operatorname{hom}\left(G, K_{k}\right)}{k^{c(G)}}
$$

depends just on the cycle matroid of G.

Problem 2

Which graphs H are such that, for a graph G, we have

$$
\frac{\operatorname{hom}(G, H)}{|V(H)|^{c(G)}}=p(G)
$$

where $p(G)$ depends only on the cycle matroid of G ?

Definition

The action of a group Γ on a set S is transitive if for each $s, t \in S$ there is $\gamma \in \Gamma$ such that $s \gamma=t$.
The action of a group Γ on a set S is generously transitive if for each $s, t \in S$ there is $\gamma \in \Gamma$ such that $s \gamma=t$ and $s=t \gamma$.

Definition

The action of a group Γ on a set S is transitive if for each $s, t \in S$ there is $\gamma \in \Gamma$ such that $s \gamma=t$.
The action of a group Γ on a set S is generously transitive if for each $s, t \in S$ there is $\gamma \in \Gamma$ such that $s \gamma=t$ and $s=t \gamma$.

Theorem (de la Harpe \& Jaeger, 1995)
The graph invariant

$$
G \mapsto \frac{\operatorname{hom}(G, H)}{|V(H)|^{c(G)}}
$$

depends just on the cycle matroid of G if H has generously transitive automorphism group.

Definition

The action of a group Γ on a set S is transitive if for each $s, t \in S$ there is $\gamma \in \Gamma$ such that $s \gamma=t$.
The action of a group Γ on a set S is generously transitive if for each $s, t \in S$ there is $\gamma \in \Gamma$ such that $s \gamma=t$ and $s=t \gamma$.

Theorem (G., Regts \& Vena, 2016)

The graph invariant

$$
G \mapsto \frac{\operatorname{hom}(G, H)}{|V(H)|^{c(G)}}
$$

depends just on the cycle matroid of G only if H has generously transitive automorphism group.

Connection matrices

Definition

Graph invariant $G \mapsto f(G)$ has ℓ th connection matrix

$$
\left(f\left(G_{1} \sqcup_{\ell} G_{2}\right)\right)_{G_{1}, G_{2}}
$$

Connection matrices

Definition

Graph invariant $G \mapsto f(G)$ has ℓ th connection matrix

$$
\left(f\left(G_{1} \sqcup_{\ell} G_{2}\right)\right)_{G_{1}, G_{2}}
$$

For a graph $H, \operatorname{orb}_{\ell}(H)$ equals number of orbits on ℓ-tuples of vertices of H under the action of $\operatorname{Aut}(H)$.
H is twin-free if its adjacency matrix has no two rows equal.

Gluing product of graphs

Connection matrices

Definition

Graph invariant $G \mapsto f(G)$ has ℓ th connection matrix

$$
\left(f\left(G_{1} \sqcup_{\ell} G_{2}\right)\right)_{G_{1}, G_{2}}
$$

For a graph $H, \operatorname{orb}_{\ell}(H)$ equals number of orbits on ℓ-tuples of vertices of H under the action of $\operatorname{Aut}(H)$.
H is twin-free if its adjacency matrix has no two rows equal.

Theorem (Lovász, 2005)

Let H be a twin-free graph. Then the ℓ th connection matrix of $G \mapsto \operatorname{hom}(G, H)$ has rank $\operatorname{orb}_{\ell}(H)$.

Definition

For labelling $\phi:[\ell] \rightarrow V(H)$ and ℓ-labelled G,

$$
\operatorname{hom}_{\phi}(G, H)=\sum_{\substack{f: V(G) \rightarrow v(H) \\ f \text { extends } \phi}} \prod_{u v \in E(G)} a_{f(u), f(v)} .
$$

Definition

For labelling $\phi:[\ell] \rightarrow V(H)$ and ℓ-labelled G,

$$
\operatorname{hom}_{\phi}(G, H)=\sum_{\substack{f: V(G) \rightarrow V(H) \\ f \text { extends } \phi}} \prod_{\substack{u v \in E(G)}} a_{f}(u), f(v)
$$

