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Chromatic polynomial

Definition by evaluations at positive integers

k ∈ N, P(G ; k) = #{proper vertex k-colourings of G}.

P(G ; k) =
∑

1≤j≤|V (G)|

(−1)jbj(G )k |V (G)|−j

bj(G ) = #{j-subsets of E (G ) containing no broken cycle}.

(−1)|V (G)|P(G ;−1) = #{acyclic orientations of G}
uv ∈ E (G ), P(G ; k) = P(G\uv ; k)− P(G/uv ; k)
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Independence polynomial

Definition by coefficients

I (G ; x) =
∑

1≤j≤|V (G)|

bj(G )x j ,

bj(G ) = #{independent subsets of V (G ) of size j}.

v ∈ V (G ), I (G ; x) = I (G − v ; x) + xI (G − N[v ]; x)

(Chudnovsky & Seymour, 2006) K1,3 6⊆i G ⇒ I (G ; x) real roots

bj(G )2 ≥ bj−1(G )bj+1(G ), (implies b1, . . . , b|V (G)| unimodal)
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Flow polynomial

Definition (Evaluation at positive integers)

k ∈ N, F (G ; k) = #{nowhere-zero Zk -flows of G}.

F (G ; k) =





F (G/e)− F (G\e) e ordinary

0 e a bridge

(k − 1)F (G\e) e a loop
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Tutte polynomial

Definition

For graph G = (V ,E ),

T (G ; x , y) =
∑

A⊆E
(x − 1)r(E)−r(A)(y − 1)|A|−r(A),

where r(A) is the rank of the spanning subgraph (V ,A) of G .

T (G ; x , y) =





T (G/e; x , y) + T (G\e; x , y) e ordinary

xT (G/e; x , y) e a bridge

yT (G\e; x , y) e a loop,

and T (G ; x , y) = 1 if G has no edges.
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Definition

Graphs G ,H.
f : V (G )→ V (H) is a homomorphism from G to H if
uv ∈ E (G ) ⇒ f (u)f (v) ∈ E (H).

Definition

H with adjacency matrix (as,t), weight as,t on st ∈ E (H),

hom(G ,H) =
∑

f :V (G)→V (H)

∏

uv∈E(G)

af (u),f (v).

hom(G ,H) = #{homomorphisms from G to H}
= #{H-colourings of G}

when H simple (as,t ∈ {0, 1}) or multigraph (as,t ∈ N)
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(Kk)

hom(G ,Kk) = P(G ; k)

chromatic polynomial
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Strongly polynomial sequences of graphs

Problem 1

Which sequences (Hk) of graphs are such that, for all graphs G ,
for each k ∈ N we have

hom(G ,Hk) = p(G ; k)

for polynomial p(G )?

Example

For all graphs G , hom(G ,Kk) = P(G ; k) is the evaluation of the
chromatic polynomial of G at k .
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Example 2: add loops

b
b

bc

b

bc

b
b

bc

bc b b b

b

(K 1
k )

hom(G ,K 1
k ) = k |V (G)|
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Example 3: add ` loops

b
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b
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bc b b b

b

ℓ
ℓ

ℓ ℓ ℓ

ℓ
ℓ

ℓℓ

ℓ

(K `
k)

hom(G ,K `
k) =

∑

f :V (G)→[k]

`#{uv∈E(G) | f (u)=f (v)}

= kc(G)(`− 1)r(G)T (G ; `−1+k
`−1 , `) (Tutte polynomial)
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Example 4: add loops weight 1− k
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(K 1−k
k )

hom(G ,K 1−k
k ) =

∑

f :V (G)→[k]

(1− k)#{uv∈E(G) | f (u)=f (v)}

= (−1)|E(G)|k |V (G)|F (G ; k) (flow polynomial)
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hom(G ,K 1
1 + K1,k) = I (G ; k)

independence polynomial
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b
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(K�k2 ) = (Qk) (hypercubes)

Proposition (Garijo, G., Nešeťril, 2015)

hom(G ,Qk) = p(G ; k , 2k) for bivariate polynomial p(G )
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b

(Ck)

hom(C3,C3) = 6, hom(C3,Ck) = 0 when k = 2 or k ≥ 4
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Definition

(Hk) is strongly polynomial (in k) if ∀G ∃ polynomial p(G ) such
that hom(G ,Hk) = p(G ; k) for all k ∈ N.

