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Preface

The DocCourse “Structural Graph Theory” took place in the autumn semester
of 2014 under the auspices of the Computer Science Institute (IÚUK) and the
Department of Applied Mathematics (KAM) of the Faculty of Mathematics
and Physics (MFF) at Charles University, supported by CORES ERC-CZ LL-
1201 and by DIMATIA Prague. The schedule was organized by Prof. Jaroslav
Nešetřil and Dr Andrew Goodall, with the assistance of Dr Llúıs Vena. A web
page was maintained by Andrew Goodall, which provided links to lectures slides
and further references.1

The Structural Graph Theory DocCourse followed the tradition established
by those of 2004, 2005 and 2006 in Combinatorics, Geometry, and Computation,
organized by Jaroslav Nešetřil and the late Jǐri Matoušek, and has itself been
followed by a DocCourse in Ramsey Theory in autumn of last year, organized
by Jaroslav Nešetřil and Jan Hubička.

For the Structural Graph Theory DocCourse in 2014, five distinguished vis-
iting speakers each gave a short series of lectures at the faculty building at
Malostranské námest́ı 25 in Malá Strana: Prof. Matt DeVos of Simon Fraser
University, Vancouver; Prof. Johann Makowsky of Technion - Israel Institute of
Technology, Haifa; Dr. Gábor Kun of ELTE, Budapest; Prof. Michael Pinsker
of Technische Universität Wien/ Université Diderot - Paris 7; and Dr Lenka
Zdeborová of CEA & CNRS, Saclay. The audience included graduate students
and postdocs in Mathematics or in Computer Science in Prague and a handful
of students from other universities in the Czech Republic and abroad.

Parallel with the special lecture series, Dr Andrew Goodall lectured on
“Counting flows on graphs: finite Abelian groups and integer flows”, as part
of the regular IÚUK/ KAM course “Vybrané Kapitoly z Kombinatoriky I” (Se-
lected Chapters in Combinatorics). Students taking the course were encouraged
as an alternative to end-of-semester exams to write a project based on material
from those DocCourse lectures that particularly interested them.

The lecture notes that follow were kindly provided by the speakers subse-
quent to the course, with some light editing by Andrew Goodall and Llúıs Vena,
who set this booklet in its present form.

Jaroslav Nešetřil, Andrew Goodall and Llúıs Vena

Prague, April 2017

1http://iuuk.mff.cuni.cz/~andrew/DocCourse2014.html
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Titles & Abstracts 
Prof. Matt DeVos 

Immersion for 2-regular digraphs 
In this talk we will focus on the world of 2-regular digraphs, i.e. digraphs for which 
every vertex has indegree and outdegree equal to 2.  Surprisingly, this family of 
digraphs behaves under the operation of immersion in a manner very similar to 
the way in which standard graphs behave under minors.  This deep truth is best 
evidenced by the work of Thor Johnson, who developed an analogue of the 
Robertson-Seymour Graph Minor Theory for 2-regular digraphs under immersion.  
We will discuss some recent work together with Archdeacon, Hannie, and Mohar 
in this vein.  Namely, we establish the excluded immersions for certain surface 
embeddings of 2-regular digraphs in the projective plane. 

Flows in bidirected graphs 
Tutte showed that for planar dual graphs G and G*, a k-coloring of G is equivalent 
to the existence of a nowhere-zero k-flow in G*.  This led him to his famous 
conjecture that every bridgeless graph has a nowhere-zero 5-flow.  Although this 
conjecture remains open, Seymour has proved that every such graph has a 
nowhere-zero 6-flow.  Bouchet studied this flow-coloring duality on more general 
surfaces, and this prompted him to introduce the notion of nowhere-zero flows in 
bidirected graphs.  He conjectured that every bidirected graph without a certain 
obvious obstruction has a nowhere-zero 6-flow.  Improving on a sequence of 
earlier theorems, we show that every such graph has a nowhere-zero 12-flow. 

Average degree in graph powers 
For a graph G and a positive integer k, we let G

k
 denote the graph with vertex set 

V(G) and two vertices adjacent in G
k
 if they have distance at most k in the original 

graph G.  Motivated by some problems in additive number theory (which we will 
explain), we turn our attention to determining lower bounds on the average degree 
of the graph Gk when the original graph G is d-regular.  We will describe fairly 
complete answers to this question when k < 6 and in general when k is congruent to 
2 (mod 3).  This talk represents joint work with McDonald, Scheide, and Thomassé. 
 

Prof. Johann Makowsky 

Classical graph properties and graph parameters and their definability in SOL 
Intriguing graph polynomials. Why is the chromatic polynomial a polynomial? 
Comparing graph polynomials. Connection matrices and their use in showing  
non-definability. 
 



 

Dr Gábor Kun 

Expanders everywhere 
I will give the most important equivalent definitions of expanders. I plan to highlight 
many different applications from group theory to graph theory, computer science 
and number theory. I would like to mention some basic ideas of the proof of the 
Banach-Ruziewicz problem, the Jerrum-Sinclair algorithm and, if time allows, the 
Bourgain-Gamburd-Sarnak sieve. 
 
Prof. Michael Pinsker 

Algebraic and model-theoretic methods in constraint satisfaction 
The Constraint Satisfaction Problem (CSP) of a finite or countable first-order 
structure S in a finite relational language is the problem of deciding whether a given 
conjunction of atomic formulas in that language is satisfiable in S. Many classical 
computational problems can be modelled this way. The study of the complexity of 
CSPs involves an interesting combination of techniques from universal algebra, 
Ramsey theory, and model theory. This tutorial will present an overview over these 
techniques as well as some wild conjectures. 

 
 
Dr Lenka Zdeborová 

Coloring random and planted graphs: Thresholds, structure of solutions, 
algorithmic hardness 
Random graph coloring is a key problem for understanding average algorithmic 
complexity. Planted random graph coloring is a typical example of an inference 
problem where the planted configuration corresponds to an unknown signal and 
the graph edges to observations about the signal. Remarkably in a recent decade or 
two tremendous progress has been made on the problem using (principled, but 
mostly non-rigorous) methods of statistical physics. We will describe the methods - 
message passing algorithms and the cavity method. We will discuss their results - 
structure of the space of solutions, associated algorithmic implications, and 
corresponding phase transitions. We will conclude by summarizing recent 
mathematical progress in making these results rigorous and discuss interesting open 
problems. 

 





Immersion and embedding of 2-regular digraphs
Flows in bidirected graphs

Average degree of graph powers

Matt DeVos
Simon Fraser University, Burnaby, BC Canada

Editors’ note: The lecture notes that follow are on three topics, the
second and third of which the reader may explore further in the
references given:

1. Immersion and embedding of 2-regular digraphs.

2. Flows in bidirected graphs [1]

3. Average degree of graph powers [2]

1 Immersion and embedding of 2-regular digraphs

1.1 Introduction

In this section we will be interested in 2-regular digraphs (i.e. digraphs for which
every vertex has both indegree and outdegree equal to 2). There is a natural
operation called splitting which takes a 2-regular digraph and reduces it to a
new 2-regular digraph. To split a vertex v with inward edges uv and u′v and
outward edges vw and vw′, we delete the vertex v and then add either the edges
uw and u′w′, or we add the edges uw′ and u′w. If G,H are 2-regular digraphs,
we say that H is immersed in G if a graph isomorphic to H may be obtained
from G by a sequence of splits.
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Figure 1: splitting a vertex
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Our central goal in this article will be to show how the theory of 2-regular
digraphs under immersion behaves similar to the theory of (undirected) graphs
under graph minor operations. We will begin with some motivation. Consider
an ordinary undirected graph G which is embedded in an orientable surface. The
medial graph H is constructed from G by the following procedure. For every
edge e of G add a vertex of the graph H in the centre of e. Now, whenever
two edges e, f ∈ E(G) are consecutive at a vertex (or equivalently, consecutive
along a face) we add an edge between the corresponding vertices of H. Based on
this construction, every vertex of the original graph is contained in the centre
of a face of the medial graph, and every face of the original graph completely
contains a new face of the medial graph. So, the faces of the medial graph have
a natural bipartition into these two types, and indeed this gives a proper 2-face
colouring of our medial graph. Since our surface is orientable, we may direct
the edges so that every face containing a vertex of the original graph is oriented
clockwise. The following figure gives an example of this oriented medial graph.

G H

Figure 2: A graph G and its oriented medial H

Let us first note that this oriented medial graph is a 2-regular digraph. Now
let’s consider how the medial graph H changes when we delete an edge e of
the original graph. Suppose that v is the vertex of the medial graph which
corresponds to e. After deleting e the new medial graph will no longer have the
vertex v, and (check this!) in fact, the new oriented medial may be obtained
from the original by splitting v. Similarly, if we modify the original graph by
contracting e, the new medial may be obtained by doing the other split at v.
So, in this setting, we see that our minor operations on G correspond precisely
to splitting vertices of the oriented medial. This connection suggests a general
study of 2-regular digraphs under immersion, and this will be our direction going
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forward.
There is a key feature of the embedded 2-regular digraphs coming from the

aforementioned construction. Namely, at each vertex v in this embedding, the
cyclic order of the incident edges goes inward-outward-inward-outward.

v

Figure 3: a nice local rotation

As you can easily see, if this is the local behaviour at v, then either of the
possible ways of splitting v will result in a new 2-regular digraph which still has a
natural embedding in the surface. Motivated by this, let us now define a special
embedding of a 2-regular digraph to be one which satisfies this property at
every vertex. Now, similar to the behaviour of (undirected) graphs under minor
operations, we have the following easy observation for our 2-regular digraphs.

Observation 1.1. If G is a 2-regular digraph embedded in a surface S, then
every digraph immersed in G also embeds in S.

The Graph Minors project of Robertson and Seymour established a number
of very deep properties of (undirected) graphs under the relation of minors. One
great achievement of this project is a rough structure theorem for the class of
graphs not containing a fixed graph H as a minor. A remarkable consequence
of this is that every proper minor closed class of graphs (ex. planar graphs) is
characterized by a finite list of excluded minors (i.e minor minimal graphs not
in the class). A Ph.D. student of Seymour named Johnson proved an analogous
rough structure theorem for 2-regular digraphs under immersion (which strongly
features special embeddings). He claims to know a proof of the finite list of
excluded immersed graphs, but this was never written.

One very pleasing property of 2-regular digraphs is that their behaviour
under immersion is somewhat cleaner and simpler than that of usual graphs
under minors. As evidence for this, we offer the following chart which gives
information about the number of minor minimal graphs not embeddable in
certain surfaces, and the analogous list of immersion-minimal graphs with no
special embedding. This theorem for the plane will be given in the next section
and I’m unclear who deserves credit for it (probably either Johnson or Seymour).
The projective plane theorem for 2-regular digraphs is due to Archdeacon, D.,
Hannie, and Mohar. The same group expects to have the corresponding result
for the torus shortly, and I have optimistically filled this entry.
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Surface Minors (graphs) Immersion (2-reg. digraphs)

plane K3,3, K5 (Kuratowski, Wagner) C
(2)
3

proj. plane 35 graphs (Archdeacon) C
(2)
3 + C

(2)
3 , C

(2)
3 · C(2)

3 , C
(2)
4 , C2

6

torus > 104 graphs, unsolved hopefully coming soon!

To explain our notation here, let us assume G and G′ are digraphs. Then
G(2) is the digraph obtained from G by adding a new edge in parallel with each
existing edge, and G2 is the digraph obtained by adding a new edge from u to v
whenever there is a directed path of length 2 from u to v. The disjoint union of
G and H is denoted G+G′ and we let G ·G′ denote a digraph obtained from the
disjoint union of G and G′ by choosing edges (u, v) ∈ E(G) and (u′, v′) ∈ E(G′),
deleting them and then adding the edges (u, v′) and (u′, v). Finally, we let Ck
denote a directed cycle of length k.

1.2 Planar Embeddings

Our goal in this section is to prove the following result.

Theorem 1.2. A 2-regular digraph has a special embedding in the plane if and

only if it does not immerse C
(2)
3 .

Proof. First we prove the “only if” direction. By Observation 1.1, it suffices

to show that C
(2)
3 has no special embedding in the plane. To see this, first

note that in a special embedding, every face is bounded by a closed directed
walk. Since these directed walks must use every edge exactly twice, every special

embedding of C
(2)
3 has at most 4 faces. So, by Euler’s formula, if we have a

special embedding of C
(2)
3 , the Euler characteristic of the surface must be at

most 3− 6 + 4 = 1.
For the “if” direction, we may assume that our digraph G is connected.

Choose an Euler tour W of G, let v ∈ V (G) and consider the behaviour of the
tour W at v. The tour W must pass through v twice, say using the edges (u, v)
then (v, w) and later using the edges (u′, v) then (v, w′). Now modify the graph
G to by uncontracting a new (undirected) edge at the vertex v forming the two
adjacent vertices v, v′ so that we now have the directed edges (u, v), (v, w) and
(u′, v′), (v′, w′).

If we do this at every such vertex, we obtain a mixed graph (with both
directed and undirected edges) which we call H. The graph H has a directed
cycle containing every vertex as given by our original Euler tour. We shall view
H as drawn with this cycle as a circle and all other edges as chords. So, we will
think of each vertex of the original graph as a chord of this circle.

Based on this figure, we now construct a new graph K with vertex set V (G)
and an edge between u, v if the chords corresponding to u and v cross. This
type of graph is known as a circle graph. We now split into cases depending
on whether K is bipartite. If K is a bipartite graph, then we may partition
our chords into two sets {A,B} so that no two in the same set cross. Based on
this we can embed the graph H in the plane by putting the chords in A on the
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inside and the chords in B outside of the circle. Once we have an embedding
of H, we can contract all of these chords to obtain a special embedding of our
original graph G.

The remaining possibility is that K is not bipartite, and in this case we may
choose an induced odd cycle C ⊆ K. For every vertex v of the original graph
which is not in V (C) split the vertex v in accordance with the Euler tour (i.e.
so if the edges (u, v) and (v, w) appear consecutively in the tour, we split v to
add the edge (u,w)). Let G′ be the 2-regular digraph obtained by doing this for
every vertex not in V (C), and let W ′ be the Euler tour obtained from W . Using
the same process as before, we let H ′ be the mixed graph obtained from G′ by
uncontracting, and let K ′ be the corresponding circle graph. Observe that by
this operation, the resulting graph K ′ is precisely C.

If our cycle C = K ′ has length > 3 then we will modify it to make it shorter
by two. To do this, we simply choose two consecutive vertices on our cycle and
split them in the original graph G′ in a manner not in accordance with our
Euler tour W ′. The reader may verify that the resulting 2-regular digraph, say
G′′ will have an associated circle graph K ′′ which is still a cycle but is now two
vertices shorter. By repeating this process, we may obtain a 2-regular graph G∗

immersed in G with the property that the circle graph K∗ associated with G∗

is a triangle. It follows that G∗ is the digraph C
(2)
3 , as desired.

1.3 Peripheral Cycles

Although our result for the projective plane isn’t terribly complicated, it does
require some preliminary lemmas, most of which are quite sensible and mean-
ingful. In this section we will sketch a proof of one of these tools.

For an undirected graph G, we say that a cycle C is peripheral if there is
no edge e ∈ E(G) \ E(C) with both ends in V (C), and the graph G − V (C)
is connected. If G is embedded in the plane, then it is easy to see that every
peripheral cycle must be the boundary of a face.

Theorem 1.3 (Tutte). If G is a 3-connected graph, then every edge is in at
least two peripheral cycles.

Corollary 1.4. A 3-connected planar graph has a unique embedding in the
plane.

We will prove an analogous theorem for 2-regular digraphs. In such a digraph
G, we define a directed cycle C to be peripheral ifG−E(C) is strongly connected.
If G is any 2-regular graph which has a special embedding in the plane, then
deleting the edges of any directed cycle separates the part of the graph inside
this cycle from the outside. So, as before, in this case any peripheral cycle must
be a face boundary. Our goal here will be to prove the following.

Theorem 1.5. Every strongly 2-edge-connected 2-regular digraph has at least
two peripheral cycles through every edge.
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Corollary 1.6. Every strongly 2-edge-connected 2-regular digraph which has a
special embedding in the plane has a unique special embedding in the plane.

Proof of Theorem 1.5. Let e = (u, v) be an edge of G. Our first goal will be
to find one peripheral cycle through e. To do this, we choose a directed path
P from v to u so as to lexicographically maximize the sizes of the components
of G′ = G − (E(P ) ∪ {e}). That is, we choose the path P so that the largest
component of G′ is as large as possible, and subject to this the second largest
is as large as possible, and so on.

Suppose (for a contradiction) that G′ has components G1, G2, . . . , Gk with
k > 1 where Gk is a smallest component. Let P ′ be the minimal directed path
of P which contains all vertices of Gk and suppose the start of P ′ is the vertex
x and the last vertex is y. By construction, Gk must contain both x and y.
Furthermore, since Gk is Eulerian, both of these vertices have indegree and
outdegree equal to one in Gk. If there is a component Gi with i < k which
contains a vertex in the interior of P ′, then we may choose a directed path P ′′

in Gk from x to y (since Gk is Eulerian, it is automatically strongly connected).
Now we get a contradiction, since we can reroute the original path along P ′′

instead of P ′ and get a new path which improves our lexicographic ordering.
Thus, all vertices in the interior of P ′ must also be in Gk. However, in this case
Gk∪P ′ is an induced subgraph which is separated from the rest of the graph by
just two edges, and we have a contradiction to the strong 2-edge-connectivity.
It follows that k = 1, so the cycle P ∪ {e} is indeed peripheral.

Since the cycle P ∪ {e} is peripheral, there exists a directed path Q with
E(Q) ∩E(P ) = ∅ from v to u. Among all such directed paths Q we choose one
so that the unique component of G− (E(Q)∪ {e}) which contains P is as large
as possible, and subject to that we lexicographically maximize the sizes of the
remaining components. By the same argument as above, this choice will result
in another peripheral cycle.

2 Flows in bidirected graphs

2.1 Colouring-flow duality in the plane

We begin with a lovely observation due to Tutte which opened the study of this
field. Before stating it we will need to introduce some basic terminology.

Definition: Let Γ be an abelian group (written additively), and let G = (V,E)
be a directed graph. We define a function φ : E → Γ to be a flow if the following
condition (called the Kirchoff rule) is satisfied at every vertex v ∈ V∑

e∈δ+(v)

φ(e)−
∑

e∈δ−(v)

φ(e) = 0.

So, in words, a function is a flow, if at every vertex v, the sum of the values
on the incoming edges is equal to the sum of the values on the outgoing edges.
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We say that a flow is a k-flow when Γ = Z and |φ(e)| < k for every e ∈ E; we
call φ nowhere-zero if φ(e) 6= 0 for every e ∈ E. Note that if we have a flow,
then we can reverse an edge and change its value to −φ(e) and this preserves
the Kirchoff rule, so we still have a flow. This also preserves the properties
of k-flow and nowhere-zero flow. Accordingly, we will say that an undirected
graph has a nowhere-zero Γ flow or nowehere-zero k-flow if some (and thus
every) orientation of it has this property.

Theorem 2.1 (Tutte). If G and G∗ are dual planar graphs, then G∗ has a
proper k-colouring if and only if G has a nowhere-zero k-flow.

Proof of the “only if” direction. (see next section for the “if” direction) Let V ∗

be the set of vertices of G∗ and also the set of faces of G and suppose that
g : V ∗ → {0, 1, . . . , k − 1} is a proper k-colouring. Now, orient the edges of G
arbitrarily and assign each edge e of G a value φ(e) according to the rule that
φ(e) = g(a)− g(b) where a is the face to the left of the directed edge e (when it
is oriented upward) and b is the face to the right. To check that this is a flow,
consider a vertex v and suppose first that all edges are directed away from v.
In this case, the Kirchoff rule will be satisfied at v because within this sum each
face a incident with v contributes g(a) − g(a) = 0. If we flip the direction of
an edge, this flips its sign, so the Kirchoff rule will still be satisfied. Since our
colouring was proper, the resulting function φ is indeed a nowhere-zero k-flow,
as desired.