- For ℓ-labelled G,

$$
\operatorname{hom}(G, H)=\sum_{\phi:[\ell] \rightarrow V(H)} \operatorname{hom}_{\phi}(G, H) .
$$

Definition

For labelling $\phi:[\ell] \rightarrow V(H)$ and ℓ-labelled G,

$$
\operatorname{hom}_{\phi}(G, H)=\sum_{\substack{f: V(G) \rightarrow V(H) \\ f \text { extends } \phi}} \prod_{u v \in E(G)} a_{f(u), f(v)} .
$$

- For ℓ-labelled G,

$$
\operatorname{hom}(G, H)=\sum_{\phi:[\ell] \rightarrow V(H)} \operatorname{hom}_{\phi}(G, H)
$$

- For ℓ-labelled G_{1}, G_{2}, $\operatorname{hom}_{\phi}\left(G_{1} \sqcup_{\ell} G_{2}, H\right)=\operatorname{hom}_{\phi}\left(G_{1}, H\right) \operatorname{hom}_{\phi}\left(G_{2}, H\right)$.

Definition

For labelling $\phi:[\ell] \rightarrow V(H)$ and ℓ-labelled G,

$$
\operatorname{hom}_{\phi}(G, H)=\sum_{\substack{f: V(G) \rightarrow V(H) \\ f \text { extends } \phi}} \prod_{u v \in E(G)} a_{f(u), f(v)} .
$$

- For ℓ-labelled G,

$$
\operatorname{hom}(G, H)=\sum_{\phi:[\ell] \rightarrow V(H)} \operatorname{hom}_{\phi}(G, H)
$$

- For ℓ-labelled G_{1}, G_{2},

$$
\operatorname{hom}_{\phi}\left(G_{1} \sqcup_{\ell} G_{2}, H\right)=\operatorname{hom}_{\phi}\left(G_{1}, H\right) \operatorname{hom}_{\phi}\left(G_{2}, H\right)
$$

- the ℓ th connection matrix of $G \mapsto \operatorname{hom}(G, H)$ is

$$
\left(\operatorname{hom}_{\phi}(G, H)\right)_{\phi, G}^{T}\left(\operatorname{hom}_{\phi}(G, H)\right)_{\phi, G}
$$

Theorem (Lovász, 2005)

Let H be a twin-free graph. Then the column space of $\left(\operatorname{hom}_{\phi}(G, H)\right)_{\phi, G}$ is precisely the set of vectors invariant under automorphisms of H.

Theorem (Lovász, 2005)

Let H be a twin-free graph. Then the column space of $\left(\operatorname{hom}_{\phi}(G, H)\right)_{\phi, G}$ is precisely the set of vectors invariant under automorphisms of H.

Proof sketch of our result

Use Lovász' theorem ${ }^{a}$ and the fact that when $\frac{h o m(G, H)}{|V(H)|^{c(G)}}$ depends just on the cycle matroid of G the column space of ($\left.\operatorname{hom}_{\phi}(G, H)\right)_{\phi, G}$ is invariant under (generously) transitive action of a subgroup of $\operatorname{Aut}(H)$. (Taking connection matrices with $\ell=1$ and $\ell=2$.)
${ }^{a}$ Actually, an extension of it by Guus Regts

Counting graph homomorphisms Sequences giving graph polynomials Cycle matroid invariants

Open problems

Gluing product of graphs
Main result
Tensions and flows
From proper to fractional colourings and beyond

Proper vertex 3-colouring

Nowhere-zero \mathbb{Z}_{3}-tension

Nowhere-zero \mathbb{Z}_{3}-tension

$$
1+1+2-1=0 \text { in } \mathbb{Z}_{3}
$$

Tensions

Graph G with arbitrary orientation of its edges.
Traverse edges around a circuit C and let C^{+}be its forward edges and C^{-}its backward edges.