Example

(Kk), (K 1
k ) are strongly polynomial

(K `
k) is strongly polynomial (in k , `)

(Qk) not strongly polynomial (but polynomial in k and 2k)

(Ck), (Pk) not strongly polynomial (but eventually polynomial
in k)

De la Harpe & Jaeger (1995) construct families of strongly polynomial

sequences, extended by Garijo, G. & Nešeťril (2015), and further by G.,

Nešeťril & Ossona de Mendez (2016) using quantifier-free interpretation

schemes for finite relational structures (digraphs with added unary

relations).
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Gluing product of graphs
Main result
Tensions and flows
From proper to fractional colourings and beyond

Gluing 1-labelled graphs

b

b bG1 G2

G1 G2

1

1

1

G1 ⊔G2

G1 ⊔1 G2
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Gluing 2-labelled graphs

b

b b

b b

b

G1 G2

G2G1

1 1

1

2 2

2

G1 ⊔G2

G1 ⊔2 G2



Counting graph homomorphisms
Sequences giving graph polynomials

Cycle matroid invariants
Open problems

Gluing product of graphs
Main result
Tensions and flows
From proper to fractional colourings and beyond

Whitney flip

b

b b

b b

b

G1 G2

G2G1

1 1

1

2 2

2

G1 ⊔2 G2

b

b

G2

1

2

GT
2

b

b

G2

G1

1

2

G1 ⊔2 G
T
2

Whitney flip



Counting graph homomorphisms
Sequences giving graph polynomials

Cycle matroid invariants
Open problems

Gluing product of graphs
Main result
Tensions and flows
From proper to fractional colourings and beyond

Whitney 2-isomorphism theorem

Theorem (Whitney, 1933)

Two graphs G and G ′ have the same cycle matroid if and only if
G ′ can be obtained from G by a sequence of operations of the
following three types:

(cut) G1 t1 G2 7−→ G1 t G2

(glue) G1 t G2 7−→ G1 t1 G2

(flip) G1 t2 G2 7−→ G1 t2 GT
2

Example

Any two forests with the same number of edges have the same
cycle matroid.
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Proper colourings and 1-gluing

b

b b

b b

automorphism sending

bb to

1-glue
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Main result
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From proper to fractional colourings and beyond

Proper colourings and 1-gluing

b

b b

b b

automorphism sending

bb to

1-cut

P(G1 t1 G2; k) = P(G1 t G2; k)/k =
P(G1; k)P(G2; k)

P(K1; k)
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From proper to fractional colourings and beyond

Proper colourings and 1-gluing

b

b b

b b

automorphism sending

bb to

1-glue/ 1-cut

Symk transitive on V (Kk)

P(G1 t1 G2; k) = P(G1 t G2; k)/k =
P(G1; k)P(G2; k)

P(K1; k)
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Proper colourings and 2-gluing

b

bc

automorphism sending

bb to

b

bc

b

bc

b

bc b

bc

b

bc

b

bc

and b bto

b

bcWhitney flip

2-glue

separate 2-cut

flip over

P(G1 t2 G2) = P(G1 t2 GT
2 )
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Proper colourings and 2-gluing

b

bc

automorphism sending

bb to

b

bc

b

bc

b

bc b

bc

b

bc

b

bc

and b bto

b

bcWhitney flip

2-glue

separate 2-cut

flip over

Symk generously transitive on V (Kk)

P(G1 t2 G2) = P(G1 t2 GT
2 )
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Chromatic polynomial as a cycle matroid invariant

Proposition

The graph invariant

P(G ; k)

kc(G)
=

hom(G ,Kk)

kc(G)

depends just on the cycle matroid of G.