Note that a planar graph with a loop edge does not have any proper colour-
ing, so it’s dual does not have any nowhere-zero k-flow. More generally, any
graph with a cut-edge will not have a nowhere-zero Γ-flow for any (abelian)
group Γ. To see this, just sum the Kirchoff rule over all vertices in one compo-
nent of G− e for a cut-edge e. Since we have a flow, this sum must be zero, but
all terms in this sum apart from φ(e) cancel, so it gives φ(e) = 0. Based on the
above theorem connecting flows and colourings, Tutte made three remarkable
conjectures concerning the existence of nowhere-zero flows, all of which are still
open despite considerable efforts.

Conjecture 2.2 (Tutte). Let G be a graph without a cut-edge.

1. Then G has a nowhere-zero 5-flow.

2. If G has no Petersen minor, it has a nowhere-zero 4-flow.

3. If G is 4-edge-connected, it has a nowhere-zero 3-flow.

The first of these conjectures, the 5-flow conjecture, holds true for planar
graphs by the 5-colour theorem. The Petersen graph does not have a nowhere-
zero 4-flow, so if it is true, the 5-flow conjecture would be best possible. Seymour
proved that every graph without a cut-edge has a nowhere-zero 6-flow, and this
result will be of significance for our forthcoming discussion.

The 4-flow conjecture when restricted to cubic graphs is equivalent to the
statement that every cubic graph with no cut-edge and no Petersen minor has
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a 3-edge colouring. This was proved by Robertson, Sanders, Seymour and
Thomas, but little more is known in general. The last of these conjectures holds
true for planar graphs since it dualizes to the statement that every triangle free
planar graph is 3-colourable—which was proved by Grötzsch.

Before leaving this section let us close with another easy observation and
another useful theorem of Tutte. Observe that our proof of the “only if” direc-
tion of Theorem 2.1 actually gives a somewhat more general result. If instead of
choosing a k-colouring using the colours {0, 1, . . . , k− 1} we had instead chosen
Γ to be an abelian group of order k and chosen g : E → Γ to be our colour-
ing, then the construction would have resulted in a nowhere-zero Γ flow. So,
a k-colouring of the dual naturally gives us either a nowhere-zero k-flow or a
nowhere-zero Γ-flow in the original graph G. The following theorem shows that
this phenomena holds true in a more general setting.

Theorem 2.3 (Tutte). For every positive integer k and graph G, the following
are equivalent.

1. G has a nowhere-zero k-flow.

2. G has a nowhere-zero Γ flow for some group Γ with |Γ| = k.

3. G has a nowhere-zero Γ flow for every group Γ with |Γ| = k.

The utility of this result becomes immediately apparent when one starts
working with flows. The reason is that it is easy to modify a Γ-flow to get
another Γ-flow (for instance by adding a constant value to all edges on a directed
cycle), but it is generally difficult to modify a k-flow to get another k-flow.

2.2 Duality for orientable surfaces

Let’s consider a directed graph G = (V,E) which is embedded in an orientable
surface. Let φ : E → Γ be a flow on G. Now we may construct the dual graph
G∗ = (V ∗, E∗) and orient its edges so that whenever e ∈ E corresponds to
e∗ ∈ E∗, the edge e∗ crosses left to right over e. Now consider the function
φ∗ : E∗ → Γ given by the rule φ∗(e∗) = φ(e). For a walk W in G∗ with edge
sequence e∗1, . . . , e

∗
m we define the height of this walk to be

φ∗(W ) =

m∑
i=1

εiφ(e∗i )

where εi = 1 if e∗i is traversed forward, and εi = −1 if e∗i is traversed backward.
With this notation in place, we see that the Kirchoff rule for a vertex v in
the original graph is precisely equivalent to the statement that the closed walk
bounding the face of G∗ corresponding to v has height 0. So, our flow φ dualizes
to give a function φ∗ with the property that every facial walk has height 0. This
is an important concept, so let’s pause to define it.
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Definition: For an embedded directed graph G and a function ψ : E(G)→ Γ,
we say that ψ is a local-tension if the height of every facial walk is 0. We say
that ψ is a tension if every closed walk has height 0.

Just as with flows, we will call a (local) tension ψ nowhere-zero if ψ(e) 6= 0
for every e ∈ E(G) and we call ψ a k-(local) tension if Γ = Z and |ψ(e)| < k
for every e ∈ E(G). Also just like flows, we can reverse the direction of an edge
and multiply its value by −1 to obtain a new (local) tension, so the question of
when a directed graph has a nowhere-zero (local) tension depends only on the
underlying graph and not the orientation. The following key result shows that
nowhere-zero tensions are essentially the same as colourings.

Proposition 2.4. A graph G has a nowhere-zero Γ-tension if and only if it has
a proper |Γ|-colouring.

Sketch of proof. For the “if” direction, choose a Γ-colouring of G given by g :
V (G)→ Γ. Then orient the edges of G arbitrarily and assign the value ψ(e) =
g(v) − g(u) if e is an edge directed from v to u. It is straightforward to check
that this gives a nowhere-zero tension.

For the“only if” direction choose a nowhere-zero tension ψ : E(G)→ Γ and
then fix a base point u ∈ V (G). Now for every vertex v ∈ V (G) choose a walk
Wv from u to v and define g(v) = ψ(Wv). It follows from the assumption that ψ
is a tension that the value g(v) does not depend on the choice of Wv. Moreover,
the assumption that ψ was nowhere-zero means that the resulting function g is
a proper colouring.

Assume that we have a tension ψ of an embedded graph G, and assume that
every face in this embedding is a disc. If W is a closed walk in the graph which
forms a contractible curve in the surface, then we may deform W to a trivial
walk by rerouting along faces one at a time. It follows from this that ψ(W ) = 0.
More generally, let us fix a base point u ∈ V (G) and consider two closed walks
W and W ′ starting and ending at u. If W and W ′ are homotopic, then by the
same argument, we deduce that ψ(W ) = ψ(W ′). This leads us to the following
key property.

Proposition 2.5. Let G be a directed graph embedded in a surface S. If
ψ : E(G) → Γ is a local-tension, then ψ induces a group homomorphism from
π1(S)→ Γ. This homomorphism is trivial if and only if ψ is a tension.

With this, we can now return to prove the other part of our first theorem.

Proof of “if” direction of Theorem 2.1. By assumption, the graphG has a nowhere-
zero k-flow. So, by Theorem 2.3 we may orient G and choose a nowhere-zero
Zk flow φ. Let G∗ be the oriented dual (as above) and define φ∗(e∗) = φ(e) for
every edge e∗ ∈ E(G∗). Then φ∗ is a nowhere-zero Zk-local tension. However,
since the homotopy group of the plane is trivial, the above proposition implies
that φ∗ is actually a tension. Thus by Proposition 2.4 the graph G∗ has a proper
k-colouring.
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2.3 Duality for nonorientable surfaces

Now we shall start off with a directed graph G which is embedded in a non-
orientable surface, and a local tension ψ : E(G) → Γ. Our aim is to translate
the local-tension property into a kind of flow in the dual graph. However, since
our surface is not orientable, there is no obvious orientation of the dual to use.
In fact, we will need a more complicated notion. A bidirected graph is a graph in
which every edge has two arrowheads, one associated with each endpoint. Just
as with usual directed graphs, these arrowheads may be directed either toward
or away from this endpoint.

e

e

f

f

σ(e) = −1 σ(f) = 1

Figure 4: edge types

We assume (as usual) that every face of the embedded graph G is a disc,
and we will think of each of these discs as equipped with a local notion of
clockwise. (This is one of the many ways of working with nonorientable surface
embeddings.) Let G∗ be the dual graph, and consider the face of G which is
associated to some vertex v∗ ∈ V . We have chosen a clockwise orientation of this
face, and we let Wv∗ be a facial walk which traverses this face clockwise. Now,
by assumption we have ψ(Wv∗) = 0 and we shall translate this into a flow type
condition at the vertex v∗ in the dual. To do so, just mark each edge e∗ of G∗

which is incident with v∗ with an arrowhead directed to v∗ if the corresponding
edge e of G is forward in Wv∗ and with an arrowhead the opposite direction if
it is backward. This immediately translates the property ψ(Wv∗) = 0 into the
Kirchoff rule being satisfied at v∗. However, if we do this at every vertex of the
dual, we will in general end up with a bidirected orientation of this dual graph

Following the above process and giving the dual graph G∗ a bidirected ori-
entation results in the duality we want. Namely, we will have that our local
tension ψ of G translates into a flow ψ∗ of the dual (bidirected) graph G∗. So,
just as we could use nowhere-zero flows in ordinary digraphs to construct local-
tensions on orientable surfaces, we can now use nowhere-zero flows in bidirected
graphs to construct local-tension on non-orientable surfaces. One might have
hoped that the analogue of Tutte’s 5-flow conjecture would still hold true for
bidirected graphs, that is that every bidirected graph without the obvious ob-
struction has a nowhere-zero 5-flow, but this is not true. To see why, consider
the dual graphs K6 and Petersen embedded in the projective plane. Direct the
edges of K6 and use the above procedure to give Petersen a bidirected orienta-
tion. Now consider any local tension φ : E(K6)→ Z of K6. By Proposition 2.5
this local tension induces a group homomorphism from the fundamental group
of our surface, which is isomorphic to Z/2Z to the group Z. Since this must be
trivial, we deduce that φ must be a tension. It follows that this embedded K6

18



Figure 5: duality

does not have a 5-local-tension, and then by duality the associated bidirected
Petersen does not have a nowhere-zero 5-flow. Bouchet conjectured that this
was the most extreme example.

Figure 6: Petersen and K6 in the projective plane

Conjecture 2.6 (Bouchet). Every bidirected graph with a nowhere-zero Z-flow
has a nowhere-zero 6-flow.

Bouchet proved that graphs with nowhere-zero Z-flows have nowhere-zero
216-flows. This was improved to 30-flows by Fouquet and independently by
Zyka. We have shown that such graphs have nowhere-zero 12-flows.
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3 Average degree of graph powers

This article will eventually turn to a very basic question in graph theory. How-
ever, we shall begin with our motivation, which comes from the world of additive
number theory.

3.1 Groups

Let Γ be an abelian group (written additively). For two sets A,B ⊆ Γ we define

A+B = {a+ b | a ∈ A and b ∈ B}

and we call such a set a sumset. One of the central problems in additive com-
binatorics is understanding the structure of finite sets A for which the sumset
A+A is small. Let’s begin with an easy case where our group is the integers.

Observation 3.1. If A ⊆ Z is finite and nonempty, then |A + A| ≥ 2|A| − 1.
Moreover, if this bound is met with equality, then A is an arithmetic progression.

Proof. Let A = {a1, a2, . . . , an} where a1 < a2 . . . < an. Then we may exhibit
2n− 1 distinct members of the sumset A+A as follows

a1 + a1 < a1 + a2 < . . . a1 + an < a2 + an . . . < an + an.

This gives us the desired bound.
Now we investigate the case where our set A hits this bound with equality.

Generalizing the above procedure, we can construct a list of 2n − 1 distinct
members of A+A by starting with a1 +a1 and moving to an+an by increasing
the index of either the left or right term by one at each stage. If |A+A| = 2n−1
then we must get the same list of integers however we do this. Since the kth

term in such a list could be either a1 + ak+1 or a2 + ak it follows that every
1 ≤ k < n must satisfy a2 − a1 = ak+1 − ak. Therefore, A is an arithmetic
progression.

Now we shall turn our attention from the integers to the group Zp = Z/pZ
in the case when p is prime. Here there is a new reason why the set A + A
might be small relative to A, namely A could be all, or almost all of the group.
The following famous theorem asserts that in this group we either get the same
bound we had for the integers, or A+A = Zp.1

Theorem 3.2 (Cauchy-Davenport). Let p be prime and let A ⊆ Zp be nonempty.
Then we have

|A+A| ≥ min{p, 2|A| − 1}.

There is an also a characterization of the sets A ⊆ Zp for which |A+A| < 2|A|
due to Vosper.2

1In fact, this theorem has a more general form which involves sumsets of the form A + B.
2As with Cauchy-Davenport, Vosper’s theorem applies more generally to sets A,B with

|A + B| < |A| + |B|.
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Theorem 3.3 (Vosper). Let p be prime, let A ⊆ Zp is nonempty, and assume
|A+A| < 2|A|. Then one of the following holds:

1. A is an arithmetic progression.

2. |A+A| ≥ p− 1.

There are similar results which hold in more general contexts, such as the
following result which we do not state precisely. Here we have switched to
multiplicative notation for the group Γ since this is the common convention
when working with groups which are permitted to be nonabelian. So A · A =
{a · a′ | a, a′ ∈ A}.

Theorem 3.4 (D.). Let A be a finite generating set of the multiplicative group
Γ and assume 1 ∈ A. If |A ·A| < 2|A| then one of the following holds

1. Γ has a normal subgroup K so that Γ/K is either cyclic or dihedral.

2. There exists a proper coset K so that Γ \K ⊆ A ·A.

In fact, there are very wide sweeping generalizations of these results which
concern sets A for which |A·A| < c|A| for a fixed constant c. There are structure
theorems here due to Green-Ruzsa for abelian groups and due to Breulliard-
Green-Tao for arbitrary groups which yield profound insights into the nature of
these groups. We will not pursue this direction, but shall instead try to take
some of the behaviour we see here and prove that similar things happen without
all of the structure of a group.

3.2 Graphs

Assume now that Γ is a multiplicative group and let A ⊆ Γ. The Cayley Graph
Cayley(Γ, A) is a directed graph with vertex set Γ and an edge (x, y) whenever
y ∈ xA. So, in words, there is an edge from x to y if you can get from x to
y my multiplying on the right by some element in A. Let g ∈ Γ and consider
the bijection of Γ given by the rule x → gx. It follows immediately from our
definition that this map sends directed edges to directed edges, so this gives an
automorphism of our digraph. Since there is such an automorphism sending
any vertex to any to any other vertex, every Cayley graph is vertex transitive.

One convenient property of Cayley graphs is that they permit us to analyze
questions about small product sets using graphs. Indeed, for Cayley(Γ, A) the
size of A is precisely the degree of this regular digraph, and the size of the set
A · A is precisely the number of vertices reachable from a given fixed vertex x
by taking two (directed) steps. This gives us hope of following the theme of the
previous section in a more general setting of digraphs instead of Cayley graphs.
There are many nice questions in this realm which are unsolved. Here is one of
my favourite.

Conjecture 3.5. Let G be a simple d-regular digraph (all indegrees and outde-
grees equal to d) with no directed cycles of length 1 or 2. Then there exists a
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vertex x ∈ V (G) so that x can reach at least 2d vertices by a forward path of
length 1 or 2.

If true the above would resolve a very special case of the following very
famous unsolved problem. (Namely the case when G is regular and k = 3).

Conjecture 3.6 (Caccetta-Häggkvist). Let k be a positive integer and let G be
a simple n-vertex digraph. If every vertex in G has outdegree at least n/k, then
G has a directed cycle of length at most k.

As is common in graph theory, digraphs are awfully tricky and undirected
graphs behave better. The following theorem is a related success for undirected
graphs. Here the graph Gk denotes the simple graph with vertex set V (G) and
two vertices u, v adjacent in Gk if they have distance at most k in G.

Theorem 3.7 (D., Thomassé). If G is a simple connected graph of minimum
degree d and diameter at least 3, then the average degree of G3 is at least 7

4d.

A proof can be found in our paper on arXiv [2].
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Classical graph properties and graph parameters
and their definability in SOL

Johann A. Makowsky
Faculty of Computer Science, Technion - Israel Institute of Technology, Haifa, Israel

Editors’ note: The text below is an adaptation and abridgement of
the slides that supported the lectures.1 The lectures were based on
joint work with Tomer Kotek.

Course outline

LECTURE 01: Friday, Oct 10, 2014, 14:00-15:40, Prague Lecture 1,
A landscape of graph parameters and graph polynomials. Comparing
graph parameters. Towards a general theory.

LECTURE 02: Thursday, Oct 16, 2014, 12:20-14:00 Prague Lecture 2,
Why is the chromatic polynomial a polynomial? Where do graph polyno-
mials occur naturally? Definability of graph properties and graph poly-
nomials in a fragment of second-order logic.

LECTURE 03: Thursday, Oct 16, 2014, 14:30-16:00 Prague Lecture 3,
Connection matrices for graph parameters. When do connection matri-
ces of graph parameters have finite rank? Connection matrices for graph
parameters definable in fragments of second-order logic. The finite rank
theorem. Using connections matrices to prove non-definability.

There is a LECTURE 00 on second-order logic (SOL) and its fragments
(background, not lectured), LOGICS, with 14 slides. The slides can be found at
http://www.cs.technion.ac.il/~janos/COURSES/Prague-2014/P-logics.pdf.

1 A landscape of graph parameters
and graph polynomials

• Introducing graph polynomials
• The chromatic polynomial
• The characteristic polynomial

1An extended set of slides can be found at the FMT-2012 program page:
Program:http://www.lsv.ens-cachan.fr/Events/fmt2012/program.php
Slides:http://www.lsv.ens-cachan.fr/Events/fmt2012/SLIDES/janosmakowsky.pdf and at
http://www.cs.technion.ac.il/~janos/COURSES/Prague-2014/
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• The matching polynomials
• Multivariate graph polynomials: the Tutte polynomial
• Complete graph invariants
• Comparing graph invariants: getting started
• Comparing graph invariants: towards a general theory
• Semantic versus syntactic properties of graph parameters

1.1 Introducing graph polynomials

Let DG be the class of finite graphs 〈V (G), E(G)〉 where V = V (G) is a finite
set and E = E(G) ⊆ V 2 is a set of (directed edges). G ∈ DG is called a directed
graph. Let G be the class of finite graphs, i.e. where E is symmetric.

For G1, G2 ∈ DG f : G1 → G2 is an isomorphism if
1. f is a bijection, and
2. For u, v ∈ V (G1) we have

(u, v) ∈ E(G1) iff (f(u), f(v)) ∈ E(G2).
G1 and G2 are isomorphic, denoted by G1 ' G2, if there is an isomorphism
f : G1 → G2.

Let R denote a ring. For example: B2 the two-element boolean ring, Z2

the two element field, Z the ring of integers, Z[X] the polynomial ring over the
integers with one indeterminate, or R the ring of real numbers.

Definition 1.1. Let R a ring, G the class of finite graphs. A function

f : G → R

is a graph invariant if for any two isomorphic graphs G1, G2 we have f(G1) =
f(G2).

Boolean graph invariants. Here the ring is B2, or any ringR, but the values
of the invariant are either 0 or 1.
• Connectedness
• Regular, or regular of degree r.
• Any First-Order-expressible graph property.
• Any Second-Order-expressible graph property.
• Belonging to any specific class of graphs closed under isomorphisms.
• There are continuum-many boolean graph invariants.

Numeric graph invariants. Here the ring is Z.
• The cardinality of V (G) or E(G).
• The number of connected components of G, usually denoted by k(G).
• The coloring (chromatic) number of G.
• The size of the maximal clique (independent set).
• The diameter of G.
• The radius of G.
• The minimum length of a cycle in G, if it exists, called the girth of G.
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Graph polynomials. Here the ring is Z[X].
The graph polynomial p(G,X) gives for each value of X a graph invariant,

hence it encodes a possibly infinite family of graph invariants. The study of
graph polynomials has a long history concentrating on particular polynomials.

The classic and very readable book is [2].

1.2 The chromatic polynomial

Let χ(G,X) denote the number of vertex colorings of G with X colors. We shall
prove that χ(G,X) is a polynomial in X, called the chromatic polynomial of G.

The chromatic polynomial was first introduced by G.D. Birkhoff in 1912. It
led to a very rich theory, although it was introduced in a (failed) attempt to
prove the 4-color conjecture.

The most comprehensive monograph about the chromatic polynomial is [8].