Definition

$f: E \rightarrow \mathbb{Z}_{k}$ is a \mathbb{Z}_{k}-tension of G if, for each signed circuit $C=C^{+} \sqcup C^{-}$,

$$
\sum_{e \in C^{+}} f(e)-\sum_{e \in C^{-}} f(e)=0
$$

Tensions

Graph G with arbitrary orientation of its edges.
Traverse edges around a circuit C and let C^{+}be its forward edges and C^{-}its backward edges.

Definition

$f: E \rightarrow \mathbb{Z}_{k}$ is a \mathbb{Z}_{k}-tension of G if, for each signed circuit
$C=C^{+} \sqcup C^{-}$,

$$
\sum_{e \in C^{+}} f(e)-\sum_{e \in C^{-}} f(e)=0
$$

$$
\frac{P(G ; k)}{k^{c(G)}}=\#\left\{\text { nowhere-zero } \mathbb{Z}_{k} \text {-tensions of } G\right\}
$$

Open problems

Gluing product of graphs
Main result
Tensions and flows
From proper to fractional colourings and beyond

Nowhere-zero \mathbb{Z}_{3}-flow

Gluing product of graphs
Main result
Tensions and flows
From proper to fractional colourings and beyond

Nowhere-zero \mathbb{Z}_{3}-flow

$$
1+2-1-2=0 \text { in } \mathbb{Z}_{3}
$$

Open problems

Gluing product of graphs
Main result
Tensions and flows
From proper to fractional colourings and beyond

Nowhere-zero \mathbb{Z}_{3}-flow

Flows

For a cutset $B=E(U, V \backslash U)$, let B^{+}be edges of B directed out from U to $V \backslash U$ and B^{-}edges of B directed in to U from $V \backslash U$.

Definition

$f: E \rightarrow \mathbb{Z}_{k}$ is a \mathbb{Z}_{k}-flow of G if, for each signed cutset
$B=B^{+} \sqcup B^{-}$,

$$
\sum_{e \in B^{+}} f(e)-\sum_{e \in B^{-}} f(e)=0
$$

Flows

For a cutset $B=E(U, V \backslash U)$, let B^{+}be edges of B directed out from U to $V \backslash U$ and B^{-}edges of B directed in to U from $V \backslash U$.

Definition

$f: E \rightarrow \mathbb{Z}_{k}$ is a \mathbb{Z}_{k}-flow of G if, for each signed cutset
$B=B^{+} \sqcup B^{-}$,

$$
\sum_{e \in B^{+}} f(e)-\sum_{e \in B^{-}} f(e)=0
$$

When G planar, circuits in G^{*} are bonds (minimal cutsets) in G.

Flows

For a cutset $B=E(U, V \backslash U)$, let B^{+}be edges of B directed out from U to $V \backslash U$ and B^{-}edges of B directed in to U from $V \backslash U$.

Definition

$f: E \rightarrow \mathbb{Z}_{k}$ is a \mathbb{Z}_{k}-flow of G if, for each signed cutset
$B=B^{+} \sqcup B^{-}$,

$$
\sum_{e \in B^{+}} f(e)-\sum_{e \in B^{-}} f(e)=0
$$

When G planar, circuits in G^{*} are bonds (minimal cutsets) in G.

$$
F(G ; k)=\#\left\{\text { nowhere-zero } \mathbb{Z}_{k} \text {-flows of } G\right\}
$$

Whitney flip preserves cycle matroid

Whitney flip preserves cycle matroid

edges in flipped half are traversed in reverse order and opposite sign

Tensions

Flows

Duality

For a planar graph G,

$$
T\left(G^{*} ; x, y\right)=T(G ; y, x)
$$

Duality

For a planar graph G,

$$
T\left(G^{*} ; x, y\right)=T(G ; y, x)
$$

For a graph G,
$\#\left\{\right.$ nowhere-zero \mathbb{Z}_{k}-tensions $\}=k^{-c(G)} P(G ; k)=(-1)^{r(G)} T(G ; 1-k, 0)$,
$\#\left\{\right.$ nowhere-zero \mathbb{Z}_{k}-flows $\}=F(G ; k)=(-1)^{r(G)} T(G ; 0,1-k)$.