Problem 2

Which graphs H are such that, for a graph G , we have
hom(G ,H)

|V (H)|c(G)
= p(G )

where p(G ) depends only on the cycle matroid of G?
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Definition

The action of a group Γ on a set S is transitive if for each s, t ∈ S
there is γ ∈ Γ such that sγ = t.
The action of a group Γ on a set S is generously transitive if for
each s, t ∈ S there is γ ∈ Γ such that sγ = t and s = tγ.

Theorem (de la Harpe & Jaeger, 1995)

The graph invariant

G 7→ hom(G ,H)

|V (H)|c(G)

depends just on the cycle matroid of G if H has generously
transitive automorphism group.
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Theorem (de la Harpe & Jaeger, 1995)

The graph invariant

G 7→ hom(G ,H)

|V (H)|c(G)

depends just on the cycle matroid of G if H has generously
transitive automorphism group.
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Theorem (G., Regts & Vena, 2016)
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Connection matrices

Definition

Graph invariant G 7→ f (G ) has `th connection matrix

( f (G1 t` G2) )G1,G2

For a graph H, orb`(H) equals number of orbits on `-tuples of
vertices of H under the action of Aut(H).
H is twin-free if its adjacency matrix has no two rows equal.

Theorem (Lovász, 2005)

Let H be a twin-free graph. Then the `th connection matrix of
G 7→ hom(G ,H) has rank orb`(H).
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Definition

For labelling φ : [`]→ V (H) and `–labelled G ,

homφ(G ,H) =
∑

f :V (G)→V (H)
f extends φ

∏

uv∈E(G)

af (u),f (v).

For `-labelled G ,

hom(G ,H) =
∑

φ:[`]→V (H)

homφ(G ,H).

For `-labelled G1,G2,

homφ(G1 t` G2,H) = homφ(G1,H)homφ(G2,H).

the `th connection matrix of G 7→ hom(G ,H) is

( homφ(G ,H) )Tφ,G ( homφ(G ,H) )φ,G .
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Theorem (Lovász, 2005)

Let H be a twin-free graph. Then the column space of
( homφ(G ,H) )φ,G is precisely the set of vectors invariant under
automorphisms of H.

Proof sketch of our result

Use Lovász’ theorema and the fact that when hom(G ,H)

|V (H)|c(G) depends

just on the cycle matroid of G the column space of
( homφ(G ,H) )φ,G is invariant under (generously) transitive action
of a subgroup of Aut(H). (Taking connection matrices with ` = 1
and ` = 2.)

aActually, an extension of it by Guus Regts
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Proper vertex 3-colouring
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Tensions

Graph G with arbitrary orientation of its edges.
Traverse edges around a circuit C and let C+ be its forward edges
and C− its backward edges.

Definition

f : E → Zk is a Zk -tension of G if, for each signed circuit
C = C+ t C−, ∑

e∈C+

f (e)−
∑

e∈C−
f (e) = 0.

P(G ; k)

kc(G)
= #{nowhere-zero Zk -tensions of G}
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Nowhere-zero Z3-flow
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Nowhere-zero Z3-flow
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Flows

For a cutset B = E (U,V \U), let B+ be edges of B directed out
from U to V \U and B− edges of B directed in to U from V \U.

Definition

f : E → Zk is a Zk -flow of G if, for each signed cutset
B = B+ t B−, ∑

e∈B+

f (e)−
∑

e∈B−
f (e) = 0.

When G planar, circuits in G ∗ are bonds (minimal cutsets) in G .

F (G ; k) = #{nowhere-zero Zk -flows of G}
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Whitney flip preserves cycle matroid
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Whitney flip preserves cycle matroid
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Duality

For a planar graph G ,

T (G ∗; x , y) = T (G ; y , x).

For a graph G ,

#{nowhere-zero Zk -tensions} = k−c(G)P(G ; k) = (−1)r(G)T (G ; 1−k , 0),

#{nowhere-zero Zk -flows} = F (G ; k) = (−1)r(G)T (G ; 0, 1− k).