What can we do with a graph polynomial?
• Study its zeros.
• Interpret its coefficients in various normal forms.
• Interpret its evaluations.
• Study graphs uniquely determined by the polynomial.
• Study graph classes having the same graph polynomial.
• Study its strength as a graph invariant in the sense of distinguishing non-

isomorphic graphs.

Digression: Typical theorems about the chromatic polynomial.

Theorem 1.2 (G. Birkhoff, 1912). χ(G,X) is a polynomial in X of degree
|V (G)|.
Proof. Let e = (a, b) be an edge of the graph G. G − e and G/e are obtained
from G by deleting, respectively contracting the edge e.
We use induction on |E(G)|.
• First we observe that for disjoint unions G = G1 tG2

we have χ(G,X) = χ(G1, X) · χ(G2, X).
• For n isolated points K̄n we have χ(K̄n, X) = Xn.
• χa 6=b(G,X) is the number of X-colorings of G with a and b having different

colors.
• χa=b(G,X) is the number of X-colorings of G with a and b having the

same color.
• χ(G− e,X) = χa6=b(G− e,X) + χa=b(G− e,X) = χ(G,X) + χ(G/e,X)
• χ(G,X) = χ(G− e,X)− χ(G/e,X)

Normal forms of χ(G,X), I. As χ(G,X) is a polynomial we can write it as

χ(G,X) =

|V (G)|∑
i=0

bi(G)Xi.
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For the disjoint union we noted that

Proposition 1.3. χ(G1 tG2, X) = χ(G1, X) · χ(G2, X).

Normal forms of χ(G,X), II. We define X(i) = X · (X−1) · . . . · (X− i+ 1).
We write

χ(G,X) =

|V (G)|∑
i=0

ci(G)X(i)

We define an operation ◦ on the X(i) by X(i) ◦ X(j) = X(i+j) and extend it
linearly to polynomials in X(i).

The join of two graphs G1, G2, G1 + G2, is obtained by taking the disjoint
union and adding all the edges between V (G1) and V (G2).

Theorem 1.4.

χ(G1 +G2, X) =

|V (G)|∑
i=0

ci(G1)X(i) ◦
|V (G)|∑
i=0

ci(G2)X(i)


Trees and tree-width.
• For trees T with n vertices we have χ(T,X) = X ·(X−1)n−1. In particular,

any two trees on n vertices have the same chromatic polynomial.
• (R. Read, 1968)

Conversely, for G a simple graph, if χ(G,X) = X · (X − 1)n−1 then G is
a tree.

• (C. Thomassen, 1997)
If G has tree-width k ≥ 2 then for every real number a > k we have
χ(G, a) 6= 0.

• (B. Courcelle, J.A. Makowsky, U. Rotics, 2000)
For graphs G with tree-width at most k the polynomial χ(G,X) can be
computed in polynomial time.

• (J.A. Makowsky, U. Rotics, 2005)
For graphs G with clique-width at most k the polynomial χ(G,X) can be
computed in polynomial time.

Planar graphs and the chromatic polynomial.

Theorem 1.5 (P.J. Heawood, 1890). Every planar graph is 5-colorable, i.e.,
χ(G, 5) 6= 0 for G planar.

Theorem 1.6 (G. Birkhoff and D. Lewis, 1946). χ(G, a) 6= 0 for G planar and
a ∈ R, a ≥ 5.

Note that Theorem 1.6 is much stronger than Heawood’s 5-color theorem.

Theorem 1.7 (K. Appel and W. Haken, 1977). Every planar graph is 4-
colorable. χ(G, 4) 6= 0 for G planar.
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Problem 1.8. Find an analytic proof of the 4-color theorem.

Conjecture 1.9 (G. Birkhoff and D. Lewis, 1946). For G planar, there are no
real roots of χ(G, a) for 4 ≤ a ≤ 5.

Real roots of χ(G,X). We note that χ(G, 0) = 0 for any graph with at least
one vertex, and χ(G, 1) = 0 for any graph with at least one edge.

Theorem 1.10 (D. Woodall, 1977). Let G be any graph.
• There are no negative real roots of χ(G,X).
• There are no real roots of χ(G,X) in the open interval (0, 1).

Theorem 1.11 (B. Jackson, 1993). .
• There are no real roots of χ(G,X) in the semi-open interval (1, 32

27 ].
• For any ε > 0 there is a graph Gε such that χ(Gε, X) has a root in

( 32
27 ,

32
27 + ε).

Theorem 1.12 (S. Thomassen, 1997). For any real numbers a1, a2 with 32
27 ≤

a1 < a2 there exists a graph G such that χ(G,X) has a root in (a1, a2).

Other counting interpretations: acyclic orientations. An orientation
of a graph G is a function which for every edge e = (a, b) selects a source value
s(e) ∈ {a, b} An orientation is acyclic, if there are no oriented cycles.

Theorem 1.13 (R.P. Stanley, 1993). The number of acyclic orientations of a
graph G is given by the absolute value |χ(G,−1)|.

Subgraph expansions. Let G be a graph with k(G) connected components.
Let S ⊂ E(G) and denote by 〈S〉 the subgraph generated by S in G.
• The rank r(G) is defined as r(G) = |V (G)| − k(G).
• The corank s(G) is defined as s(G) = |E(G)| − |V (G)|+ k(G).
• The rank polynomial of a graph is defined by

R(G;X,Y ) =
∑

S⊆E(G)

Xr(〈S〉)Y s(〈S〉)

Theorem 1.14 (H. Whitney, 1932). .
1. χ(G,X) =

∑
S⊆E(G)(−1)|S|X |V (G)|−r(〈S〉).

2. χ(G,X) = X |V |R(G,−X−1,−1).

1.3 The characteristic polynomial

• Let V = [n] and let AG be the (symmetric) adjacency matrix of G with
(A)j,i = (A)i,j = 1 iff there is an edge between vertex i and vertex j.

• We denote by char(G,X) the polynomial

det(X · 1−A) (1)

char(G,X) is a graph invariant and a polynomial in X, called the char-
acteristic polynomial of G.
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• The set of roots of char(G,X) (with multiplicities) are the eigenvalues of
AG, and are called the spectrum of the graph G.

The characteristic polynomial and the spectrum of a graph were first studied in
the 1950s by: T.H. Wei 1952, L.M. Lihtenbaum 1956, L. Collatz and U. Sino-
gowitz 1957, H. Sachs 1964, H.J. Hoffman 1969.

The characteristic polynomial: literature. The characteristic polynomial
and spectra of graphs have a very rich literature with important applications in
chemistry under the name Hückel theory. See [2, 6, 7, 22].

Digression: typical theorems about the characteristic polynomial.

Coefficients of char(G,X). For a graph G on n vertices, we write

char(G,X) =

n∑
i=0

ci(G) ·Xn−i

Proposition 1.15.
1. c0 = 1
2. c1 = 0
3. −c2 = |E(G)| is the number of edges of G.
4. −c3 is twice the number of triangles of G.

Eigenvalues of G. As in linear algebra, the zeros of char(G,X) are called
eigenvalues of the matrix AG, or eigenvalues of the graph G,

Proposition 1.16. 1. All the eigenvalues of G are real.
2. If G is connected, the largest eigenvalue of G has multiplicity 1.
3. If G is connected and of diameter at least d, the G has at least d + 1

distinct zeros.
4. The complete graph is the only connected graph with exactly two distinct

eigenvalues, char(Kn, X) = (X + 1)n−1(X − n+ 1).
5. Let Λ(G) be the largest eigenvalue of G. G is bipartite iff −Λ(G) is also

an eigenvalue of G.

Proposition 1.17. Let G be a regular graph of degree r. Then
1. r is an eigenvalue of G
2. If G is connected, then the multiplicity of r is 1.
3. For any eigenvalue λ of G we have |λ| ≤ r.
4. The multiplicity of the eigenvalue r is the number of connected components

of G.

λ(G) denotes the smallest eigenvalue of G. λ2(G) denotes the second largest
eigenvalue of G. Λ(G) denotes the largest eigenvalue of G.

Proposition 1.18.
1. If H is an induced subgraph of G, then λ(H) ≤ λ(G).
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2. If H is an induced subgraph of G, then Λ(H) ≤ Λ(G). If H is a proper
induced subgraph, then Λ(H) < Λ(G).

3. For no graph G is λ(G) ∈ (−1, 0).
4. Let G have at least two vertices. λ(G) = −1 iff G is a complete graph.
5. For no graph G is λ(G) ∈ (−

√
2,−1).

6. (J. Smith, 1970) λ2(G) ≤ 0 iff G is a complete multipartite graph.

1.3.1 The acyclic or matching defect polynomial

We denote by mk(G) the number of k-matchings of a graph G, with m0(G) = 1
by convention. For a graph G on n vertices, the polynomial

dm(G,X) =

bn/2c∑
k=0

(−1)kmk(G)Xn−2k (2)

is called the acyclic polynomial of G and also the reference polynomial or match-
ing defect polynomial.

The acyclic polynomial has important applications in chemistry (Hückel the-
ory again) and and the molecular physics of ferromagnetism. It was first studied
in the 1970s (Heilman and Lieb, Kunz). See [18, 22, 10].

1.4 The matching (generating) polynomial

The polynomial

gm(G,X) =

bn/2c∑
k=0

mk(G)Xk (3)

is called the matching polynomial of G or the matching generating polynomial
of G. It is easy to verify the identity

dm(G,X) = Xngm(G, (−X−2)). (4)

1.5 Multivariate graph polynomials

Inspired by H. Whitney’s work (1932), W.T. Tutte (1947, 1954) investigated
generalizations of the chromatic polynomial to a polynomial in two variables,
which he called the dichromatic polynomial, but now called the Tutte poly-
nomial, T (G,X, Y ).

The Tutte polynomial and its many generalizations became prominent due
to its many combinatorial interpretations in fields outside graph theory:
• Knot theory (via the Jones polynomial and its relatives)
• Statistical mechanics
• Quantum theory and quantum computing
• Chemistry
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1.6 The Tutte polynomial

Let G = (V,E) be a graph, and for A ⊆ E, let GA = (V,A) be a spanning
subgraph. The rank r(G;A) is defined as |V (G)| − k(GA).

The Tutte polynomial of G is defined as

T (G;X,Y ) =
∑
A⊆E

(X − 1)r(G;E)−r(G;A) · (Y − 1)|A|−r(G;A) (5)

This looks confusing and innocent at the same time.

The fascination with the Tutte polynomial. The Tutte polynomial is like
a magician’s hat with rabbits, birds and other surprises coming out. Easy
manipulations produce various combinatorial counting functions. We have, at
first glance surprisingly, the following
• T (G, 1, 1) counts the number of spanning trees of G.
• T (G, 2, 1) counts the number of forests of G.
• T (G, 2, 0) counts the number of acyclic orientations of G.
• The chromatic polynomial is given by

χ(G,X) = (−1)r(G;E)Xk(G)T (G; 1−X, 0)

• The reliability polynomial and the flow polynomial can also be derived
with similar formulas.

1.7 Complete graph polynomials

A graph invariant f is graph-complete if for any two graphs G1, G2 with f(G1) =
f(G2) we have also G1 ' G2.

Are there complete graph polynomials? The following is a graph-complete
graph invariant.
• Let Xi,j and Y be indeterminates. For a graph 〈V,E〉 with V = [n] we

put

Compl(G, Y, X̄) = Y |V | ·

 ∑
σ∈Sn

∏
(i,j)∈E

Xσ(i),σ(j)


Here Sn is the permutation group of [n].

Challenge: Find a polynomial in a constant finite number of indeterminates
which is a graph-complete graph invariant.

An “unnatural” graph-complete invariant. Let g : G → N be a Gödel
numbering for labeled graphs of the form G = 〈[n], E,<nat〉.

We define a graph polynomial using g:

Γ(G,X) =
∑
H'G

Xg(H)

Clearly this is a graph invariant. But it is “obviously unnatural”! Can we
make precise what a natural graph polynomial should be?
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1.8 Comparing graph invariants: getting started

In the literature we often find statements or questions of the form
• The Tutte polynomial is generalization of the chromatic polynomial.
• The Tutte polynomial does not determine the matching polynomial.
• Is there a natural most general graph polynomial?

We attempt to make this precise.

1.8.1 Induced graph invariants

Let C ⊆ G be a class of graphs closed under isomorphism. Let F be a set of
graph invariants taking values in in a ring R, and let g be a further such graph
invariant.

We say that F induces g on C, or g is a consequence of F , if for any two
graphs G1, G2 ∈ C such that f(G1) = f(G2) for all f ∈ F we also have g(G1) =
g(G2).

We denote by IndCR(F ) the set of graph invariants in R induced by F on C.
We also write F |=CR g for g ∈ IndCR(F ).

How do we see whether F |=CR g ?

1.8.2 Algebraically derived invariants

Let f, g be two graph invariants in R. Then the following are derived invariants
of F = {f, g}:
• f + g, f − g, f × g
• The formal derivative f ′.
• Let φ : R2 → R be a function. Then φ(f, g) is induced by F .

1.8.3 More examples of induced graph invariants

• Invariants induced by the characteristic polynomial
• Invariants induced by the acyclic (matching) polynomial
• Invariants induced by the chromatic polynomial
• The acyclic polynomial and the characteristic polynomial
• The acyclic polynomial and the chromatic polynomial
• The chromatic polynomial and the Tutte polynomial
• The Tutte polynomial and the matching polynomials

Invariants induced by the characteristic polynomial. The characteris-
tic polynomial char(G,X) induces
• The number of vertices |V |.
• The number of edges |E|.
• The number of triangles of G.
We also have char(K1,4, X) = char(C4tE1, X) but K1,4 has no 2-matchings,

whereas C4 does. Hence the char(G,X) does not induce the number of con-
nected components k(G) nor dm(G,X).
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Invariants induced by the acyclic (matching) polynomial. The acyclic
polynomial dm(G,X) induces
• The number of vertices |V |.
• The number of edges |E|.
• The number of perfect matchings.
• the matching generating polynomial.
On the other side dm(En, X) = 1 for all n ∈ N, whereas char(En, X) = Xn.

Hence the dm(G,X) does not induce the characteristic polynomial char(G,X).

Invariants induced by the chromatic polynomial. The following are in-
duced by χ(G,X) =

∑n
i=1(−1)n−iaiX

i:
• The cardinality of V (G) = n is the degree of χ(G,X).
• The cardinality of E(G) = m = an−1.
• The chromatic number χ(G) is the smallest integer a such that χ(G, a)>0.
• The number of connected components k(G) is the multiplicity of zeros
X = 0.

• The number of blocks b(G) is the multiplicity of zeros X = 1.
• The girth g = g(G) is given by the fact that for 0 ≤ i ≤ g − 2 we have

an−i =
(
E(G)
i

)
.

The acyclic polynomial and the characteristic polynomial.

Theorem 1.19 ([13]). char(G,X) = dm(G,X) iff G is a forest.
In other words, the acyclic (matching defect) polynomial and the character-

istic polynomial coincide on the class F of forests. We have

char(G,X) |=F dm(G,X) and dm(G,X) |=F char(G,X).

and
char(G,X) |=F gm(G,X) and gm(G,X) |=F char(G,X).

In general, neither graph invariant induces the other.

Adjoint polynomials.

Definition 1.20. The complement graph of the simple graph G = (V,E) is the
graph Ḡ = (V, V 2 −D(V )− E) .

For a graph polynomial g = g(G, X̄) the adjoint polynomial ĝ(G, X̄) of g is
defined by ĝ(G, X̄) = g(Ḡ, X̄).

WARNING: In the literature on the chromatic polynomial the definition of
adjoint polynomials differs!
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The acyclic polynomial and the chromatic polynomial.

Theorem 1.21 (E.J. Farrell and E.G. Whitehead Jr. 1992). For C = T F , the
triangle free graphs, we have

χ̂(G,X) |=T F m(G,X) and m(G,X) |=T F χ̂(G,X).

i.e., the acyclic (matching defect) polynomial and the adjoint chromatic polyno-
mial mutually induce each other.

Note that χ(P4) = χ(K1,3), P4 ' P̄4, but m(P4) 6= m(K1,3). On the other
hand, m(En) = 1 for each n ∈ N, and χ(En) = Xn. Hence, in general, neither
one induces the other.

The chromatic polynomial and Tutte polynomial.
1. The chromatic polynomial χ(G,X) is not induced

by the Tutte polynomial T (G,X, Y ).
2. On connected graphs C we have T (G,X, Y ) |=C χ(G,X)
3. Tutte polynomial T (G,X, Y ) is not induced

by the the chromatic polynomial χ(G,X).

Proof. (i) Let En be the graph with n vertices and no edges. We have T (En, X, Y ) =
1 but χ(En, X) = Xn.

(ii) (After W.T. Tutte, 1954) χ(G,X) = (−1)|V |−k(G)Xk(G)T (G, 1−X, 0).
(iii) (After M. Noy, 2003) Let Wn be the wheel with n spokes. It is known

that T (G,X, Y ) = T (Wn, X, Y ) implies that G ' Wn for all n. But there is a
G 6'W5 with χ(G,X, Y ) = χ(W5, X, Y ).

The Tutte polynomial and the matching polynomials
• The matching polynomial is not induced by the Tutte polynomial, even

on connected planar graphs.
• The Tutte polynomial is not induced by the matching polynomial, even

on connected planar graphs.

Proof. (i) For trees with n vertices tn we have T (tn, X, Y ) = Xn−1. But it is
easy to see that K1,n−1 and Pn are both trees with n vertices and their matching
polynomials differ, as K1,n−1 has no 2-matching but Pn has for n ≥ 3.

(ii) On the other hand C3 te C5 and C4 te C4 have the same matching
polynomials (check by hand) but have different Tutte polynomials, as the Tutte
polynomials counts cliques of given size.

What do we learn? What do we ask?
• Polynomial graph invariants are still a mystery.
• Can we analyze the consequence relation for polynomial invariants?
• Can we identify “good invariants”?
• What are appropriate complexity classes for graph invariants?
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1.9 Comparing graph parameters and graph polynomials:
towards a general theory

This section has been jointly prepared with E.V. Ravve.

1.9.1 Graph parameters and graph polynomials

Let R be a (possibly ordered) ring or a field. For a set of indeterminates X̄ we
denote by R[X̄] the polynomial ring over R.

A graph parameter p is a function from the class of all finite graphs to
R which is invariant under graph isomorphism. A graph polynomial p is a
function from the class of all finite graphs to R[X̄] which is invariant under
graph isomorphism.

Remark: In most situations in the literature R is Z,Q or R. The choice
of the underlying ring or field may depend on the way we want to represent
the graph parameter or graph polynomial. For the graph parameter dmax(G),
the maximal degree of its vertices, Z suffices, but for daverage(G), the average
degree of its vertices, Q is needed.

1.9.2 Equivalence of graph polynomials

Let C be a graph property. Let P (G, X̄) and let Q(G, Ȳ ) be two graph polyno-
mials.

Definition 1.22. We say that Q determines (induces) P over C, or Q is at
least as distinctive than P over C, and write P �Cd.p. Q if for all graphs G1 and
G2 in C,

Q(G1) = Q(G2) implies that P (G1) = P (G2).

• If C consists of all graphs, we omit C.
• The definition also applies to graph parameters P (G), Q(G) ∈ Z.

P and Q are d.p.-equivalent over C, and write P ∼Cd.p. Q, iff P �Cd.p. Q and

Q �Cd.p. P .

Examples of P �Cd.p. Q.
1. [8, 3.2.1] The chromatic polynomial χ(G,X) determines the graph param-

eters |V (G)|, |E(G)|, χ(G), k(G), b(G), g(G), etc.
2. dmax and daverage are d.p.-incomparable.
3. The Tutte polynomial T (G,X, Y ) determines χ(G,X) on connected graphs,

but not on all graphs.
4. Assume P (G;X), Q(G;X), U(G,X) are three polynomials and P (G,X) =
U(G,X) ·Q(G,X). Let CU be a class of graphs such that for all G1, G2 ∈
CU , we have U(G1, X) = U(G2 : X). Then P �CUd.p. Q.