Duality

For a planar graph G,

$$
T\left(G^{*} ; x, y\right)=T(G ; y, x)
$$

For a graph G,
$\#\left\{\right.$ nowhere-zero \mathbb{Z}_{k}-tensions $\}=k^{-c(G)} P(G ; k)=(-1)^{r(G)} T(G ; 1-k, 0)$,
$\#\left\{\right.$ nowhere-zero \mathbb{Z}_{k}-flows $\}=F(G ; k)=(-1)^{r(G)} T(G ; 0,1-k)$.

- Tutte polynomial extends to any matroid $M=(E, r)$ defined on 2^{E} by size || and rank function r (or rank/nullity).

Duality

For a planar graph G,

$$
T\left(G^{*} ; x, y\right)=T(G ; y, x)
$$

For a graph G,
$\#\left\{\right.$ nowhere-zero \mathbb{Z}_{k}-tensions $\}=k^{-c(G)} P(G ; k)=(-1)^{r(G)} T(G ; 1-k, 0)$,
$\#\left\{\right.$ nowhere-zero \mathbb{Z}_{k}-flows $\}=F(G ; k)=(-1)^{r(G)} T(G ; 0,1-k)$.

- Tutte polynomial extends to any matroid $M=(E, r)$ defined on 2^{E} by size || and rank function r (or rank/nullity).
- Tensions/flows defined for orientable matroids.

nowhere-zero tensions
cycle matroid of a graph
signed circuits (from edge orientations)
\uparrow
chromatic polynomial

Gluing product of graphs

Main result

Tensions and flows
From proper to fractional colourings and beyond

Tutte polynomial

nowhere-zero tensions
cycle matroid of a graph signed circuits (from edge orientations) chromatic polynomial
nowhere-zero flows
cycle matroid of a graph
signed cutsets (from edge orientation)

$$
\mathbf{P}(\mathbf{G} ; \mathbf{k})=\mathbf{k}^{\mathbf{c}(\mathbf{G})}(-\mathbf{1})^{\mathbf{r}(\mathbf{G})} \mathbf{T}(\mathbf{G} ; \mathbf{1}-\mathbf{k}, \mathbf{0})
$$

Tensions and flows

From proper to fractional colourings and beyond

Tutte polynomial

nowhere-zero tensions
cycle matroid of a graph signed circuits (from edge orientations)
chromatic polynomial

$$
\mathbf{P}(\mathbf{G} ; \mathbf{k})=\mathbf{k}^{\mathbf{c}(\mathbf{G})}(-\mathbf{1})^{\mathbf{r}(\mathbf{G})} \mathbf{T}(\mathbf{G} ; \mathbf{1}-\mathbf{k}, \mathbf{0})
$$

nowhere-zero flows cycle matroid of a graph
signed cutsets (from edge oriontation)

$$
\mathbf{F}(\mathbf{G} ; \mathbf{k})=(-\mathbf{1})^{|\mathbf{E}|-\mathbf{r}(\mathbf{G})} \mathbf{T}(\mathbf{G} ; \mathbf{0}, \mathbf{1}-\mathbf{k})
$$

Gluing product of graphs

Main result
 Tensions and flows

From proper to fractional colourings and beyond

nowhere-zero tensions
cycle matroid of a graph signed circuits (from edge orientations)
chromatic polynomial

$$
\mathbf{P}(\mathbf{G} ; \mathbf{k})=\mathbf{k}^{\mathbf{c}(\mathbf{G})}(-\mathbf{1})^{\mathbf{r}(\mathbf{G})} \mathbf{T}(\mathbf{G} ; \mathbf{1}-\mathbf{k}, \mathbf{0})
$$

Gluing product of graphs

Main result
 Tensions and flows

From proper to fractional colourings and beyond

nowhere-zero tensions
cycle matroid of a graph signed circuits (from edge orientations)
chromatic polynomial
nowhere-zero flows cycle matroid of a graph
signed cutsets (from edge orignation)

$$
\mathbf{F}(\mathbf{G} ; \mathbf{k})=(-\mathbf{1})^{|\mathbf{E}|-\mathbf{r}(\mathbf{G})} \mathbf{T}(\mathbf{G} ; \mathbf{0}, \mathbf{1}-\mathbf{k})
$$