Tutte polynomial extends to any matroid M = (E , r) defined
on 2E by size | | and rank function r (or rank/nullity).

Tensions/flows defined for orientable matroids.
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chromatic polynomial

cycle matroid of a graph
signed circuits (from edge orientations)

nowhere-zero tensions
cycle matroid of a graph

signed cutsets (from edge orientation)

nowhere-zero flows

orientable matroid

signed circuits/ cocircuits

nowhere-zero tensions/flows

Tutte polynomial
matroid

rank/nullity
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P(G;k) = kc(G)(−1)r(G)T(G;1− k,0)
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A⊆E(x−1)r(E)−r(A)(y−1)|A|−r(A)
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T(M;x,y) =
∑

A⊆E(x−1)r(E)−r(A)(y−1)|A|−r(A)

common generalization
to orientable matroids?
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Definition

Generalized Johnson graph Jk,r ,D , D ⊆ {0, 1, . . . , r}
vertices

([k]
r

)
, edge uv when |u ∩ v | ∈ D

Johnson graphs D = {k − 1} J(k , r)

Kneser graphs D = {0} Kk:r

Petersen graph = K5:2

Figure by Watchduck (a.k.a. Tilman Piesk). Wikimedia Commons
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Johnson graph J(5, 2)
Figure by Watchduck (a.k.a. Tilman Piesk). Wikimedia Commons
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Fractional chromatic number of graph G :

χf (G ) = inf{k
r

: k , r ∈ N, hom(G ,Kk:r ) > 0},

For k ≥ 2r , χ(Kk:r ) = k − 2r + 2 , while χf (Kk:r ) = k
r
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Fractional colouring example: C5 to Kk :r
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14 36
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14

25 23

34 15

k = 3, r = 1 k = 6, r = 2 k = 5, r = 2

χ(C5) = 3 but by the homomorphism from C5 to Kneser graph
K5:2 (Petersen graph) χf (C5) ≤ 5

2 (in fact with equality)
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Proposition

For a graph G and k, r ≥ 1,
hom(G ,Kk:r ) = (r !)−|V (G)|P(G [Kr ]; k).

Proposition (de la Harpe & Jaeger, 1995; Garijo, G., Nešeťril, 2015)

For every r ,D, sequence (Jk,r ,D) is strongly polynomial (in k).

Proposition (de la Harpe & Jaeger, 1995)

The graph parameter
(k
r

)−c(G)
hom(G , Jk,r ,D) depends only on the

cycle matroid of G.

Problem

Interpret
(k
r

)−c(G)
hom(G , Jk,r ,D) in terms of the cycle matroid of

G alone. E.g what is its evaluation at k = −1 (acyclic orientations
for the chromatic polynomial = 1,D = {0}).
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G alone. E.g what is its evaluation at k = −1 (acyclic orientations
for the chromatic polynomial = 1,D = {0}).
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k−c(G)P (G; k) F (G; k)
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T (M ;x, y)
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chromatic polynomial

cycle matroid of a graph
signed circuits (from edge orientations)

nowhere-zero tensions
cycle matroid of a graph

signed cutsets (from edge orientation)

nowhere-zero flows

orientable matroid

signed circuits/ cocircuits

nowhere-zero tensions/flows

Tutte polynomial
matroid

rank/nullity

proper vertex colourings

P (G; k)

k−c(G)P (G; k) F (G; k)

?

T (M ;x, y)

Kneser/Joh
nson colouring

s

hom(G, Jk,r,D
)

a Kneser/Joh
nson Tutte polynomial?

dual to Kneser/Joh
nson colouring

s?
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Current thoughts...

cycle matroid of a graph

circuit rotations (graph traversal)

non-Abelian tensions?
cycle matroid of a graph

signed cutsets (from edge orientation)

non-Abelian flows?

“rotatable” orientable matroid?

signed/rotated circuits/ cocircuits?

nowhere-zero tensions/flows

?

delta matroid?

Kneser/Johnson colourings

(
k
r

)−c(G)
hom(G, Jk,r,D)

?