5. Let F be the class of forests. For the characteristic polynomial char(G,λ)
and the matching polynomial dm(G,λ) and we have

char ∼Fd.p. dm .
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1.9.3 P -unique and P -equivalent graphs

Definition 1.23. Let P = P (G; X̄) a graph polynomial and C a class of graphs.
1. Two graphs G1 and G2 are P -equivalent for C if P (G1; X̄) = P (G2; X̄).
2. A graph G ∈ C is P -unique for C if for any other graph G1 ∈ C with
P (G; X̄) = P (G1; X̄) the graph G1 is isomorphic to G.

3. P is complete for C if every graph G ∈ C is P (G; X̄)-unique for C.
If C consists of all graphs then we omit mention of C.

Proposition 1.24. Let P and Q be graph polynomials such that P �Cd.p. Q.
1. If G1 and G2 are Q-equivalent for C then they are also P -equivalent for C.
2. If G is P -unique for C then G is Q-unique for C.
3. If P is complete for C then Q is complete for C.

1.9.4 More examples of induced graph invariants

• Adjoint polynomials
• χ-equivalent graphs [8, Chapter 5]
• The two matching polynomials
• T -unique graphs
• Almost complete graph invariants

Adjoint polynomials. Recall Definition 1.20 of the adjoint of a graph poly-
nomial.

Exercise: P �Cd.p. P̂ iff P̂ �Cd.p. P
For the Tutte polynomial T (G,X, Y ) and Ēn = Kn we have
1. T (Em) = T (En) = 1 for all n ∈ N.
2. T (Km) 6= T (Kn) for m 6= n.
3. Hence the Tutte polynomial and its adjoint are not d.p.-comparable.

χ-equivalent graphs. From [8, Chapter 5].
1. The graphs En, Kn and Kn,n are χ-unique for n ≥ 1.
2. The graphs Cn are χ-unique for n ≥ 3, Ci = Ki for i ≤ 2.
3. Any two trees on n vertices are χ-equivalent.

In [8, Chapter 5] many pairs of χ-equivalent graphs are constructed using a
method due to R.C. Read (1987) and G.L. Chia (1988).

Research project: Study P -equivalence for the various generalized color-
ings of [14].

char-equivalent graphs. From [21]. Let char(G, x) = det(x ·1−AG) be the
characteristic polynomial of G with adjacency matrix AG.

1. The graphs Kn,n are char-unique.
2. The line graphs L(Kn) are char-unique for n 6= 8. For n = 8 there are

three exceptions.
3. The line graphs L(Kn,n) are char-unique for n 6= 4. For n = 4 there is

one exception.
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The two matching polynomials. Recall the relation (4) between (2) and (3).

Graphs equivalent for matching polynomials. From [21].
• For every graph G we have gm(G, x) = gm(G t En, x)

but dm(G, x) 6= dm(G t En, x).
dm(P2, x) = x2 − 1 and dm(P2 t Ek, x) = x3 − x,
but gm(P2, x) = x2 − 1 and gm(P2 t Ek, x) = x2 − 1

• |V (G)| �d.p. dm, and therefore gm �d.p. dm.
In other words gm is strictly less expressive than dm.

• gm ∼d.p. dm on graphs with a fixed number of vertices.
• The graphs Kn,n are dm-unique.

Are they also gm-unique?
Research project: Study dm-equivalence and gm-equivalence of graphs

further.

T -unique graphs. From [20].
For a graph G = (V,E) and A ⊆ E we denote by G[A] = (V,A) the spanning

subgraph generated by A. We set r(A) = |V | − k(G[A]) and n(A) = |A| − r(A).
The Tutte polynomial (5) can be written as

T (G;X,Y ) =
∑
A⊆E

(X − 1)r(E)−r(A)(Y − 1)n(A).

1. Recall that χ �d.p. T on connected graphs. Hence the graphs Kn,n are
T -unique.

2. The wheels Wn are T -unique for all n ∈ N. Wheels are χ-unique for W2n,
W5 and W7 are not. In general it is not known (?) whether W2n+1 is
χ-unique.

3. The ladders Ln are T -unique for all n ≥ 3. They are only known to be
χ-unique for small values of n.

Bollobás–Pebody–Riordan Conjecture [3]: Almost all graphs are T -unique
and even χ-unique.

Let us make it more precise. Let TU (χU) be the graph property:

G ∈ TU (G ∈ χU) iff G is T -unique (χ-unique),

and TU(n) (χU(n)) be the density function of TU (χU).
The conjecture for the Tutte polynomial now is

lim
n→∞

TU(n)

2(n2)
= 1

Similarly for χU(n).
Is TU (χU) definable in some logic with a zero-one law?
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Almost complete graph invariants. A graph polynomial P is almost com-
plete, if almost all graphs are P -unique.

Research problems:
• Study the definability of the graph property G is P unique for various

graph polynomials P .
• Find natural graph polynomials which are almost complete.
• In particular, is the signed Tutte polynomial Tsigned almost complete for

signed graphs?
A positive answer would be interesting for knot theorists: Tsigned is inti-
mately related to the Jones polynomial of knot theory.

1.10 Comparison of graph polynomials by coefficients

1.10.1 Coefficients of graph polynomials: the univariate case

We denote by Z<ω the set of finite sequences of elements of Z. Let P (G,X) ∈
Z[X] and P (G,X) =

∑|V (G)|
i=0 ai(G) ·Xi with a(G)|V (G)| 6= 0.

We denote by cP (G,X) the finite sequence (ai(G))i≤|V (G)| ∈ Z<ω. The
sequence cP (G,X) consists of the (standard) coefficients of P (G,X). The func-

tion c : Z[X]
c−→ Z<ω is one-to-one and onto.

Instead of looking at graph polynomials P : Graphs
P−→ Z[X], we can look

at the function cP : Graphs −→ Z<ω defined by

cP : Graphs
P−→ Z[X]

c−→ Z<ω

Lemma 1.25. For all graphs G1, G2, we have that P (G1) = P (G2) iff cP (G1) =
cP (G2).

Our definition of cP uses the power form of P . We could have used also
factorial form or binomial form of P .
• cP denotes the coefficients of P in power form.
• c1P denotes the coefficients of P in factorial form.
• c2P denotes the coefficients of P in binomial form.
We note that there are simple algorithms to pass from one representation to

another.

1.10.2 Equivalence of graph polynomials: coefficients

Let C be a graph property. Let P (G, X̄) and let Q(G, Ȳ ) be two graph polyno-
mials.

Definition 1.26. We say that Q determines coefficientwise P over C and write
P �Ccoeff Q if there is a function F : Z<ω → Z<ω such that for all graphs G ∈ C

F (cQ(G)) = cP (G)

P and Q are coefficient-equivalent over C, and write P ∼Ccoeff Q, iff P �Ccoeff Q
and Q �Ccoeff P
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• If C consists of all graphs, we omit C.
• The definition also applies to graph parameters P (G), Q(G) ∈ Z.
• Our definition is invariant under the choice of representations cP , c1P

or c2P .

An example: F can be arbitrarily complex. Let P (G,λ) =
∑
i ai(G)λi.

Let Pexp(G,λ) =
∑
i 2ai(G)λi, and for g : N → N one-to-one and onto let

Pg(G,λ) =
∑
i ai(G)λg(i).

Clearly,
P ∼coeff Pg ∼coeff Pexp

• If g is not computable, then F showing that P ∼coeff Pg cannot be
computable in the Turing model of computation.

• Furthermore, F showing that P ∼coeff Pexp cannot be computable in the
Blum-Shub-Smale model of computation.

Theorem 1.27. P �Ccoeff Q iff P �Cd.p. Q

Proof. P �Ccoeff Q implies P �Cd.p. Q.
Assume there is a function F : Z<ω → Z<ω such that for all graphs G ∈ C

we have F (cQ(G)) = cP (G).
Now let G1, G2 ∈ C such that Q(G1) = Q(G2). By Lemma 1.25 we have

cQ(G1) = cQ(G2). Hence F (cQ(G1)) = F (cQ(G2)).
Since for all G ∈ C we have F (cQ(G)) = cP (G), we get cP (G1) = cP (G2)

and, using Lemma 1.25 again, we have P (G1) = P (G2).
P �Cd.p Q implies P �Ccoeff Q.
We use the well-ordering principle, which is equivalent to the axiom of choice.
Let {Fα : α < β} be a well-ordering of all functions F : Z<ω → Z<ω. For

G ∈ C, let γ(G) < β be the smallest ordinal such that Fγ(G)(cQ(G)) = cP (G).
Now given P (G,X) �d.p. Q(G,X), we define a function FP,Q : Z<ω → Z<ω

as follows:

FP,Q(cQ(G)) =

{
Fγ(G)(cQ(G)) if G ∈ C
0 else

Using Lemma 1.25 and P (G,X) �d.p. Q(G,X), this indeed defines a func-
tion. Finally, as Fγ(G)(cQ(G)) = Fγ(G)(cP (G)), we get FP,Q(cQ(G)) = cP (G).

A proof without well-ordering (suggested by Ofer David). Let S be
a set of finite graphs and s ∈ Z<ω. For a graph polynomial P we define:
P [S] = {s ∈ Z<ω : cP (G) = s for some G ∈ S} and P−1(s) = {G : cP (G) = s}.

Now assume P (G,X) �d.p. Q(G,X). If Q−1(s) 6= ∅, then for every G1, G2 ∈
Q−1(s) we have cQ(G1) = cQ(G2), and therefore cP (G1) = cP (G2). Hence
P [Q−1(s)] = {ts} for some ts ∈ Z<ω.

Now we define

FP,Q(s) =

{
ts Q−1(s) 6= ∅
s else
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and the argument is completed

Example I: the two matching polynomials. Recall we have dm(G;x) =
xngm(G; (−x)−2) for (2) and (3) where n = |V (G)|.
• The degree of dm is n
• If mr(G) 6= 0 the n− 2r > 0.
• Hence

dm(G;x)

Xn

is a polynomial, and we can compute the coefficients of gm from the
coefficents of dm.

• We cannot compute the coefficients of dm from gm without knowing the
value of |V (G)| = n.

Example II: the Tutte polynomial and the chromatic polynomial.
The Tutte polynomial and the chromatic polynomial are related by the formula

χ(G,X) = (−1)r(G) ·Xk(G) · T (G; 1−X, 0)

• To compute the coefficients of χ(G;X) from T (G;X,Y ) we have to know
the parity of r(G) and the number of connected components of G.

• For connected graphs k(G) = 1 and r(G) = |V | − 1.

1.10.3 Introducing auxiliary parameters S
Let S = {S1(G), . . . , St(G)} be graph parameters (polynomials), and C a graph
property. Let P (G, X̄) and Q(G, Ȳ ) be two graph polynomials.

Definition 1.28. We say that Q determines P relative to S over C, or Q is at
least as distinctive as P relative to S over C, and write

P �S,Cr.d.p. Q

if for all graphs G1, G2 ∈ C with Si(G1) = Si(G2) : i ≤ t we have

Q(G1) = Q(G2) implies that P (G1) = Q(P2).

Definition 1.29. We say that Q determines P coefficientwise relative to S over
(C), and write

P �S,(C)
relcoeff Q,

if there is a function F : (Z<ω)t+1 → Z<ω such that for all graphs G ∈ P

F (cS1(G), . . . , cSt(G), cQ(G)) = cP (G).

The equivalence relations P ∼S,(C)
r.d.p. Q and P ∼S,(C)

relcoeff Q, are defined
as usual.

Theorem 1.30. P �Srelcoeff Q iff P �Sr.d.p. Q.
The proof is left as an exercise!
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1.11 Semantic properties of graph polynomials

1.11.1 Similar graphs and similarity functions

Two graphs G1, G2 are similar if they have the same number of vertices, edges
and connected components, i.e.,
• |V (G1)| = n(G1) = n(G2) = |V (G2)|,
• |E(G1)| = m(G1) = m(G2) = |E(G2)|, and
• k(G1) = k(G2).
• S = {|V (G)|, |E(G)|, k(G)}
A graph parameter or graph polynomial is a similarity function if it is in-

variant under similarity.
1. The nullity ν(G) = m(G)−n(G)+k(G) and the rank ρ(G) = n(G)−k(G)

of a graph G are similarity polynomials with integer coefficients.
2. Similarity polynomials can be formed inductively starting with similarity

functions f(G) not involving indeterminates, and monomials of the form
Xg(G) where X is an indeterminate and g(G) is a similarity function not
involving indeterminates. One then closes under pointwise addition, sub-
traction, multiplication and substitution of indeterminates X by similarity
polynomials.

1.11.2 Comparing graph polynomials up to graph similarity

In the literature graph polynomials are mostly compared up to graph similarity:
• We note that the various matching polynomials are not d.p.-equivalent.

The number of vertices of a graph G is not induced by all its variations,
but is induced by some of them.

• However, if restricted to similar graphs, all the matching polynomials have
the same distinctive power.

• Similarily, the Tutte polynomial does not induce the chromatic polyno-
mial. They behave differently on empty graphs. However, on similar
graphs, the Tutte polynomial determines the chromatic polynomial.

This leads to the following definitions.
Two graph polynomials are usually compared via their distinctive power.
A graph polynomial Q(G,X) is less s-distinctive than P (G, Y ), Q �s P , if

for every two similar graphs G1 and G2

P (G1, X) = P (G2, X) implies Q(G1, Y ) = Q(G2, Y ).

We also say the P (G;X) s-determines Q(G;X) if Q �s P .
Two graph polynomials P (G,X) and Q(G, Y ) are s-equivalent in distinctive

power (s.d.p-equivalent) if for every two similar graphs G1 and G2

P (G1, X) = P (G2, X) iff Q(G1, Y ) = Q(G2, Y ).

The same definition also works for graph parameters and multivariate graph
polynomials.

40



Let R be the ring of coefficients of our graph polynomials, and let R<ω
denotes the set of finite sequences of R. We denote by cP (G) ∈ R<ω the
sequence of coefficients of P (G,X).

Proposition 1.31. Two graph polynomials P (G,X1, . . . Xr) and Q(G, Y1, . . . , Ys)
are s-equivalent in distinctive power (s.d.p-equivalent) over S (P ∼s.d.p. Q) iff
there are two functions F1, F2 : R<ω → R<ω such that for every graph G

F1(n(G),m(G), k(G), cP (G)) = cQ(G) and

F2(n(G),m(G), k(G), cQ(G)) = cP (G)

Proposition 1.31 shows that our definition of equivalence of graph polyno-
mials is mathematically equivalent to the definition proposed by C. Merino and
S. Noble in 2009.

Computability. The functions F1, F2 in Proposition 1.31 need not be com-
putable in any sense, even if the coefficients of P (G) and Q(G) are integers.

A graph polynomial P (G;X) with coefficients in a ring R is computable (in
a suitable model of computation for R) if

1. the function cP : G → R<ω computing the coefficients of P (G;X) is
computable, and

2. the decision problem given s ∈ R<ω is there a graph with cP (G) = s is
decidable.

Theorem 1.32. Let P (G;X) and Q(G;X) be two computable graph polyno-
mials which are s.d.p.-equivalent.Then there are F1, F2 as in Proposition 1.31
which are computable.

In this case we say that P (G;X) andQ(G;X) are computably s.d.p.-equivalent.

1.11.3 Prefactor and subtsitution equivalence

We say that P (G; X̄) is prefactor reducible to Q(G; X̄) and we write

P (G; Ȳ ) �prefactor Q(G; X̄)

if there are similarity functions f(G; X̄), g1(G; X̄), . . . , gr(G; X̄) such that

P (G; Ȳ ) = f(G; X̄) ·Q(G; g1(G; Ȳ ), . . . , g(G; Ȳ )).

We say that P (G; X̄) is substitution reducible to Q(G; X̄), and we write

P (G; Ȳ ) �subst Q(G; X̄)

if P (G; Ȳ ) �prefactor Q(G; X̄) and, additionally, f(G; X̄) = 1 for all values
of X̄.

P (G; X̄) and Q(G; X̄) are prefactor (substitution) equivalent if the relation-
ship holds in both directions.

It follows that if the computable graph polynomials P (G; X̄) and Q(G; X̄)
are prefactor (substitution) equivalent then they are computably s.d.p.-equivalent.
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1.11.4 Semantic properties of graph parameters

A semantic property (s-semantic property) is a class of graph parameters (poly-
nomials) closed under d.p.-equivalence or (s.d.p.-equivalence).

Let p(G) be a graph parameter with values in N, and P (G;X) be a graph
polynomial.
• The degree of P (G;X) equals p(G) is not a semantic property of P (G;X).

Using Proposition 1.31 we see that P (G;X) and P (G;X2) are d.p.-equivalent,
but they have different degrees.

• P (G;X) determines p(G) is a semantic property of P (G;X).
The degree of P (G;X) equals p(G) is an accidental result of the particular
presentation of P (G;X).

• The number of triangles of G is determined by the characteristic polyno-
mial, but that it is twice the absolute value of the third coefficient again
is a result of its particular presentation.

1.11.5 Semantic vs syntactic properties of graph polynomials

Semantically meaningless properties:
1. P (G,X) is monic for each graph G, i.e., the leading coefficient of P (G;X)

equals 1.
Multiplying each coefficient by a fixed polynomial gives an equivalent
graph polynomial.

2. The leading coefficient of P (G,X) equals the number of vertices of G.
However, proving that two graphs G1, G2 with P (G1, X) = P (G2, X) have
the same number of vertices is semantically meaningful.

3. The graph polynomials P (G;X) and Q(G;X) coincide on a class C of
graphs, i.e. for all G ∈ C we have P (G;X) = Q(G;X). (Theorem 1.19
provides an example with P the characteristic polynomial, Q the acyclic
(defect matching) polynomial, and C the class of forests.)
The semantic content of this situation says that if we restrict our graphs
to C, then P (G;X) and Q(G;X) have the same distinguishing power.
The equality of P (G;X) and Q(G;X) is a syntactic coincidence or reflects
a clever choice in the definitions P (G;X) and Q(G;X).

Such clever choices can be often achieved.
Let C be a class of finite graphs closed under graph isomorphism.

Proposition 1.33. Suppose that P (G;X) and Q(G;X) are graph polynomials
that have the same distinguishing power on the class of graphs C, i.e. P ∼Cd.p. Q.
Then there is a graph polynomial P ′ with the same distinguishing power as P
on all graphs, i.e. P ′ ∼d.p. P , such that P ′(G;X) = Q(G;X) on C.

If, additionally, C, P (G;X) and Q(G;X) are computable, then P ′(G;X) can
be chosen to be computable too.

Proposition 1.33 is simply satisfied by choosing P ′ = Q on C and P ′ = P
outside C (and if P,Q and C are computable then P ′ is computable too).

Proposition 1.33 also holds when we replace computable by definable in SOL.

42



2 Why is the chromatic polynomial
a polynomial?
Taming the class of graph polynomials. Definability of
graph properties and numeric graph parameters

• Variations of the chromatic polynomial
• Why are there many chromatic polynomials?
• The classical graph polynomials
• The matching polynomials: a case study
• Second-order logic (SOL)
• Graph properties
• Logic and complexity
• HEX and variations
• The role of order
• Definability of numeric graph invariants

2.1 The chromatic polynomial and its variations

Let G = (V (G), E(G)) be a graph, and λ ∈ N. A λ-vertex-coloring is a map
c : V (G) → [λ] such that (u, v) ∈ E(G) implies that c(u) 6= c(v). We define
χ(G,λ) to be the number of λ-vertex-colorings. Recall Section 1.2.

Theorem 2.1 (G. Birkhoff, 1912). χ(G,λ) is a polynomial in Z[λ].

Interpretation of χ(G,λ) for λ 6∈ N. What’s the point in considering λ 6∈ N?
• (Stanley, 1973). For simple graphs G, |χ(G,−1)| counts the

number of acyclic orientations of G.
• (Stanley, 1973). There are also combinatorial interpretations of χ(G,−m)

for each m ∈ N, which are more complicated to state.
• Open:What about χ(G,λ) for each m ∈ R− Z?

The Four Color Conjecture. Birkhoff wanted to prove the Four Color Con-
jecture using techniques from real and complex analysis.