$\mathrm{P}(\mathrm{G} ; \mathrm{k})=\mathrm{k}^{\mathrm{c}(\mathrm{G})}(-\mathbf{1})^{\mathrm{r}(\mathrm{G})} \mathrm{T}(\mathrm{G} ; \mathbf{1}-\mathrm{k}, \mathbf{0})$

Definition

Generalized Johnson graph $J_{k, r, D}, D \subseteq\{0,1, \ldots, r\}$ vertices $\binom{[k]}{r}$, edge $u v$ when $|u \cap v| \in D$

Definition

Generalized Johnson graph $J_{k, r, D}, D \subseteq\{0,1, \ldots, r\}$ vertices $\binom{[k]}{r}$, edge $u v$ when $|u \cap v| \in D$

- Johnson graphs $D=\{k-1\} \quad J(k, r)$
- Kneser graphs $D=\{0\} \quad K_{k: r}$

Definition

Generalized Johnson graph $J_{k, r, D}, D \subseteq\{0,1, \ldots, r\}$ vertices $\binom{[k]}{r}$, edge $u v$ when $|u \cap v| \in D$

- Johnson graphs $D=\{k-1\} \quad J(k, r)$
- Kneser graphs $D=\{0\} \quad K_{k: r}$

Petersen graph $=K_{5: 2}$

Johnson graph $J(5,2)$
Figure by Watchduck (a.k.a. Tilman Piesk). Wikimedia Commons

Fractional chromatic number of graph G :

$$
\chi_{f}(G)=\inf \left\{\frac{k}{r}: k, r \in \mathbb{N}, \operatorname{hom}\left(G, K_{k: r}\right)>0\right\}
$$

Fractional chromatic number of graph G :

$$
\chi_{f}(G)=\inf \left\{\frac{k}{r}: k, r \in \mathbb{N}, \operatorname{hom}\left(G, K_{k: r}\right)>0\right\}
$$

For $k \geq 2 r, \chi\left(K_{k: r}\right)=k-2 r+2$, while $\chi_{f}\left(K_{k: r}\right)=\frac{k}{r}$

Fractional colouring example: C_{5} to $K_{k: r}$

$k=6, r=2$
$k=5, r=2$
$\chi\left(C_{5}\right)=3$ but by the homomorphism from C_{5} to Kneser graph $K_{5: 2}$ (Petersen graph) $\chi_{f}\left(C_{5}\right) \leq \frac{5}{2}$ (in fact with equality)

Proposition

For a graph G and $k, r \geq 1$, $\operatorname{hom}\left(G, K_{k: r}\right)=(r!)^{-|V(G)|} P\left(G\left[K_{r}\right] ; k\right)$.

Proposition

For a graph G and $k, r \geq 1$, $\operatorname{hom}\left(G, K_{k: r}\right)=(r!)^{-|V(G)|} P\left(G\left[K_{r}\right] ; k\right)$.

Proposition (de la Harpe \& Jaeger, 1995; Garijo, G., Nešetřil, 2015)

For every r, D, sequence $\left(J_{k, r, D}\right)$ is strongly polynomial (in k).

Proposition

For a graph G and $k, r \geq 1$, $\operatorname{hom}\left(G, K_{k: r}\right)=(r!)^{-|V(G)|} P\left(G\left[K_{r}\right] ; k\right)$.

Proposition (de la Harpe \& Jaeger, 1995; Garijo, G., Nešetřil, 2015)

For every r, D, sequence $\left(J_{k, r, D}\right)$ is strongly polynomial (in k).

Proposition (de la Harpe \& Jaeger, 1995)

The graph parameter $\binom{k}{r}^{-c(G)} \operatorname{hom}\left(G, J_{k, r, D}\right)$ depends only on the cycle matroid of G.