?

hom(G, Jk,r,D)

signed circuits (from edge orientations)

vertex rotations (orientable embedding)
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I When is hom(G ,Cayley(Ak ,Bk)) a fixed polynomial
(dependent on G ) in |Ak |, |Bk |, where Bk = −Bk ⊆ Ak?

(hypercubes) hom(G ,Cayley(Zk
2 ,S1)) polynomial in 2k and k

(S1 = {weight 1 vectors}). [Garijo, G., Nešeťril 2015]
For D ⊂ N, hom(G ,Cayley(Zk ,±D)) is polynomial in k for
sufficiently large k iff D is finite or cofinite. [de la Harpe &
Jaeger, 1995]
(circular colourings)
hom(G ,Cayley(Zks , {kr , kr+1, . . . , k(s−r)})) polynomial in
k. [G., Nešeťril, Ossona de Mendez 2015]

I Which graph polynomials defined by strongly polynomial
sequences of graphs satisfy a reduction formula
(size-decreasing recurrence) like the chromatic polynomial and
independence polynomial?



Counting graph homomorphisms
Sequences giving graph polynomials

Cycle matroid invariants
Open problems

I When is hom(G ,Cayley(Ak ,Bk)) a fixed polynomial
(dependent on G ) in |Ak |, |Bk |, where Bk = −Bk ⊆ Ak?

(hypercubes) hom(G ,Cayley(Zk
2 ,S1)) polynomial in 2k and k

(S1 = {weight 1 vectors}). [Garijo, G., Nešeťril 2015]
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Beyond polynomials? Rational generating functions

I For strongly polynomial sequence (Hk),

∑

k

hom(G ,Hk)tk =
PG (t)

(1− t)|V (G)|+1

with polynomial PG (t) of degree at most |V (G )|.

I For eventually polynomial sequence (Hk) such as (Ck),

∑

k

hom(G ,Hk)tk =
PG (t)

(1− t)|V (G)|+1

with polynomial PG (t).
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Beyond polynomials? Rational generating functions

I For quasipolynomial sequence of Turán graphs (Tk,r )

∑

k

hom(G ,Tk,r )tk =
PG (t)

Q(t)|V (G)|+1

with polynomial PG (t) of degree at most |V (G )| and
polynomial Q(t) with zeros r th roots of unity.

I For sequence of hypercubes (Qk),

∑

k

hom(G ,Qk)tk =
PG (t)

Q(t)|V (G)|+1

with polynomial PG (t) of degree at most |V (G )| and
polynomial Q(t) with zeros powers of 2.
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Beyond polynomials? Algebraic generating functions

I For sequence of odd graphs Ok = J2k−1,k−1,{0}

∑

k

hom(G ,Ok)tk

is algebraic (e.g. 1
2(1− 4t)−

1
2 when G = K1).
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Four papers

P. de la Harpe and F. Jaeger, Chromatic invariants for finite graphs:
theme and polynomial variations, Lin. Algebra Appl. 226–228
(1995), 687–722

Defining graphs invariants from counting graph homomorphisms.
Examples. Basic constructions.

D. Garijo, A. Goodall, J. Nešeťril, Polynomial graph invariants from
homomorphism numbers. Discrete Math., 339 (2016), no. 4,
1315–1328. Early version at arXiv: 1308.3999 [math.CO]

Further examples. New construction using rooted tree
representations of graphs (e.g. cotrees).
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Four papers

A. Goodall, J. Nešeťril, P. Ossona de Mendez, Strongly polynomial
sequences as interpretation of trivial structures. J. Appl. Logic, to
appear. Also at arXiv:1405.2449 [math.CO].

General relational structures: counting satisfying assignments for
quantifier-free formulas. Building new polynomial invariants by
interpretation of ”trivial” sequences of marked tournaments.

A.J. Goodall, G. Regts and L. Vena Cros, Matroid invariants and
counting graph homomorphisms. Linear Algebra Appl. 494 (2016),
263–273. Preprint: arXiv:1512.01507 [math.CO]

Cycle matroid invariants from counitng graph homomorphisms.
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