Conjecture: (Birkhoff and Lewis) If G is planar then χ(G,λ) 6= 0 for
λ ∈ [4,+∞) ⊆ R.

This was not very successful. However, for real roots of χ we know:
• (Jackson, 1993). For simple graphs G we have χ(G,λ) 6= 0 for
λ ∈ (−∞, 0), λ ∈ (0, 1) and λ ∈ (1, 32

27 ).
• (Birkhoff and Lewis, 1946). For planar graphs G we have χ(G,λ) 6= 0 for
λ ∈ [5,+∞).

• Still open: Are there planar graphs G such that χ(G,λ) = 0
for some λ ∈ (4, 5)?

• (Thomassen, 1997 and Sokal, 2004). The real roots of all chromatic poly-
nomials are dense in ( 32

27 , k] for graphs of tree-width at most k. The
complex roots are dense in C.
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2.1.1 Variations on coloring

We can count other coloring functions.
1. Proper λ-edge-colorings:
fE : E(G) → [λ] such that if (e, f) ∈ E(G) have a common vertex then
fE(e) 6= fE(f).
χe(G,λ) denotes the number of λ- edge-colorings

2. Total colorings:
fV : V → [λV ], fE : E → [λE ] and f = fV ∪ fE , with fV a proper vertex
coloring and fE a proper edge coloring.

3. Connected components:
fV : V → [λV ], If (u, v) ∈ E then fV (u) = fV (v).

4. Hypergraph colorings. See [23].
Fact: The corresponding counting functions to 1-4 are polynomials in λ.

Let f : V (G)→ [λ] be a function, such that Φ is one of the properties below
and χΦ(G,λ) denotes the number of such colorings with at most λ colors.

* convex: Every monochromatic set induces a connected graph.

* injective: f is injective on the neighborhood of every vertex.

- complete: f is a proper coloring such that every pair of colors occurs along
some edge.

* harmonious: f is a proper coloring such that every pair of colors occurs at
most once along some edge.

- equitable: All color classes have (almost) the same size.

* equitable, modified: All non-empty color classes have the same size.

Fact: For (*), χΦ(G,λ) is a polynomial in λ, for (-), it is not.

* path-rainbow: Let f : E → [λ] be an edge-coloring. f is path-rainbow if
between any two vertices u, v ∈ V there as a path where all the edges have
different colors.

Fact: χrainbow(G,λ), the number of path-rainbow colorings of G with λ
colors, is a polynomial in λ. Rainbow colorings of various kinds arise in compu-
tational biology.

* -monochromatic components: Let f : V → [λ] be a vertex-coloring and
t ∈ N. f is an mcct-coloring of G with λ colors if all the connected
components of a monochromatic set have size at most t.

Fact: For fixed t ≥ 1 the function χmcct(G,λ) counting the number of mcct-
colorings of G with λ colors is a polynomial in λ but not in t. mcct-colorings
were first studied in [1].

Let P be any graph property and let n ∈ N. We can define coloring functions
f : V → [λ] by requiring that the union of any n color classes induces a graph
in P.
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• For n = 1 and P the empty graphs G = (V, ∅) we get the proper colorings.
• For n = 1 and P the connected graphs we get the convex colorings.
• For n = 1 and P the graphs which are disjoint unions of graphs of size at

most t, we get the mcct-colorings.
• For n = 2 and P the acyclic graphs we get the acyclic colorings, introduced

in [12].

Theorem 2.2. Let χP,n(G,λ) be the number of colorings of G with λ colors
such that the union of any n color classes induces a graph in P.

Then χP,n(G,λ) is a polynomial in λ.

Variations on colorings: coloring relations Let G = (V,E). Here we
look at an example where the coloring is a relation R ⊆ V × [k] rather than a
function f : V → [k]. We denote by Cv the set {c ∈ [k] : (v, c) ∈ R}.

Let a, b ∈ N. An (a, b)-coloring relation with k colors is a relation R ⊆ V ×[k]
such that
• For each v ∈ V there are at most a-many colors c ∈ [k] such that (v, c) ∈ R.
• If (u, v) ∈ E then Cu 6= Cv and there are at most b-many distinct elements
c1, . . . , cb in Cu ∩ Cv.

Exercise:
• Compute the number of (a, b)-coloring relations of the complete graphs
Kn for various a, b, k ∈ N.

• Is the number (a, b)-coloring relations with k colors of a graph G a poly-
nomial in a, b or k?

• Look at the corresponding definitions with “at most” replaced by “at
least” or “exactly”.

Variations on colorings: two kinds of colors. Let G = (V,E). Here we
look at two disjoint color sets A = [k1] and B = [k1 + k2]− [k1]. The colors in
A are called proper colors. Our coloring is a function f : V → [k1 + k2] = [k]
such that
• If (u, v) ∈ E and f(u) ∈ A and f(v) ∈ A then f(u) 6= f(v).
• We count the number of colorings with k = k1 + k2 colors such that k1

colors are in A, i.e., proper.

Theorem 2.3 (K. Dohmen, A. Pönitz and P. Tittman, 2003). The number of
colorings with k = k1+k2 colors with k1 proper colors is a polynomial P (G, k1, k)
in k1 and k.

2.2 Coloring properties.
Why are there many chromatic polynomials?

Our framework is as follows:
• Let M be a finite relational τ -structure with universe M .
• Let k ∈ N and [k] = {0, . . . , k − 1}.
• Let f be an r-ary function f : Mr → [k].
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• We shall look at families P consisting of triples of the form (M, f, [k]).
A class of such triples P is a coloring property if the following properties are

satsified:

Extension Property: Let n ≤ ki, i = 1, 2, and let

(M, f, [k1]) and (M, f, [k2]) be two colorings of M,

using only colors in [n], i.e., the range of f is contained in [n].

Then (M, f, [k1]) ∈ P iff (M, f, [k2]) ∈ P.

Isomorphism Property: P is closed under isomorphisms of colorings.

The isomorphism property implies the permutation property:

Permutation Property: Let f : Mr → [k] be a fixed coloring.

For a permutation π of [k], we define the coloring fπ by fπ(ā) = π(f(ā).

Then (Mk, f, [k]) ∈ P iff (Mk, fπ, [k]) ∈ P.

If instead of coloring functions f we allow coloring relations R ⊆ Mr × [k]
we need some additional properties:

1. A coloring property P of triples (Mk, R, [k]) ∈ P is bounded, if for every
M there is a number NM such that for all k ∈ N the set of colors

{x ∈ [k] : ∃ȳ ∈Mr R(ȳ, x)}

has size at most NM .
2. A coloring property is range bounded if there is a number d ∈ N such that

for every M and ȳ ∈Mr the set {x ∈ [k] : R(ȳ, x)} has at most d elements.
Clearly, if a coloring property is range bounded, it is also bounded.

We denote by χP(M, k) the number of generalized k−P-colorings R on M.
The work presented in Sections 2.2.1 and 2.2.2 is based on [14].

2.2.1 Uniform definability in logical formalisms

Let φ be a sentence of some logic L, such as first order logic FOL, second order
logic SOL, monadic second order logic MSOL, or some fragment thereof.2

We shall be interested in cases where the coloring property P is definable in
L by a formula φ(P ) ∈ L. If φ(P ) defines a (bounded) coloring property, we
say that φ(P ) is a coloring formula.

If P is L-definable we call χP(M, k) an L-chromatic counting function and
write

χφ(P )(M, k) = χP(M, k).

All the examples encountered so far are SOL-chromatic counting functions.

2Editors’ note: See Section 3.2 for the definition of a fragment.
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2.2.2 Generalized multi-colorings

To construct graph polynomials in several variables, we extend the definition of
colorings to several color-sets, and we will also call them generalized chromatic
polynomials.

We say an (α+ 2)-tuple (M, R, [k1], . . . , [kα]) with

R ⊂Mm × [k1]m1 × . . .× [kα]mα

is a generalized multi-coloring of M for colors k̄α = (k1, . . . , kα).
The extension and isomorphism property are adapted appropriately to deal

also with unused color-sets. By abuse of notation, mi = 0 is taken to mean the
color-set ki is not used in R.

Theorem 2.4. For every M the counting function χφ(R)(M, k) is a polynomial
in k of the form

d·|M |m∑
j=0

cφ(R)(M, j)

(
k

j

)
where cφ(R)(M, j) is the number of generalized k − φ-colorings R with a fixed
set of j colors.

Polynomials in Z[k] with monomials of the form
(
k
j

)
are sometimes called

Newton polynomials. In the light of this theorem we call χφ(R)(M, k) a gener-
alized chromatic polynomial.

Proof. We first observe that any generalized coloring R uses at most

N = d · |M |m

of the k colors. For any j ≤ N , let cφ(R)(M, j) be the number of colorings, with
a fixed set of j colors, which are generalized vertex colorings and use all j of the
colors.

Next we observe that any permutation of the set of colors used is also a
coloring. Therefore, given k colors, the number of vertex colorings that use
exactly j of the k colors is the product of cφ(R)(M, j) and the binomial coefficient(
k
j

)
. So

χφ(R)(M, k) =
∑
j≤N

cφ(R)(M, j)

(
k

j

)
The right-hand side here is a polynomial in k, because each of the binomial
coefficients is. We also use that for k < j we have

(
k
j

)
= 0.

2.3 More on classical graph polynomials

Here again are some of the classical graph polynomials:
• The chromatic polynomial (G. Birkhoff, 1912)
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• The Tutte polynomial and its colored versions
(W.T. Tutte, 1954; B. Bollobas and O. Riordan, 1999);

• The characteristic polynomial
(T.H. Wei, 1952; L.M. Lihtenbaum, 1956; L. Collatz and U. Sinogowitz, 1957)

• The various matching polynomials (O.J. Heilman and E.J. Lieb, 1972)
• Various clique and independent set polynomials (I. Gutman and F. Harary,

1983)
• The Farrel polynomials (E.J. Farrell, 1979)
• The cover polynomials for digraphs (F.R.K. Chung and R.L. Graham,

1995)
• The interlace polynomials (M. Las Vergnas, 1983; R. Arratia, B. Bollobás

and G. Sorkin, 2000)
• The various knot polynomials (of signed graphs) (Alexander polynomial,

Jones polynomial, HOMFLY-PT polynomial, etc.)
As we said before, there are plenty of applications of classical graph polyno-

mials in
• Graph theory proper and knot theory;
• Chemistry and biology;
• Statistical mechanics (Potts and Ising models);
• Social networks and finance mathematics;
• Quantum physics and quantum computing.
And what about the many other graph polynomials we have just learned to

construct?

Let us briefly summarize the different ways in which graph polynomials can
be compared:
• By distinctive power:
P (G; X̄) �d.p. Q(G; X̄) if for any two graphs G1, G2 with Q(G1; X̄) =
Q(G2; X̄) we also have P (G1; X̄) = P (G2; X̄)

• By coefficient computation:
P (G; X̄) �coeff Q(G; X̄) if there is a function F which computes for every
G the coefficients of P (G; X̄) from the coefficients of Q(G; X̄).

• By substitution instance.
P (G; X̄) �subst Q(G; X̄) if there is a substitution σ of the variables such
that for every G P (G; X̄) = Q(G;σ(X̄)).

The first statement of the following proposition is a special case of Theorem 1.27.

Proposition 2.5. P (G; X̄) �d.p. Q(G; X̄) iff P (G; X̄) �coeff Q(G; X̄).
If P (G; X̄) �coeff Q(G; X̄) then P (G; X̄) �subst Q(G; X̄), but not con-

versely.

Most graph polynomials studied in the literature have several equivalent
definitions:

1. by counting generalized colorings;
2. by generating functions;
3. by subset expansion formulas;
4. by recurrence relations;
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5. by counting (weighted) homomorphisms.
We shall see that, by imposing SOL-definability,(1)-(3) give the same class

of graph polynomials, whereas (4) and (5) are special cases thereof.

2.3.1 Complexity of the classical graph polynomials?

There are various problems with measuring the complexity of a multivariate
graph polynomial P (G; X̄):

Turing complexity:

Evaluation: Fix x0 ∈ Qm. Measure the complexity of computing P (G;x0)
as a function of the size of G.

Computing the coefficients: Measure the complexity of computing the
coefficients of P (G;x0) as a function of the size of G.

It is usually in EXPTIME, often ] P-complete, but sometimes in P-time.
The Turing model does not fit the algebraic character of the problem.

BSS complexity: Think of a (weighted) graph being given by its adjacency
matrix MG. Measure the complexity of computing the coefficients of
P (G; X̄) from the matrix MG.

It is usually in EXPTIME, but no convincing complexity classes fit the
framework.

2.4 The matching polynomials: case study

We illustrate these concepts with the bivariate matching polynomial, as intro-
duced by O.J. Heilman and E.J. Lieb, 1972.

The acyclic polynomial has important applications in Chemistry and molec-
ular Physics of Ferromagnetisms. It was first studied in the 1970s (Heilman and
Lieb; Kunz). See [18, 22, 10].

2.4.1 Two univariate matching polynomials

Recall the two univariate matching polynomials, (3) and (2) introduced in Sec-
tion 1.3.1 and Section 1.4, together with the properties (4). From Section 1.10.2
we note that gm(G;X) �coeff dm(G;X) and hence gm(G;X) �d.p. dm(G;X).
However, we do not have dm(G;X) �coeff gm(G;X) since in order to reduce
the coefficient computation for dm(G;X) to that for gm(G;X) requires know-
ing the value of |V (G)| �d.p. dm(G;X), which is not available from gm(G;X).
Indeed, we saw earlier that it is not the case that dm(G;X) �d.p. gm(G;X),
as some graphs distinguished by dm(G;X) are not distinguished by gm(G;X)
because, for example, gm(G;X) does not detect isolated vertices. On the other
hand dm(G;X) ∼s.d.p. gm(G;X), as the two matching polynomials are interre-
ducible on graphs with the same number of vertices.
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We denote by mk(G) the number of k-matchings of a graph G. The two
matching polynomials are special cases of the bivariate matching polynomial

M(G,X, Y ) =

bn/2c∑
k=0

Xn−2kY kmk(G) =
∑
A

X |V (G)|−2|A|Y |A|

where A ranges over all subsets of E(G) that are matchings of G (|A| is the size
of the matching A, and |V (G)|−2|A| is the number of vertices not incident with
any edge in A).

M(G,X, Y ) =
∑bn/2c
k=0 Xn−2kY kmk(G) can be viewed as a generating func-

tion. M(G,X, Y ) =
∑
AX

|V (G)|−2|A|Y |A| can be viewed as a subset expansion.
Now we have dm(G;X) = M(G;X,−1) and gm(G;X) = M(G; 1, X). In

other words, both dm(G;X) and gm(G;X) are substitution instances ofM(G;X,Y ).

2.4.2 The bivariate matching polynomial as a generalized chromatic
polynomial

We want to show that the bivariate matching polynomial can be obtained in
our framework. We use
• two sorts of colors [k1] and [k2];
• a coloring property consisting of 5-tuples 〈V, [k1], [k2];E, r1, r2〉, with two

coloring relations r1 ⊆ E × [k1] and r2 ⊆ V × [k2] such that
1. r1 ⊆ E× [k1] is a partial function, the domain of which is a matching
M of G;

2. and r2 ⊆ V × [k2] is a partial function, the domain of which is the
set of vertices not covered by M .

2.5 Second-order logic

Second-order logic (SOL) is the natural language to talk about graph properties.
We shall show this informally and only after that define the syntax and

semantics of SOL. We shall see we can also use SOL to define graph parameters.
Atomic formulas for graphs are E(u, v) and u = v for individual variables

u, v, and R(u1, . . . , um) for m-ary relation variables R. Examples of SOL frag-
ments include (see Section 3.2 for further details):
• First-order logic (FOL):

Closed under boolean operations and quantification over individual vari-
ables. No relation variables.

• Second-order logic (SOL):
Closed under boolean operations and quantification over individual and
relation variables of arbitrary but fixed arity.

• Monadic second-order logic (MSOL):
Closed under boolean operations and quantification over individual and
unary relation variables.
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2.6 Graph properties

Regularity A graph G is (give definition in SOL):
• of degree bounded by d ∈ N. (Every vertex has at most d neighbors.)
• k-regular (k ∈ N). (Every vertex has exactly k neighbors.)
• regular. (Every vertex has exactly the same number of neighbors.)
• Regular and degree bounded by d.
Some regularity properties can be expressed in FOL using the following

formulas:
• The vertices v0, v1, . . . , vn are all different:

Diff(v0, v1, . . . , vn) :

 i,j≤n∧
i=0,j=1,i<j

vi 6= vj


• A vertex v0 has degree at most d:

Deg≤d(v0) : ∀v1, . . . , vd, vd+1

d+1∧
i=0

E(v0, vi)→
i=d+1,j=d+1∨
i=0,j=0,i6=j

vi = vj


• A vertex v0 has degree at least d:

Deg≥d(v0) : ∃v1, . . . , vd

(
Diff(v1, . . . , vd) ∧

d∧
i=1

E(v0, vi)

)
In particular, we can define in FOL the following:
• k-regular;
• regular and of bounded degree d;

However, the following are not definable in FOL (nor in MSOL):
• regular;
• each vertex has even degree.

To show non-definability in FOL we need the machinery of Ehrenfeucht-Fräıssé
games or connection matrices. See Section 3.

The following are definable in SOL:
• Two sets A,B ⊆ V have the same size:

EQS(A,B) : ∃R (Funct(R,A,B) ∧ Inj(R) ∧ Surj(R))

where Funct(R,A,B), Inj(R),Surj(R) are FOL-formulas saying that R is a
function from A to B which is one-to-one (injective) and onto (surjective).

• A vertex v has even degree:
The set of neighbors of v can be partitioned into two sets of equal size

EDeg(v0) : ∃A,B (Part(Nv, A,B) ∧ EQS(A,B)) .

• Two vertices u, v have the same degree:
The set of neighbors Nu, Nv of u and v have the same size.

SDeg(u, v) : EQS(Nu, Nv).
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Closure properties of graph classes. A graph property is called
• hereditary if it is closed under induced subgraphs.
• monotone if it is closed under subgraphs, not necessarily induced.
• monotone decrasing if it is closed under deletion of edges, but not neces-

sarily of vertices.
• monotone increasing if it is closed under addition of edges, but not nec-

essarily of vertices.
• additive if it is closed under disjoint unions.

Note that monotone implies hereditary and monotone decreasing.
Examples of closure properties:
• Regular graphs are only additive.
• Graphs of bounded degree d are monotone and additive.
• Cliques (complete graphs) are hereditary but not monotone.
• Connectivity is only monotone increasing.
• Exercise: Check the above closure properties of graph properties.
• Exercise: Check the above closure properties of all the graph properties

discussed in the sequel.
Let H = {Hi : i ∈ I} be a family of graphs.
• We denote by Forbsub(H) (Forbind(H)) the class of graphs which have no

(induced) subgraph isomorphic to some graph H ∈ H.
• Forbsub(H) is monotone and Forbind(H) is hereditary.

Theorem 2.6 (Exercise). Let P be a monotone (hereditary) graph property.
Then there exists a family H = {Hi : i ∈ I} of finite graphs such that P =
Forbsub(H) (respectively P = Forbind(H)).

Proposition 2.7. Let H = {Hi : i ∈ I} be a family of graphs with I finite.
Then both Forbsub(H) and Forbind(H) are definable in FOL.

Homework 1 Characterize the following graph properties using Forbsub(H)
or Forbind(H), and determine their definability in FOL and SOL:
• Forests
• Cliques
• Find other examples! You might wish to consult [4].

Colorability. Let P be a graph property. A graph G is (give definition in
SOL,MSOL):
• 3-colorable:

The vertices of G can be partitioned into three disjoint sets Ci : i = 1, 2, 3,
such that the induced graphs G[Ci] consist only of isolated points.
This can be expressed in MSOL.

• k-P-colorable (k ∈ N):
The vertices of G can be partitioned into k disjoint sets Ci : i = 1, . . . , k,
such that the induced graphs G[Ci] are in P.
If P is definable in SOL (MSOL), this is also definable in SOL (MSOL).
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• P-colorable:
The vertices of G can be partitioned into disjoint sets Ci : i ∈ I ⊂ N, such
that the induced graphs G[Ci] are in P.
This is definable in SOL provided P is. It is not MSOL-definable.