Proposition

For a graph G and $k, r \geq 1$, $\operatorname{hom}\left(G, K_{k: r}\right)=(r!)^{-|V(G)|} P\left(G\left[K_{r}\right] ; k\right)$.

Proposition (de la Harpe \& Jaeger, 1995; Garijo, G., Nešetřil, 2015)
For every r, D, sequence $\left(J_{k, r, D}\right)$ is strongly polynomial (in k).
Proposition (de la Harpe \& Jaeger, 1995)
The graph parameter $\binom{k}{r}^{-c(G)} \operatorname{hom}\left(G, J_{k, r, D}\right)$ depends only on the cycle matroid of G.

Problem

Interpret $\binom{k}{r}^{-c(G)} \operatorname{hom}\left(G, J_{k, r, D}\right)$ in terms of the cycle matroid of G alone.

Proposition

For a graph G and $k, r \geq 1$, $\operatorname{hom}\left(G, K_{k: r}\right)=(r!)^{-|V(G)|} P\left(G\left[K_{r}\right] ; k\right)$.

Proposition (de la Harpe \& Jaeger, 1995; Garijo, G., Nešetřil, 2015)
For every r, D, sequence $\left(J_{k, r, D}\right)$ is strongly polynomial (in k).
Proposition (de la Harpe \& Jaeger, 1995)
The graph parameter $\binom{k}{r}^{-c(G)} \operatorname{hom}\left(G, J_{k, r, D}\right)$ depends only on the cycle matroid of G.

Problem

Interpret $\binom{k}{r}^{-c(G)} \operatorname{hom}\left(G, J_{k, r, D}\right)$ in terms of the cycle matroid of G alone. E.g what is its evaluation at $k=-1$ (acyclic orientations for the chromatic polynomial $=1, D=\{0\}$).

nowhere-zero tensions
cycle matroid of a graph
signed circuits (from edge orientations)

$$
k^{-c(G)} P(G ; k)
$$

matroid rank/nullity $T(M ; x, y)$
nowhere-zero tensions/flows orientable matroid signed circuits/ cocircuits

nowhere-zero flows
cycle matroid of a graph
signed cutsets (from edge orientation) $F(G ; k)$

Gluing product of graphs
Main result
Tensions and flows
From proper to fractional colourings and beyond

nowhere-zero tensions cycle matroid of a graph signed circuits (from edge orientations)

$$
k^{-c(G)} P(G ; k)
$$

dual to Kneser/Johnson nowhere-zero flows cycle matroid of a graph
signed cutsets (from edge orientation)

$$
F(G ; k)
$$

$\left.\right|_{\text {Kneser / Johnson colourings }}$
proper vertex colourings $\operatorname{hom}\left(G, J_{k, r}, D\right)$
chromatic polynomial

Gluing product of graphs
Main result
Tensions and flows
From proper to fractional colourings and beyond

Current thoughts...

non-Abelian tensions?
cycle matroid of a graph signed circuits (from edge orientations)
circuit rotations (graph traversal)
$\binom{k}{r}^{-c(G)} \operatorname{hom}\left(G, J_{k, r, D}\right)$

Kneser/Johnson colourings
$\operatorname{hom}\left(G, J_{k, r, D}\right)$
non-Abelian flows?
cycle matroid of a graph signed cutsets (from edge orientation) vertex rotations (orientable embedding)

Gluing product of graphs
Main result
Tensions and flows
From proper to fractional colourings and beyond