A subset V1 of vertices of a graph G = (V,E) is independent if it induces a
graph of isolated points (without neighbors or loops). A graph is k-colorable if
its vertices can be partitioned into k independent sets. Let

Part(X1, X2, X3) :

((X1 ∪X2 ∪X3 = V ) ∧ ((X1 ∩X2) = (X2 ∩X3) = (X3 ∩X1) = ∅))

and

Ind(X) : (∀v1 ∈ X)(∀v2 ∈ X)¬E(v1, v2)

With this 3-colorable can be expressed as

∃C1∃C2∃C3 (Part(C1, C2, C3) ∧ Ind(C1) ∧ Ind(C2) ∧ Ind(C3))

We have expressed 3-colorability by a formula in MSOL.
Question: Can we express this in FOL?

Chordality. A graph is a simple cycle of length k of it is of the form:

k=7

A graph is a simple cycle iff it is connected and 2-regular. A graph G is chordal
(or triangulated) if there is no induced subgraph of G isomorphic to a simple
cycle of length ≥ 4.

Exercise: Find a MSOL-expression for chordality.

Eulerian graphs. A graph G = (V,E) is Eulerian if we can follow each edge
exactly once, pass through all the edges, and return to the point of departure.

Equivalently: Can we order all the edges of E e1, e2, e3, . . . em and choose
beginning and end of the edge ei = (ui, vi) such that for all i, vi = ui+1 and
vm = u1.

∃R (LinOrd(R,E)∧
(∀u, v, u′, v′First(R, u, v) ∧ Last(R, u′, v′)→ u = v′)∧

(∀u, v, u′, v′Next(R, u, v, u′v′)→ v = u′))
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with the obvious meaning of LinOrd(R,E), First(R, u, v) and Last(u, v). This
allows us to express the Eulerian property in SOL.

Alternatively, we can use
Theorem (Euler): A graph is Eulerian iff it is connected and each vertex

has even degree.
As we shall see later, being Eulerian cannot be expressed in MSOL.

Hamiltonian graphs. A graph with n vertices is Hamiltonian if it contains
a spanning subgraph that is a cycle of size n.

Given the formulas Conn(V1, E1): (V1, E1) is connected, and Cycle(V1, E1):
(V1, E1) is a cycle, i.e., regular of degree 2 and connected, Hamiltonicity can be
expressed in SOL by Ham(V,E) : ∃V1∃E1 (Cycle(V1, E1) ∧ E1 ⊆ E ∧ V1 = V ) .

A subtle point: graphs versus hypergraphs.
• Graphs are structures with a universe V of vertices, and a binary edge

relation E. There can be at most one edge between two vertices.
• Hypergraphs have as their universe two disjoint sets V and E and an inci-

dence (hyperedge) relation R(u, v, e). There can be many edges between
two vertices.

• In both cases the relations are symmetric in the vertices.
• A graph G can be viewed as a hypergraph (h-graph) h(G) in which there

is at most one edge (up to symmetry) between two vertices. See Figure 1.
• There is a one-to-one correspondence between graph and h-graphs.
• FOL and SOL are equally expressive on graphs and h-graphs.
• MSOL is more expressive on h-graphs than on graphs.

Hamiltonicity is not definable in MSOL on graphs, but is definable on
h-graphs.

We shall discuss this in detail in a later lecture.
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Figure 1: G and h(G)
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How to prove definablity in SOL, MSOL and FOL? So far we have
looked at properties of abstract (directed) graphs and hypergraphs.
• Formulate the property using set-theoretic language of finite sets over the

set of vertices and edges and their incidence relation.
• Try to mimic this formulation in SOL.
• If you succeed, try to do it in MSOL or even FOL.
Test your fluency in SOL! (Homework).

....
n

P
n

K 3

Express the following properties in FOL, if possible.
• A graph G is a cograph if and only if there is no induced subgraph of G

isomorphic to a P4.
• A G is P4-sparse if no set of 5 vertices induce more than one P4 in G.
• Triangle-free graphs: there is no induced K3.
• Existence of a prescribed (induced) subgraph H.
• H-free graphs: non-existence of a prescribed (induced) subgraph H.
• P-free graphs (for a graph property P): non-existence of an induced sub-

graph H ∈ P.

Topological properties of graphs (from Wikipedia) 3

So far our graph properties have been formulated in the language of graphs,
involving as basic concepts only vertices, edges and their incidence relations.
Topological graph theory studies the embedding of graphs in surfaces, spatial
embeddings of graphs, and graphs as topological spaces.
• A graph is planar if it is isomorphic to a plane graph.
• The genus of a graph is the minimal integer n such that the graph can be

drawn without crossing itself on a sphere with n handles (i.e. an oriented
surface of genus n).
Thus, a planar graph has genus 0, because it can be drawn on a sphere
without self-crossing.

genus: 0, 1, 2, 3

Planar graphs. A graph is planar iff it is isomorphic to a plane graph. This
definition involves the geometry of th Euclidean plane.

How can we express planarity without geometry ?
A subdivision of a graph G is a graph formed by subdividing its edges into

paths of one or more edges.

3http://en.wikipedia.org/wiki/Genus_(mathematics)
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K3 and a subdivision of K3

Theorem 2.8 (Kuratowski’s Theorem 4). A finite graph G is planar if and
only if it does not contain a subgraph that is isomorphic to a subdivision of K5

or K3,3.

Theorem 2.9. Planarity is definable in MSOL.

• We use Kuratowski’s Theorem.
• For a fixed graph H, G is a subdivision of H is definable in MSOL.
• For a graph property P definable in MSOL, G has a subgraph H ∈ P is

definable in MSOL.
Exercise: Prove the last two statements.

Graph minors 5

An undirected graph H is called a minor of the graph G if H can be formed
from G by deleting edges and vertices and by contracting edges.

H is a minor of G.

First construct a subgraph of G by deleting the dashed edges (and the resulting

isolated vertex); then contract the thin edge (merging the two vertices it connects).

Proposition 2.10. For fixed H, the statement that H is a minor of G is defin-
able in MSOL.

• Edge contraction is an operation which removes an edge from a graph
while simultaneously merging the two vertices it used to connect.

• An undirected graph H is a minor of another undirected graph G if a
graph isomorphic to H can be obtained from G by contracting some edges,
deleting some edges, and deleting some isolated vertices.

• The order in which a sequence of such contractions and deletions is per-
formed on G does not affect the resulting graph H.

• Let V (H) = {v1, . . . , vm}. We have to find V1, . . . , Vm ⊆ V (G) which we
all contract to a vertex ui corresponding to vi such that Vi connects to Vj
iff (vi, vj) ∈ E(H).

• The vertices in V (G)−⋃mi Vi are discarded.

4From http://en.wikipedia.org/wiki/Kuratowski’s_theorem.
5From http://en.wikipedia.org/wiki/Graph_minor.
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Minor closed graph classes
• H is a topological minor of G if G has a subgraph which is isomorphic to

a subdivision of H.
• A graph property P is closed under (topological) minors, if whenever
G ∈ P and H is a (topological) minor of G then also H ∈ P.

Examples:
• Trees are not closed under minors, but forests are.
• Graphs of degree at most 2 are minor closed, but graphs of degree at most

3 are not.
• Planar graphs are both closed under minors and topological minors.

Forbidden minors. Let H = {Hi : i ∈ I} be a family of graphs.
• We denote by Forbmin(H) (Forbtmin(H)) the class of graphs G which have

no (topological) minors isomorphic to some graph H ∈ H.
• Forbmin(H) is closed under topological minors and monotone, and hence

it is hereditary.

Theorem 2.11 (Exercise). Let P be a graph property closed under (topologi-
cal) minors. Then there exists a family H = {Hi : i ∈ I} of finite graphs such
that P = Forbmin(H) (respectively P = Forbtmin(H)).

Proposition 2.12. Let H = {Hi : i ∈ I} be a family of graphs with I finite.
Then both Forbmin(H) and Forbtmin(H) are definable in MSOL.

Here is one of the deepest theorems in structural graph theory:

Theorem 2.13 (The Graph Minor Theorem (aka Robertson-Seymour Theo-
rem)). Let P be a graph property closed under minors. Then P = Forbmin(H)
for some finite H.

Corollary 2.14. Every graph property P property closed under minors is de-
finable in MSOL.

The following theorem gives another proof that planarity is MSOL-definable.

Theorem 2.15 (Wagner’s Theorem). A graph G is planar iff K5 and K3,3 are
not minors of G.

Conjecture 2.16 (Hadwiger’s Conjecture). If a graph G is not k-colorable then
it has the complete graph Kk+1 as a minor.

The conjecture has been proven for k ≤ 6. The converse is not true. There
are bipartite graphs with a K4 minor.

2.7 Logic and complexity: regular languages

Let L ⊆ Σ? be a language, i.e., a set of words over the alphabet Σ.
We assume you are familiar with automata theory!
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Theorem 2.17 (Kleene; Büchi, Elgot; Trakhtenbrot). The following are equiv-
alent:
• L is recognizable by a deterministic finite automaton.
• L is recognizable by a non-deterministic finite automaton.
• L is regular, i.e., describable by a regular expression
• The set of τword-structures Aw with w ∈ L is definable in MSOL(τword).

We need to recall some complexity classes:

L: Deterministic logarithmic space.

NL: Non-deterministic logarithmic space.

P: Deterministic polynomial time.

NP: Non-deterministic polynomial time.

PH: The polynomial hierarchy.

]P: Counting predicates in P (Valiant’s class)

PSpace: Deterministic polynomial space.

Some results on the complexity of SOL properties.

• (Fagin, Christen)

The NP-properties of classes of τ -structures are exactly the ∃SOL-definable
properties.

• (Meyer, Stockmeyer) The PH-properties (in the polynomial hierarchy)
of classes of τ -structures are exactly the SOL-definable properties.

• (Makowsky, Pnueli:) For every level ΣPn of PH there are MSOL-definable
classes which are complete for it.

We have
L ⊆ NL ⊆ P ⊆ NP ⊆ PH ⊆ ]P ⊆ PSpace

• To show that PH does not collapse to NP we have to find a τ -sentence
φ ∈ SOL(τ) which is not equivalent over finite structures to an existential
τ -sentence ψ ∈ SOL(τ).

• Every sentence φ ∈ SOL(τ) is equivalent (over finite structures) to an
existential sentence ψ ∈ SOL(τ) iff NP = CoNP. Note we allow arbitrary
arities of the quantified relation variables. Over infinite structures this is
known to be false (Rabin).

• If there is a φ ∈ SOL(τ) which is not equivalent to an existential sentence,
then P 6= NP. And there should be such a sentence!

• To show that PSpace is different from PH it suffices to find a PSpace-
complete graph property which is not SOL-definable.
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2.8 HEX, geography, and Shannon switching

• The game HEX:6 Given a graph G and two vertices s, t. Players I and II
color alternately vertices in V −{s, t} white and black respectively. Player I
tries to construct a white path from s to t and Player II tries to pre-
vent this.
HEX: The class of graphs which allow a winning strategy for Player I.

• The game GEOGRAPHY: Given a directed graph G, Players I and II
choose alternately new edges starting at an endpoint of the edge chosen
last. The first who cannot find such an edge loses.
GEO: The class of graphs which allow a winning strategy for Player I.

Theorem (Even, Tarjan) HEX is PSPACE-complete.

Theorem (Schaefer) GEO is PSPACE-complete.

Problem Are they SOL-definable?

This would imply that PSPACE = PH, and the polynomial hierarchy
collapses to some finite level!

Short versions Fix k ∈ N. SHORT-HEX, SHORT-GEOGRAPHY asks whether
Player I can win in k moves.

S-HEX and S-GEO are the class of (ordered) graphs in which Player I has
a winning strategy.

S-HEX and S-GEO are FOL-definable for fixed k (and therefore solvable in P).

The game of Shannon switching. Given a graph G and two vertices s, t.
Players I and II color alternately edges in E white and black respectively.Player II
tries to construct a white path from s to t and Player I tries to prevent this.

ShaSwi: The class of graphs which allow a winning strategy for Player II.

Theorem 2.18 (A. Lehmann, 1964, [17]). ShaSwi is SOL-definable.

Proof. The Shannon Switching game is winning for Player II if and only if
the graph contains two edge-disjoint trees on a common subset of vertices that
contains the two distinguished vertices.

Corollary 2.19. ShaSwi is in PH.

Challenge. Show that: HEX, GEOGRAPHY, and ShaSwi are NOT de-
finable in MSOL! This may just be achievable with the techniques of the next
lecture; see Section 3.

6More on HEX at http://maarup.net/thomas/hex/.
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2.9 The role of order

Let τ= be the one-sorted vocabulary without any relation or constant symbols.
We have only equality as atomic formulas.

Let τ< be the one-sorted vocabulary with one binary relation symbol R<,
which will be interpreted as a linear order.
• The class of structures of even cardinality EVEN is not definable in MSOL(τ=).

We shall prove this later.
• The class of structures of even cardinality EVEN is definable in MSOL(τ<)

with order by a formula φEV EN .

Constructing φEV EN . We use the order to define the binary relation 2NEXT
and the unary relation Odd
• For a structure A = 〈A,<〉, let (a, b) ∈ 2NEXTA iff a < b and there is

exactly one element strictly between a and b.
• The first element is in OddA.

If a ∈ OddA and (a, b) ∈ 2NEXTA then b ∈ OddA.
• Let φEV EN be the formula which says that the last element is not in Odd.
• Now the a structure 〈A,<〉 is in EVEN iff its last element is not in OddA.

This constructs φEV EN

Order-invariance of φEV EN . In the previous example EVEN, the MSOL(τ<)-
formula φEV EN is order-invariant in the following sense:

Let A1,A2 be two structures with universe A and different order relations
<1 and <2. Then A1 |= φEV EN iff A2 |= φEV EN .

We generalize this. Let A1,A2 be two τ ∪ {R<}-structures with universe A
and different order relations A1(R<) =<1 and A2(R<) =<2 but for all other
symbols in R ∈ τ we have A1(R) = A2(R).

A τ ∪ {R<}-formula in SOL is order-invariant if for all structures A1,A2 as
above we have

A1 |= φ iff A2 |= φ

The fragment HornESOL(τ).
• A quantifier-free τ -formula is a Horn clause if it is a disjunction of atomic

or negated atomic formulas where at most one is not negated.

¬α1 ∨ ¬α2 ∨ . . . ∨ ¬αn ∨ β

where αi, β are atomic.
• A quantifier-free τ -formula is a Horn formula if it is a conjunction of Horn

clauses.
• A formula φ ∈ SOL(τ) is in HornESOL(τ) if it is of the form

∃U1,r1 , U2,r2 , . . . , Uk,rk∀v1, . . . , vmH(v1, . . . , vm, U1,r1 , U2,r2 , . . . , Uk,rk)

where H is a Horn formula and vi are first-order variables.
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Some classes of graphs order-invariantly (o.i.) definable in HornESOL(τgraph)
are the following.
• Graphs of even cardinality, of even degree. Order is needed!
• Bipartite graphs G = (V1, V2, E) with |V1| = |V2|.
• Regular graphs, and regular graphs of even degree.
• Connected graphs.
• Eulerian graphs.

The Immermann-Vardi-Graedel Theorem (IVG) Let τ be a relational
vocabulary with a binary relation for the ordering of the universe.

Theorem 2.20 (Immermann, Vardi, Graedel, 1980-4). Let C be a set of finite
τ -structures. The following are equivalent:
• C ∈ P;
• there is a τ -formula φ ∈ HornESOL(τ) such that A ∈ C iff A |= φ.

Here the presence of the ordering is crucial: without it the class of struc-
tures for the empty vocabulary of even cardinality is in P, but not definable in
HornESOL.

We can also obtain an order-invariant version of Theorem 2.20. Let τ be a
relational vocabulary and τ1 = τ ∪{R<}. with a binary relation for the ordering
of the universe.

Theorem 2.21 (Graedel, 1980-4; Dawar, Makowsky). Let C be a set of finite
τ -structures. The following are equivalent:
• C ∈ P;
• there is an order-invariant τ1-formula φ ∈ HornESOL(τ) such that, for all
τ -structures A and linear orderings RA ⊂ A(V )2, A ∈ C iff 〈A, RA〉 |= φ.

Conclusion: the logical equivalent to P = NP. Let τ be a relational
vocabulary which contains a binary relation for the ordering of the universe.
The following are equivalent:
• P = NP in the classical framework.
• Every ESOL(τ)-formula is equivalent over finite ordered τ -structures to

some HornESOL(τ)-formula.
• Every o.i. ESOL(τ)-formula is equivalent over finite ordered τ -structures

to some o.i. HornESOL(τ)-formula.

Logics capturing complexity classes. Without requiring the presence of
order we have:
• A class C of finite structures is in NP iff C is definable in existential SOL.
• A class C of finite structures is in PH iff C is definable in SOL.

By requiring the presence of an order relation we have
• A class C of finite structures is in P iff C is order-invariantly definable in

existential HornESOL.
• There are similar theorems for L,NL,PSpace.
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3 Hankel matrices, connection matrices, and de-
finability of graph invariants

• Hankel matrices
• Logics and definability of numeric graph invariants.
• Non-definability via complexity theory.
• Typical properties of graph parameters.
• Connection matrices (aka Hankel matrices) and their rank, I.
• Connection matrices (aka Hankel matrices) and their rank, II.
• The Finite Rank Theorem (FRT).
• Applications of FRT for graph properties.
• Applications of FRT for graph polynomials.
• Merits and limitations of FRT.

CMSOL-definable graph parameters CMSOL is monadic second-order logic
augmented by modular counting quantifiers.
• I have developed with various co-authors a framework of definability of

numeric graph parameters. B. Courcelle, B. Godlin, T. Kotek, E. Ravve
• In this talk we discuss a method of proving non-definability in CMSOL of

numeric graph parameters which take values in a field.
• The CMSOL-definable graph parameters behave similarly to CMSOL-

definable graph properties.
1. On graphs of bounded width they are in FPT, where the notion

of width and the the notion of monadic quantification have to fit
correspondingly.

2. All classical graph polynomials (Tutte polynomial, matching poly-
nomial, chromatic polynomial, interlace polynomial) and many more
are CMSOL-definable using order on vertices in an invariant way

3. On recursively defined graph sequences (like Pn, Cn, Ln, etc) they
can be computed via linear recurrence relations.

3.1 Hankel aka connection matrices

Hankel matrices (over a field F) Let f : F → F be a function over a
field F . A finite or infinite matrix H(f) = hi,j is a Hankel matrix for f if
Hi,j = f(i + j). Hankel matrices have many applications in numeric analysis,
probability theory and combinatorics:
• Padé approximations
• Orthogonal polynomials
• Theory of moments in probability theory
• Coding theory (BCH codes, Berlekamp-Massey algorithm)
• Combinatorial enumeration (lattice paths, Young tableaux, matching the-

ory)
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Hankel matrices over words Let Σ be a finite alphabet, F a field, and
f : Σ? → F a function on words. A finite or infinite matrix H(f) = hu,v indexed
by words u, v ∈ Σ? is a Hankel matrix for f if hu,v = f(u ◦ v). Here ◦ denotes
concatenation.

Hankel matrices over words have applications in formal language theory
and stochastic automata (J. Carlyle and A. Paz 1971), learning theory (exact
learning of queries) (A.Beimel, F. Bergadano, N. Bshouty, E. Kushilevitz, S.
Varricchio 1998, J. Oncina 2008), and definability of picture languages (O. Matz
1998, and D. Giammarresi and A. Restivo 2008).

Hankel matrices for graphs If we want to define Hankel matrices for (la-
beled) graphs, what plays the role of concatenation?
• Disjoint union. Used by Freedman, Lovász and Schrijver (2007) for char-

acterizing multiplicative graph parameters over the real numbers
• k-unions (connections, connection matrices). Used by Freedman, Lovász,

Schrijver and Szegedy (2007+), for characterizing various forms of parti-
tion functions.

• Joins, cartesian products, generalized sum-like operations. Used by Godlin,
Kotek and Makowsky (2008) to prove non-definability.

3.2 Logics

Let L be a subset of SOL. L is a fragment of SOL if the following conditions hold:
1. For every finite relational vocabulary τ the set of L(τ) formulas contains

all the atomic τ -formulas and is closed under boolean operations and re-
naming of relation and constant symbols.

2. L is equipped with a notion of quantifier rank and we denote by Lq(τ) the
set of formulas of quantifier rank at most q. Quantifier rank is subadditive
under substitution of subformulas,

3. The set of formulas of Lq(τ) with a fixed set of free variables is, up to
logical equivalence, finite.

4. Furthermore, if φ(x) is a formula of Lq(τ) with x a free variable of L,
then there is a formula ψ logically equivalent to ∃xφ(x) in Lq′(τ) with
q′ ≥ q + 1.

5. A fragment of SOL is called tame if it is closed under scalar transductions.7

Some typical fragments are:
• FOL.
• MSOL.
• Logics augmented by modular counting quantifiers: Dm,ixφ(x) which says

that the numbers of elements satisfying φ equals i modulo m.
• CFOL,CMSOL denote the logics FOL, resp. MSOL, augmented by all

the modular counting quantifiers.

7Editors’ note. For transductions see the examples in Section 3.8 below and [5, chapter
7]. (A preprint of the book [5] is available at http://www.labri.fr/perso/courcell/Book/

TheBook.pdf.)
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• Logics augmented by Lindström quantifiers.
• Logics restricted to a fixed finite set of bound or free variables.

3.3 Definability of numeric graph invariants and graph
polynomials

We denote by G = (V (G), E(G)) a graph, and by G the class of finite graphs.
A numeric graph invariant or graph parameter is a function

f : G → R

which is invariant under graph isomorphism. Some examples:
1. Cardinalities: |V (G)|, |E(G)|
2. Counting configurations:
k(G) the number of connected components, mk(G) the number of k-
matchings

3. Size of configurations:
ω(G) the clique number, χ(G) the chromatic number.

4. Evaluations of graph polynomials:
χ(G,λ), the chromatic polynomial, at λ = r for any r ∈ R. T (G,X, Y ),
the Tutte polynomial, at X = x and Y = y for any (x, y) ∈ R2.

Let R be a (polynomial) ring. A graph parameter f : G → R is L-definable
if it can be defined inductively as follows:
• Monomials are of the form

∏
v̄:φ(v̄) t where t is an element of the ring R

and φ is a formula in L with first-order variables v̄.
• Polynomials are obtained by closing under small products, small sums and

large sums.
“Small” here means polynomial-sized; see below and [19, section 5.2]. Usually,
summation is allowed over second-order variables, whereas products are over
first-order variables. L is typically MSOL or a suitable fragment thereof. We
are especially interested in MSOL itself and CMSOL (monadic second-order
logic augmented by modular counting quantifiers).

If L is SOL we denote the definable graph parameters by SOLEVALR, and
similarly for MSOL and CMSOL. Our definition of SOLEVAL is reminiscent of
Skolem’s definition of the lower elementary functions.

How can we prove definability and non-definability of graph parameters in
some logic L? In particular:
• How to prove that k(G) is not CFOL-definable?
• How to prove that ω(G) is not CMSOL-definable?
• How to prove that the chromatic number χ(G) or

the chromatic polynomial χ(G,X) is not CMSOL-definable?
We first give examples of definability of numeric graph invariants and poly-

nomials using small, i.e., polynomial-sized sums and products:

(i) The cardinality of V is FOL-definable by∑
v∈V

1
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(ii) The number of connected components of a graph G, k(G), is MSOL-
definable by ∑

C⊆V :component(C)

1

where component(C) says that C is a connected component.

(iii) The graph polynomial Xk(G) is MSOL-definable by∏
c∈V :first−in−comp(c)

X

if we have a linear order in the vertices and first− in− comp(c) says that
c is the first element in a connected component.

Now we give examples with possibly large sums, i.e., of exponential size:
(iv) The number of cliques in a graph is MSOL-definable by∑

C⊆V :clique(C)

1

where clique(C) says that C induces a complete graph.
(v) Similarly the number of maximal cliques is MSOL-definable by∑

C⊆V :maxclique(C)

1

where maxclique(C) says that C induces a maximal complete graph.
(vi) The clique number of G, ω(G), is is SOL-definable by∑

C⊆V :largest−clique(C)

1

where largest− clique(C) says that C induces a maximal complete graph
of largest size.

3.3.1 Graph properties

A graph property or boolean graph invariant is a function

f : G → Z2

which is invariant under graph isomorphism.
More traditionally, a graph property P = Pf is a family of graphs closed

under isomorphisms given by Pf = {G : f(G) = 1}. Some examples are:
1. P is hereditary if it is closed under induced subgraphs.
2. P is monotone if it is closed under (not necessarily induced) subgraphs.
3. P is definable in some logic L if there is a formula φ ∈ L such that
P = {G : G |= φ}.

4. Regular graphs of fixed degree d are definable in FOL.
5. Connectivity and planarity are definable in MSOL.
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3.3.2 Non-definability via complexity assumptions

Harmonious colorings. Recall that a vertex coloring of a graph G with k
colors is harmonious if it is proper and each pair of colors appears at most once
along an edge. The harmonious index of a graph G is the smallest k such that
there is a harmonious coloring with k colors.
• J.E. Hopcroft and M.S. Krishnamoorthy studied harmonious colorings in

1983.
• B. Courcelle, Makowsky and U. Rotics have shown that graph parameters

(polynomials) definable in CMSOL can becomputed in polynomial time
for graphs of tree-width at most k.

• K. Edwards and C. McDiarmid showed that computing the harmonious
index is NP-hard even on trees.

• So assuming P 6= NP, the harmonious index is not CMSOL-definable,
because trees have tree-width 1.

Chromaticity.
• B. Courcelle, J.A.M. and U. Rotics proved that graph parameters (poly-

nomials) definable in CMSOL in the language of graphs can be computed
in polynomial time for graphs of clique-width at most k.

• The Exponential Time Hypothesis (ETH) says that 3 − SAT cannot be
solved in time 2o(n). It was first formulated by R. Impagliazzo, R. Paturi
and F. Zane in 2001.

• F. Fomin, P. Golovach, D. Lokshtanov and S. Saurabh proved that, as-
suming that ETH holds, the chromatic number χ(G) cannot be computed
in polynomial time.

• Therefore, assuming ETH, the chromatic number and the chromatic poly-
nomial are not CMSOL-definable.

There are many other non-definability results which can obtained like this, for
example graph parameters derived from dominating sets or the size of a max-
imal cut. Our goal is to prove non-definability without complexity-theoretic
assumptions.

3.4 Additive and multiplicative graph parameters with re-
spect to a binary operation �

Let G1�G2 denote a binary operation on graphs G1 and G2.A graph parameter
f is additive if f(G1�G2) = f(G1) + f(G2) and multiplicative if f(G1�G2) =
f(G1) · f(G2).

For � equal to disjoint union we have:
1. |V (G)|, |E(G)|, k(G) are not multiplicative, but additive.
2. k(G) and b(G) are additive (b(G) is the number of 2-connected components

of G).
3. χ(G) and ω(G) are neither additive nor multiplicative.
4. The number of perfect matchings pm(G) is multiplicative and so is the

generating matching polynomial
∑
kmk(G)Xk. Note that mk(G) is not
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multiplicative.
5. The graph polynomials χ(G,λ) and T (G,X, Y ) are multiplicative.
A graph parameter f is maximizing if f(G1�G2) = max{f(G1), f(G2)} and

minimizing if f(G1�G2) = min{f(G1), f(G2)}. Again for � equal to disjoint
union we have

1. The various chromatic numbers χ(G), χe(G), χt(G) are maximizing.
2. The maximum clique size ω(G) and the maximum degree ∆(G) are max-

imizing.
3. The tree-width tw(G) and the clique-width cw(G) of a graph are maxi-

mizing.
4. The minimum degree δ(G) and the girth g(G) are minimizing.

3.5 The connection matrix of a graph parameter with
respect to disjoint union t

Let Gi be an enumeration of all finite graphs (up to isomorphism). The (full)
connection matrix M(f,t) is defined as the matrix with (i, j)-entry

mi,j(f,t) := f(Gi tGj).
The rank of M(f,t) is denoted by r(f,t). We shall often look at various

infinite submatrices of the full connection matrix.
Examples: Check with |V (G)| and 2|V (G)|.

Computing r(f,t)

Proposition 3.1.
1. If f is multiplicative, r(f,t) = 1.
2. If f is additive, r(f,t) = 2.
3. If f is maximizing or minimizing, r(f,t) is infinite.
4. For the average degree d(G) of a graph, r(d,t) is infinite.

Proof. The first three statements are easy.
For f = d we have

mi,j(d,t) = 2
|E(Gi)|+ |E(Gj)|
|V (Gi)|+ |V (Gj)|

.

This contains, for graphs Gi, Gj with a fixed total number of edges e, the
Cauchy matrix ( 2e

i+j ), hence r(d,t) is infinite.

The next theorem characterizes multiplicative graph parameters.

Theorem 3.2 ([9] Proposition 2.1). Suppose f, g are graph parameters with
values in an ordered field, and g(G) 6= 0 for some graph G. Then
• f(G) is additive iff g(G) = 2f(G) is multiplicative;
• g is multiplicative iff M(g,t) has rank 1 and is positive semi-definite.

Recall: A finite square matrix M over an ordered field is positive semi-
definite if for all vectors x̄ we have x̄Mx̄> ≥ 0. An infinite matrix is positive
semi-definite, if every finite principal submatrix is positive semi-definite.
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3.6 General connection matrices (aka Hankel matrices)

Let C be a class of possibly labeled graphs, hypergraphs or τ -structures. Let �
be a binary operation defined on C. Let Gi be an enumeration of all (labeled)
finite graphs (structures) in C. Let f be graph parameter (more generally, an
invariant of the structures under consideration).

The (full) connection matrix M(f,�) is defined by

M(f,�)i,j = f(Gi�Gj).

We denote by r(f,�) the rank of M(f,�). We shall often look at infinite
submatrices of M(f,�).

To compute r(f,�) we can use Proposition 3.1, replacing t by � in (1),(2)
and (3). The same proof carries over.

3.7 L-smooth operations.

Let L be a logic. We say that two graphs G,H (or hypergraphs, or τ -structures)
are (L, )q-equivalent, and write G ∼qL H, if G and H satisfy the same L-
sentences of quantifier rank q.

We say that � is L-smooth if whenever we have

G0 ∼qL H0 and G1 ∼qL H1

then
G0�G1 ∼qL H0�H1.

This definition can be adapted to k-ary operations for k ≥ 1.
Proving that an operation � is L-smooth may be difficult. For FOL this

can be achieved using Ehrenfeucht-Fräıssé games also know as pebble games.
Another way of establishing smoothness is via the Feferman-Vaught theorem.

Examples of L-smooth operations:
1. Quantifier-free scalar transductions are both FOL and MSOL-smooth.
2. Quantifier-free vectorized transductions are FOL but not MSOL-smooth.
3. The cartesian product is FOL-smooth but not MSOL-smooth.

This was shown by A. Mostowski in 1952.
4. The (rich) disjoint union is both FOL and MSOL-smooth.

The rich disjoint union has two additional unary predicates to distinguish
the universes.
For FOL this was shown by E. Beth in 1952. For MSOL this is due to
H. Läuchli, 1966, using Ehrenfeucht-Fräıssé games

5. Adding modular counting quantifiers preserves smoothness.
For CMSOL and the disjoint union this is due to B. Courcelle, 1990. For
CFOL and the product this is due to T. Kotek and J.A. Makowsky, 2012.
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3.8 The Finite Rank Theorem

Theorem 3.3 (Godlin, Kotek, Makowsky 2008). Let f be a numeric parameter
or polynomial for τ -structures definable in L and taking values in an integral do-
main R. Let � be an L-smooth operation. Then the connection matrix M(f,�)
has finite rank over R.

The proof uses a Feferman-Vaught-type theorem for graph polynomials, due
to B. Courcelle, J.A. Makowsky and U. Rotics, 2000.

Disjoint unions The following graph parameters or not CMSOL-definable
because they are maximizing (minimizing) for the disjoint union.
• the clique number ω(G) and the independence number α(G) of G.
• The chromatic number χ(G) and the chromatic index χe(G).
• The degrees δ(G) (minimal), ∆(G) (maximal)

The same holds for the average degree d(G), but here we use the fact that the
Cauchy matrix has growing rank.

Direct (categorical) products combined with translation schemes. The
transduction Φsym(v1, v2) = ED(v1, v2) ∨ED(v2, v1) transforms a digraph D =
(VD, ED) into an undirected graph whose edge relation is the symmetric closure
of the edge relation of the digraph.

The transduction

ΦF ((v1, v2) , (u1, u2)) = (E1(v1, u1) ∧ E2(v2, u2)) ∨
((v1, v2) , (u1, u2)) = ((start1, start2) , (end1, end2))

combined with Φsym transforms the direct product of two directed paths
P ini = (V1, E1, starti, endi) of length ni with the two constants starti and endi,
i = 1, 2 into an undirected graph with at most one cycle.

When input graphs look like the following,

the result of the transduction is

n1 = n2 n1 6= n2
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Theorem 3.4. Graphs without cycles of odd (even) length are not CFOL-
definable even in the presence of a linear order.

Corollary 3.5. The following are not definable in CFOL with a linear order:
1. Forests, bipartite graphs, chordal graphs, perfect graphs.
2. Interval graphs (cycles are not interval graphs).
3. Block graphs (every biconnected component is a clique).
4. Parity graphs (any two induced paths joining the same pair of vertices

have the same parity).

Theorem 3.6. Neither trees nor connected graphs are CFOL-definable, even
in the presence of a linear order.

The transduction

ΦT ((v1, v2) , (u1, u2)) = (E1(v1, u1) ∧ E2(v2, u2)) ∨
(v1 = u1 = start1 ∧ E(v2, u2)) ∨
(v1 = u1 = end1 ∧ E(v2, u2)) ,

combined with Φsym transforms the cartesian product of two directed paths
into the structures below:

n1 > n2 n1 = n2 n1 < n2

Tree: n1 = n2. Connected: n1 ≥ n2.

3.8.1 k-graphs and k-sums

A k-graph is a graph G = (V (G), E(G)) with k distinct vertices labeled with
0, 1, . . . , k− 1. Given two k-graphs G1, G2 we define the k-sum G1 tk G2 as the
disjoint union of G1 and G2 where we identify correspondingly labeled vertices.

Theorem 3.7. The k-sum is smooth for FOL,CFOL,MSOL and CMSOL.

Theorem 3.8. Planar graphs are not CFOL-definable even on ordered con-
nected graphs
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For our next connection matrix we use the 2-sum of the following two 2-
graphs:
• the 2-graph (G, a, b) obtained from from K5 by choosing two vertices a

and b and removing the edge between them.
• the cartesian product of the two graphs P 1

n1
and P 2

n2
:

n1 = n2 n1 6= n2

The result of this construction has a clique of size 5 as a minor iff n1 = n2. It
can never have a K3,3 as a minor.

If we modify the above construction by taking K3 instead of K5 and making
(start1, start2) and (end1, end2) adjacent, we obtain:

Proposition 3.9. The following classes of graphs are not CFOL-definable even
on ordered connected graphs.

1. Cactus graphs, i.e. graphs in which any two cycles have at most one vertex
in common.

2. Pseudo-forests, i.e. graphs in which each connected component has at most
one cycle.

3.8.2 Non-definability in CMSOL for graphs G = (V,E): using the
join operation

The join operation of graphs G = (V,E), where E is the edge relation, is
defined by

(V1, E1) ./ (V2, E2) = (V1 t V2, E1 t E2 ∪ {(v1, v2) : v1 ∈ V1, v2 ∈ V2}

This is a quantifier-free transduction of the disjoint union, hence smooth for
CMSOL.

Consider the connection matrix in which the rows and columns are labeled
by the graphs En consisting of n vertices and no edges.

The graph Ei on Ej = Ki,j is
• hamiltonian iff i = j;
• has a perfect matching iff i = j;
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• is a cage graph (a regular graph with as few vertices as possible for its
girth) iff i = j;

• is a well-covered graph (every minimal vertex cover has the same size as
any other minimal vertex cover) iff i = j.

All of these connection matrices have infinite rank.

Proposition 3.10. None of the properties above are CMSOL-definable as graphs
even in the presence of a linear order.

3.8.3 CMSOL for hypergraph G = (V,E;R)

A hypergraph G = (V,E;R) has vertices V and edges E and an incidence
relation R between the two.
• CMSOL for hypergraphs G = (V,E;R) allows quantification over edge

sets.
• For the language of hypergraphs the join operation is neither MSOL- nor

CMSOL-smooth, since it increases the number of edges.
• Note also that hamiltonicity and having a perfect matching are both de-

finable in CMSOL in the language of hypergraphs.
In the many papers of B. Courcelle, MSOL on graphs is called MSOL1 and

for hypergraphs it is called MSOL2.

3.8.4 Non-definability in CMSOL for hyper-graphs G = (V,E;R):
using the disjoint union

Using the connection submatrices of the disjoint union we still get the properties:
• Regular: Ki tKj is regular iff i = j;
• A generalization of regular graphs are bidegree graphs, i.e., graphs where

every vertex has one of two possible degrees. Ki t (Kj tK1) is a bidegree
graph iff i = j.

• The average degree of Ki t Ej is at most |V |2 iff i = j;
• A digraph is aperiodic if the common denominator of the lengths of all

cycles in the graph is 1. We denote by Cdi the directed cycle with i
vertices. For prime numbers p, q the digraphs Cdp t Cdq is aperiodic iff
p 6= q.

• A graph is asymmetric (or rigid) if it has no non-trivial automorphisms.
It was shown by P. Erdös and A. Rényi (1963) that almost all finite graphs
are asymmetric. So there is an infinite set I ⊆ N such that for i ∈ I there
is an asymmetric graph Ri of cardinality i. RitRj is asymmetric iff i 6= j.

Proposition 3.11. None of the properties above are CMSOL-definable as hy-
pergraphs even in the presence of a linear order.

3.9 The harmonious chromatic polynomial

Recall that a vertex coloring of a graph G with k colors is harmonious if it
is proper and each pair of colors appears at most once along an edge. The
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number of harmonious colorings of G with at most k colors is denoted by
χharmonious(G; k).

The harmonious index χharmonious(G) of a graph G is the smallest k such
that there is a harmonious coloring with k colors.

Let iP2 be the graph which consists of i disjoint edges (in the language of
hypergraphs).

Proposition 3.12.
1. χharmonious(iP2 t jP2, k) = 0 iff i+ j >

(
k
2

)
.

2. χharmonious(iP2 t jP2) = mink{i+ j ≤
(
k
2

)
.

3. χharmonious(G; k) is not CMSOL-definable in the language of hypergraphs.
4. χharmonious(G) is not CMSOL-definable in the language of hypergraphs.

3.9.1 Three graph polynomials

Rainbow polynomial χrainbow(G, k) is the number of path-rainbow connected
k-colorings, which are functions c : E(G)→ [k] such that between any two
vertices u, v ∈ V (G) there exists a path where all the edges have different
colors.

MCC-polynomial For every fixed t ∈ N, χmcc(t)(G, k) is the number of vertex
k-colorings f : V (G) → [k] for which each color class induces a subgraph
whose connected components each have size at most t.

Convex coloring polynomial χconvex(G, k) is the number of convex color-
ings, i.e., vertex k-colorings f : V (G)→ [k] such that every color induces
a connected subgraph of G.

Makowsky and B. Zilber (2005) showed that χrainbow(G, k), χmcc(t)(G, k),
and χconvex(G, k) are graph polynomials with k as the variable.