- When is $\operatorname{hom}\left(G, \operatorname{Cayley}\left(A_{k}, B_{k}\right)\right)$ a fixed polynomial (dependent on G) in $\left|A_{k}\right|,\left|B_{k}\right|$, where $B_{k}=-B_{k} \subseteq A_{k}$?
- When is hom $\left(G, \operatorname{Cayley}\left(A_{k}, B_{k}\right)\right)$ a fixed polynomial (dependent on G) in $\left|A_{k}\right|,\left|B_{k}\right|$, where $B_{k}=-B_{k} \subseteq A_{k}$?
- (hypercubes) hom $\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{2}^{k}, S_{1}\right)\right)$ polynomial in 2^{k} and k ($S_{1}=\{$ weight 1 vectors $\}$). [Garijo, G., Nešetřil 2015]
- When is hom $\left(G, \operatorname{Cayley}\left(A_{k}, B_{k}\right)\right)$ a fixed polynomial (dependent on G) in $\left|A_{k}\right|,\left|B_{k}\right|$, where $B_{k}=-B_{k} \subseteq A_{k}$?
- (hypercubes) hom $\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{2}^{k}, S_{1}\right)\right)$ polynomial in 2^{k} and k ($S_{1}=\{$ weight 1 vectors $\}$). [Garijo, G., Nešetřil 2015]
- For $D \subset \mathbb{N}$, $\operatorname{hom}\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{k}, \pm D\right)\right)$ is polynomial in k for sufficiently large k iff D is finite or cofinite. [de la Harpe \& Jaeger, 1995]
- When is $\operatorname{hom}\left(G, \operatorname{Cayley}\left(A_{k}, B_{k}\right)\right)$ a fixed polynomial (dependent on G) in $\left|A_{k}\right|,\left|B_{k}\right|$, where $B_{k}=-B_{k} \subseteq A_{k}$?
- (hypercubes) hom $\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{2}^{k}, S_{1}\right)\right)$ polynomial in 2^{k} and k ($S_{1}=\{$ weight 1 vectors $\}$). [Garijo, G., Nešetřil 2015]
- For $D \subset \mathbb{N}$, $\operatorname{hom}\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{k}, \pm D\right)\right.$) is polynomial in k for sufficiently large k iff D is finite or cofinite. [de la Harpe \& Jaeger, 1995]
- (circular colourings)
$\operatorname{hom}\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{k s},\{k r, k r+1, \ldots, k(s-r)\}\right)\right)$ polynomial in k. [G., Nešetřil, Ossona de Mendez 2015]
- When is $\operatorname{hom}\left(G, \operatorname{Cayley}\left(A_{k}, B_{k}\right)\right)$ a fixed polynomial (dependent on G) in $\left|A_{k}\right|,\left|B_{k}\right|$, where $B_{k}=-B_{k} \subseteq A_{k}$?
- (hypercubes) hom $\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{2}^{k}, S_{1}\right)\right)$ polynomial in 2^{k} and k ($S_{1}=\{$ weight 1 vectors $\}$). [Garijo, G., Nešetřil 2015]
- For $D \subset \mathbb{N}$, $\operatorname{hom}\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{k}, \pm D\right)\right.$) is polynomial in k for sufficiently large k iff D is finite or cofinite. [de la Harpe \& Jaeger, 1995]
- (circular colourings)
$\operatorname{hom}\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{k s},\{k r, k r+1, \ldots, k(s-r)\}\right)\right)$ polynomial in k. [G., Nešetřil, Ossona de Mendez 2015]
- When is hom $\left(G, \operatorname{Cayley}\left(A_{k}, B_{k}\right)\right)$ a fixed polynomial (dependent on G) in $\left|A_{k}\right|,\left|B_{k}\right|$, where $B_{k}=-B_{k} \subseteq A_{k}$?
- (hypercubes) hom $\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{2}^{k}, S_{1}\right)\right)$ polynomial in 2^{k} and k ($S_{1}=\{$ weight 1 vectors $\}$). [Garijo, G., Nešetřil 2015]
- For $D \subset \mathbb{N}$, hom $\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{k}, \pm D\right)\right)$ is polynomial in k for sufficiently large k iff D is finite or cofinite. [de la Harpe \& Jaeger, 1995]
- (circular colourings)
$\operatorname{hom}\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{k s},\{k r, k r+1, \ldots, k(s-r)\}\right)\right)$ polynomial in k. [G., Nešetřil, Ossona de Mendez 2015]
- Which graph polynomials defined by strongly polynomial sequences of graphs satisfy a reduction formula (size-decreasing recurrence) like the chromatic polynomial and independence polynomial?

Beyond polynomials? Rational generating functions

- For strongly polynomial sequence $\left(H_{k}\right)$,

$$
\sum_{k} \operatorname{hom}\left(G, H_{k}\right) t^{k}=\frac{P_{G}(t)}{(1-t)^{|V(G)|+1}}
$$

with polynomial $P_{G}(t)$ of degree at most $|V(G)|$.

Beyond polynomials? Rational generating functions

- For strongly polynomial sequence $\left(H_{k}\right)$,

$$
\sum_{k} \operatorname{hom}\left(G, H_{k}\right) t^{k}=\frac{P_{G}(t)}{(1-t)^{|V(G)|+1}}
$$

with polynomial $P_{G}(t)$ of degree at most $|V(G)|$.

- For eventually polynomial sequence $\left(H_{k}\right)$ such as $\left(C_{k}\right)$,

$$
\sum_{k} \operatorname{hom}\left(G, H_{k}\right) t^{k}=\frac{P_{G}(t)}{(1-t)^{|V(G)|+1}}
$$

with polynomial $P_{G}(t)$.

Beyond polynomials? Rational generating functions

- For quasipolynomial sequence of Turán graphs $\left(T_{k, r}\right)$

$$
\sum_{k} \operatorname{hom}\left(G, T_{k, r}\right) t^{k}=\frac{P_{G}(t)}{Q(t)^{|V(G)|+1}}
$$

with polynomial $P_{G}(t)$ of degree at most $|V(G)|$ and polynomial $Q(t)$ with zeros r th roots of unity.

Beyond polynomials? Rational generating functions

- For quasipolynomial sequence of Turán graphs $\left(T_{k, r}\right)$

$$
\sum_{k} \operatorname{hom}\left(G, T_{k, r}\right) t^{k}=\frac{P_{G}(t)}{Q(t)^{|V(G)|+1}}
$$

with polynomial $P_{G}(t)$ of degree at most $|V(G)|$ and polynomial $Q(t)$ with zeros r th roots of unity.

- For sequence of hypercubes $\left(Q_{k}\right)$,

$$
\sum_{k} \operatorname{hom}\left(G, Q_{k}\right) t^{k}=\frac{P_{G}(t)}{Q(t)^{|V(G)|+1}}
$$

with polynomial $P_{G}(t)$ of degree at most $|V(G)|$ and polynomial $Q(t)$ with zeros powers of 2 .

Beyond polynomials? Algebraic generating functions

- For sequence of odd graphs $O_{k}=J_{2 k-1, k-1,\{0\}}$

$$
\sum_{k} \operatorname{hom}\left(G, O_{k}\right) t^{k}
$$

is algebraic (e.g. $\frac{1}{2}(1-4 t)^{-\frac{1}{2}}$ when $G=K_{1}$).

Four papers

- P. de la Harpe and F. Jaeger, Chromatic invariants for finite graphs: theme and polynomial variations, Lin. Algebra Appl. 226-228 (1995), 687-722

Defining graphs invariants from counting graph homomorphisms. Examples. Basic constructions.

- D. Garijo, A. Goodall, J. Nešetřil, Polynomial graph invariants from homomorphism numbers. Discrete Math., 339 (2016), no. 4, 1315-1328. Early version at arXiv: 1308.3999 [math.CO]
Further examples. New construction using rooted tree representations of graphs (e.g. cotrees).

Four papers

- A. Goodall, J. Nešetřil, P. Ossona de Mendez, Strongly polynomial sequences as interpretation of trivial structures. J. Appl. Logic, to appear. Also at arXiv:1405.2449 [math.CO].
General relational structures: counting satisfying assignments for quantifier-free formulas. Building new polynomial invariants by interpretation of "trivial" sequences of marked tournaments.
- A.J. Goodall, G. Regts and L. Vena Cros, Matroid invariants and counting graph homomorphisms. Linear Algebra Appl. 494 (2016), 263-273. Preprint: arXiv:1512.01507 [math.CO] Cycle matroid invariants from counitng graph homomorphisms.