Path-rainbow connected colorings were introduced by G. Chartrand et al. in
2008. Their complexity was studied in S. Chakraborty et. al in 2008. mcc(t)-
colorings were first studied by N. Alon et al. in 2003. Note χmcc(1)(G, k) is the
chromatic polynomial. Convex colorings were studied by S. Moran in 2007.

Proposition 3.13. The following connection matrices have infinite rank:
1. M(t1, χrainbow(G, k));
2. M(t1, χconvex(G, k));
3. For every t > 0 the matrix M(./, χmcc(t)(G, k)).

Proof. χrainbow(G, k): We use that the 1-sum of paths with one end labeled is
again a path with Pi t1 Pj = Pi+j−1 and that χrainbow(Pr, k) = 0 iff r > k + 3.

χconvex(G, k): We use edgeless graphs and disjoint union Ei t Ej = Ei+j
and that χconvex(Er, k) = 0 iff r > k.

χmcc(t)(G, k): We use the join and cliques, Ki ./ Kj = Ki+j and that
χmcc(t)(Kr, k) = 0 iff r > kt.

Corollary 3.14. 1. χrainbow(G, k) and χconvex(G, k) are not CMSOL-definable
in the language of graphs and hypergraphs.
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2. χmcc(t)(G, k) (for any fixed t > 0) is not CMSOL-definable in the language
of graphs.

3. In particular the chromatic polynomial is not CMSOL-definable in the
language of graphs. Note: It is however CMSOL-definable in the language
of ordered hypergraphs.

Proof. (i) The 1-sum and the disjoint union are CMSOL-sum-like8 and CMSOL-
smooth for hypergraphs. (ii) The join is only CMSOL-sum-like and CMSOL-
smooth for graphs.

3.10 Proving non-definability with connection matrices:
merits

The advantages of the Finite Rank Theorem for tame L in proving that a
property is not definable in L are the following:

1. It suffices to prove that certain binary operations on graphs (τ -structures)
are L-smooth operations.

2. Once the L-smoothness of a binary operation has been established, proofs
of non-definability become surprisingly simple and transparent.
One of the most striking examples is the fact that asymmetric (rigid)
graphs are not definable in CMSOL.

3. Many properties can be proven to be non-definable using the same or
similar submatrices, i.e., matrices with the same row and column indices.
This has been well illustrated in the examples given above.

3.11 Proving non-definability with connection matrices:
limitations

The classical method of proving non-definability in FOL using pebble games is
complete in the sense that a property is FOL(τ)q-definable iff the class of its
models is closed under game equivalence of length q.

Using pebble games one proves easily that the class of structures without
any relations of even cardinality, EVEN, is not FOL-definable. However, one
cannot prove that EVEN is not FOL-definable using infinite rank connection
matrices, in a sense made precise in [16, Proposition 4.1].
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Essential expansion and Property (T)

Gábor Kun
MTA Alfred Rényi Institute of Mathematics, Budapest, Hungary

We say that a sequence of finite, d-regular graphs is essentially ex-
pander if it can be turned into a disjoint union of expanders after
removing and adding o(n) edges. We give several characterizations
of such sequences. We solve Bowen’s problem proving that the sofic
(Benjamini–Schramm) approximation of a finitely generated group
with Kazhdan Property (T) is essentially expander. We use our char-
acterization to reprove a theorem of M. H. Freedman and M. B. Hast-
ings about mapping large subcomplexes of 2-dimensional simplicial
complexes to 1-dimensional complexes.

Editors’ note: We have added the author’s recent preprint [6] to the
references.

1 Introduction

Pseudorandomness plays an important role in many mathematical areas.
Random-like graphs are well understood in the theory of dense graphs and their
limits called graphons [7]. There are many different properties of dense graphs
to measure how close is a graph with a given edge density to the Erdős-Rényi
random graph G(n, p) with the same edge density: the number of four-cycles (or
many other graphs) in the graph, the eigenvalue gap, the maximum difference
of the size of a cut and its expected size. The equivalence of these properties
(i.e. if one quantity is close to that for the random graph then so are the others)
has been proven in a line of work by Thomason, Frankl et. al., Alon and Chung
and by Chung, Graham and Wilson, see [1] for an overview. Such (bipartite)
graphs are the basic building blocks in Szemerédi’s regularity lemma.

Expander graphs are similarly important in the study of sparse graphs,
see [9] for the theory of sparse structures, [10] for a short introduction to ex-
panders and [8] for a longer one. Expander graphs have similar characteriza-
tions [1] in terms of the eigenvalue gap, in terms of cuts and also in terms of the
convergence rate (of the random walk): the latter one is less meaningful in the
dense case. However, we cannot expect a local condition in terms of subgraph
densities: a random regular graph and a random regular bipartite graph have
very different global structures, but both have essentially large girth, i.e. very
similar local statistics. Hence we can at most hope for the forceability of
expansion, a necessary condition in terms of the local statistics that implies
an expander-like structure. But even such hopes seem to be beyond reach: we
cannot distinguish between a graph and its two disjoint copies. The latter is a
disconnected graph with bad expansion. We introduce the notion of essential
expansion to handle this phenomenon.

77



2 Main results

A sequence of d-regular graphs {Gn}∞n=1 is an expander sequence if there exists
δ > 0 such that for all n, S ⊆ V (Gn), where |S| ≤ |V (Gn)|/2, the number of
edges leaving S is at least δ|S|.

Definition 2.1. A sequence of d-regular graphs {Gn}∞n=1 is essentially expander
if there exists a δ > 0 such that for every n the graph Gn is the vertex-disjoint
union of δ-expanders modulo o(n) edges.

The next theorem [5] (conjectured by Bowen in [3]) shows that essential
expansion is forceable.

Theorem 2.2. If a sequence of d-regular graphs {Gn}∞n=1 Benjamini-Schramm
converges to the Cayley graph of a finitely generated group with Kazhdan Prop-
erty (T) then it is essentially expander.

This rhymes with the Connes-Weiss definition of Kazhdan Property (T):
a group has Property (T) iff every ergodic action of the group on a probability
measure space is expander. There are examples of finitely presented groups with
Property (T), hence there are easy descriptions of a local statistics that force
essential expansion. See [2] for more on groups with Property (T).

We give a spectral characterization of essentially expander graph sequences.

Theorem 2.3. Consider a sequence of d-regular graphs {Gn}∞n=1. The follow-
ing are equivalent:

• There exists an ε > 0 such that for every k > 0 the following holds:
for every n > 0 and S ⊆ V (Gn) we have the inequality
‖Ak+1χS −AkχS‖ ≤ (1− ε)k‖AχS − χS‖+ on(1).

• The sequence is essentially expander.

Note that the first condition is easy to check for an essentially expander
sequence. Theorem 2.2 is a straightforward consequence of Theorem 2.3.

3 Applications

Ergodic decomposition theorems usually require separability conditions.
Theorem 2.2 gives an ergodic decomposition theorem beyond the separable
universe: it implies that an ergodic decomposition exists for limits (ultraprod-
uct, weak limit etc.) of a sequence of graphs Benjamini-Schramm converging to
the Cayley graph of a finitely generated group with Property (T). This was a
conjecture of Bowen [3]. The theorem can be generalized to limits of graph se-
quences. This makes it possible to prove an ergodic decomposition theorem for
sequences of essentially strongly ergodic graphs. Here the components will be
strongly ergodic. The key tool is a generalization of Theorem 2.3 to essentially
strongly ergodic graphs, see [5] for details.
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We call a sequence of graphs {Gn}∞n=1 hyperfinite if for every ε > 0 there
exists K > 0 such that for every n we can delete εn edges of V (Gn) and get
a graph that has connected components of size at most K. Planar graphs
are good examples of hyperfinite graphs. Graphs with large girth and average
degree greater than (2 + ε) are not hyperfinite. The group-theoretical analogue
of hyperfiniteness is amenability: every sequence of graphs that Benjamini-
Schramm converges to the Cayley graph of a finitely generated amenable group
is hyperfinite. Hyperfinite graphs play an important role in property testing.

Freedman and Hastings introduced a higher dimensional analogue and de-
fined hyperfinite simplicial complexes. We call a sequence of k-dimensional
simplicial complexes {Xn}∞n=1, with 0-skeletons sk0(Xn), k-hyperfinite if for ev-
ery ε > 0 there is a D such that for every n there is an X ′n obtained by the
removal of ε|sk0(Xn)| k-dimensional simplices from Xn, a (k − 1)-dimensional
simplicial complex Yn, and a continuous function fn : X ′n → Yn, such that the
pre-image of every element of Yn has diameter at most D. The structure of
such complexes can be understood via reductions to complexes of smaller di-
mension. Freedman and Hastings constructed non-hyperfinite complexes as part
of an attempt to attack the quantum PCP conjecture. They generalized the
hypergraph product codes of Tillich and Zémor. We give new constructions
and a simple proof in the 2-dimensional case, which is sufficient for the above
applications.

Theorem 3.1. Consider a finitely presented sofic group Γ with Property (T)
and a sequence of finite 2-simplices {Xn}∞n=1 that Benjamini-Schramm con-
verges to the Cayley complex of Γ. Then {Xn}∞n=1 is not 2-hyperfinite.

We give a sketch of the idea of the proof. We proceed by supposing for a
contradiction that there are X ′n, Yn, fn establishing 2-hyperfiniteness for every
n. Now each Yn is a 1-dimensional simplex and its covers can have an almost
arbitrary global structure, since its fundamental group is a free group. There
exists one far from an essential expander: this can be checked using the spectral
condition of Theorem 2.3. On the other hand, the structure of this cover can be
pulled back to a cover of X ′n, which is close to Xn in the Benjamini-Schramm
sense. Hence the 1-skeleton of this cover should be close to an essential expander
due to Theorem 2.2, and this gives the desired contradiction.
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Algebraic and model-theoretic methods in
constraint satisfaction

Michael Pinsker1

Technische Universität Wien, Austria/ Université Diderot - Paris 7, France

This text is related to the topic which I presented in the Doc-course
at Charles University Prague in the fall of 2014. It should be consid-
ered as a supplement to the course rather than a summary: for the
present text I chose a different focus, developing the subject around
the notion of a function clone instead of starting with constraint
satisfaction problems. Moreover, I concentrate here on possible fu-
ture research in the field more than on the details of what is already
known; the latter can be found in the literature listed in the refer-
ences at the end.

1 Overview

A function clone is a set C of finitary functions on a set D which is closed under
composition and which contains all projections. More formally,

• whenever f ∈ C is n-ary, and g1, . . . , gn ∈ C are m-ary, then the m-ary
function f(g1, . . . , gn) defined by

(x1, . . . , xm) 7→ f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

is an element of C ;

• for all 1 ≤ k ≤ n < ω, C contains the k-th n-ary projection πnk : Dn → D,
uniquely defined by the equation πnk (x1, . . . , xn) = xk.

There are two main sources of function clones:

• the term operations of any algebra A form a clone, the term clone of A
(and in fact, every clone is of this form);

• the set of all operations which preserve a given relational structure Γ form
a clone, called the polymorphism clone of Γ (certain clones, the topologi-
cally closed clones, are of this form).

The first source of function clones makes them an object of primary interest in
universal algebra, since many properties of an algebra, such as its subalgebras
and congruences, only depend on its term operations. The second source links
them with relational structures, and in particular, as we will see, with certain
questions in complexity theory.

1Funded by FWF grant I836-N23
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This topic of this text is function clones over a countably infinite set and their
applications in complexity theory. While the investigation of all such clones is
not very promising since in the general setting, hardly any positive structural
results could be expected (cf. for example [26]), research on clones which are
“sufficiently rich” has proven extremely fruitful in recent years [11, 12, 5, 36]. We
are interested here in function clones which are rich in the sense that they contain
a rather large permutation group: a permutation group on a countably infinite
set D is called oligomorphic iff its componentwise action on Dn has only finitely
many orbits, for all n ≥ 1 (cf. [23]). Function clones containing an oligomorphic
permutation group, referred to as oligomorphic clones [5], have been shown to
enjoy many properties of function clones on finite sets. For example, they satisfy
a topological variant of Birkhoff’s HSP theorem; moreover, they encode the
complexity of certain computational problems, so-called constraint satisfaction
problems (CSPs), and indeed have proven to be a valuable tool in the study
of the complexity of such problems in what is called the algebraic approach to
CSPs. Oligomorphic function clones encode a much larger class of CSPs than
function clones over finite sets [4], and yet many tools from the finite carry over
to the oligomorphic setting.

Of particular importance to us will be oligomorphic clones which arise from
homogeneous relational structures in a finite language, and some of our methods
rely on Ramsey theory and on connections of Ramsey-type theorems with topo-
logical dynamics. While the original motivation for studying function clones
comes from universal algebra, and later and independently from constraint sat-
isfaction problems, their study therefore also involves tools and concepts from
model theory, combinatorics, and topological dynamics.

2 The state of the art

Birkhoff’s theorem for oligomorphic clones. I will start by recalling the
finite version of Birkhoff’s HSP theorem. An algebra is a structure with a purely
functional signature. The clone of an algebra A with signature τ , denoted by
Clo(A), is the set of all functions with finite arity on the domain A of A which
can be written as τ -terms over A. More precisely, every abstract τ -term t
naturally induces a finitary function tA on A, and Clo(A) consists precisely of
the functions of this form.

Let A, B be algebras of the same signature τ . The assignment ξ from Clo(A)
to Clo(B) which sends every element tA of Clo(A) to tB is a well-defined function
if and only if for all τ -terms s, t we have that sB = tB whenever sA = tA.
In that case, ξ is in fact a surjective clone homomorphism, and we then call
ξ the natural homomorphism from Clo(A) onto Clo(B). In general, a clone
homomorphism is a function σ : C → D , where C ,D are clones (possibly acting
on different base sets), which sends functions in C to functions of the same
arity in D , every projection in C to the corresponding projection in D , and
which preserves composition, i.e., σ(f(g1, . . . , gn)) = σ(f)(σ(g1), . . . , σ(gn)) for
all n-ary f ∈ C and all m-ary g1, . . . , gn ∈ D , for all n,m ≥ 1 (cf. [16]).
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When C is a class of algebras with common signature τ , then P(C) denotes
the class of all products of algebras from C, Pfin(C) denotes the class of all
finite products of algebras from C, S(C) denotes the class of all subalgebras
of algebras from C, and H(C) denotes the class of all homomorphic images of
algebras from C (when defining these operators, we consider algebras up to iso-
morphism). A pseudovariety is a class V of algebras of the same signature such
that V = H(V) = S(V) = Pfin(V), i.e., a class closed under homomorphic im-
ages, subalgebras, and finite products; the pseudovariety generated by a class of
algebras C (or by a single algebra A) is the smallest pseudovariety that contains
C (contains A, respectively). For finite algebras, Birkhoff’s HSP theorem takes
the following form (see Exercise 11.5 in combination with the proof of Lemma
11.8 in [22]).

Theorem 1 (Birkhoff [3]). Let A,B be finite algebras with the same signature.
Then the following three statements are equivalent.

1. The natural homomorphism from Clo(A) onto Clo(B) exists.

2. B ∈ HSPfin(A).

3. B is contained in the pseudovariety generated by A.

When A and B are of arbitrary cardinality, then the equivalence of (2) and
(3) still holds; however, if one wants to maintain equivalence with item (1), then
another version of Birkhoff’s theorem states that one has to replace finite powers
by arbitrary powers in the second item, that is, one has to replace HSPfin(A)
by HSP(A); the third item has to be adapted using the notion of a variety of
algebras, i.e., a class of algebras of common signature closed under the operators
H, S and P.

It recently turned out that one can prove a similar theorem with finite powers
for algebras A on a countably infinite domain whose clone Clo(A) is oligomorphic
– we call such algebras oligomorphic as well. To this end, one has to see function
clones not only as algebraic, but also as topological objects. On any set D,
there is a largest function clone OD: the clone of all finitary operations on D.
The “function space” OD carries a natural topology, namely the topology of
pointwise convergence, with respect to which the composition of functions is
continuous. A basis of open sets of this topology is given by the sets of the form

{f : Dk → D | f(a1
1, . . . , a

1
k) = a1

0, . . . , f(an1 , . . . , a
n
k ) = an0} .

In fact, similarly to the Baire space NN, OD then becomes a Polish space (cf. for
example [16]). As a subset of OD, every function clone C on D inherits this
topology, and hence carries a topological structure in addition to its algebraic
structure given by the equations which hold in C . We denote the topological
closure of a function clone C in OD by C .

It is not hard to see that all algebras in the pseudovariety generated by an
oligomorphic algebra are again oligomorphic. The following is the topological
variant of Birkhoff’s theorem for oligomorphic algebras.
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Theorem 2 (Bodirsky and Pinsker [11]). Let A,B be oligomorphic or finite
algebras with the same signature. Then the following three statements are equiv-
alent.

1. The natural homomorphism from Clo(A) onto Clo(B) exists and is con-
tinuous.

2. B ∈ HSPfin(A).

3. B is contained in the pseudovariety generated by A.

Note that Theorem 1 really is a special case of Theorem 2, since the topology
of any function clone on a finite set is discrete, and hence the natural homo-
morphism from the clone of a finite algebra to that of another algebra is always
continuous.

Applications to constraint satisfaction problems. Let us now turn to
applications of oligomorphic function clones to computational complexity prob-
lems. Every relational structure Γ in a finite language defines a computational
problem, called the constraint satisfaction problem of Γ and denoted by CSP(Γ),
as follows: input of the problem is a primitive positive sentence φ in the language
for Γ, i.e., a sentence of the form ∃x1, . . . , xn(φ1 ∧ · · · ∧ φm) where φ1, . . . , φm
are atomic formulas; the problem is to decide whether or not φ holds in Γ. An
instance of this problem therefore asks about the existence of elements of Γ
satisfying a given conjunction of atomic conditions. The structure Γ is called
the template of the problem, and can be finite or infinite. We will later see how
infinite templates can model natural computational problems, and refer also
to [4] for an abundance of examples. We remark that CSP(Γ) is often presented
in the form of a homomorphism problem, which is easily seen to be equivalent:
in this formulation, the input is a finite structure Ω in the language of Γ (which
can still be finite or infinite), and the question is whether or not there exists a
homomorphism from Ω into Γ.

To every relational structure Γ, one can assign a function clone on the domain
of Γ as follows. A polymorphism of a structure Γ is a homomorphism from Γk

to Γ for some finite k ≥ 1; the polymorphism clone Pol(Γ) of Γ is the set of all
polymorphisms of Γ. It is easy to see that Pol(Γ) is a function clone which is
closed in the pointwise convergence topology described above, and in fact, the
closed function clones are precisely the function clones of the form Pol(Γ) for a
relational structure Γ.

For finite relational structures Γ, the complexity of CSP(Γ) depends, up
to polynomial time, only on Pol(Γ) (cf. [21, 20]); this fact is the basis of the
approach to constraint satisfaction via clones. The same is true for structures
with oligomorphic polymorphism clones [10]. But which structures have oligo-
morphic polymorphism clones? The answer can be found in a classical theorem
of model theory, the theorem of Engeler, Svenonius, and Ryll-Nardzewski (see
e.g. the textbook [28]). A countable structure Γ is called ω-categorical iff all
countable models of the first-order theory of Γ are isomorphic to Γ. Now the
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theorem states that the automorphism group Aut(Γ) of a countable structure
Γ is oligomorphic if and only if Γ is ω-categorical. It follows that the poly-
morphism clone of a countable structure Γ is oligomorphic if and only if Γ is
ω-categorical.

Theorem 3 (Bodirsky and Nešetřil [10]). Let Γ,Γ′ be ω-categorical structures
in finite relational languages which have the same domain. If Pol(Γ) ⊆ Pol(Γ′),
then CSP(Γ′) is polynomial-time reducible to CSP(Γ).

As a consequence, for ω-categorical structures Γ the complexity of their
CSP is still up to polynomial time encoded in their polymorphism clone, i.e., if
Pol(Γ′) = Pol(Γ), then CSP(Γ) and CSP(Γ′) are polynomial-time equivalent.

The theory of the algebraic approach to CSPs goes much further, which
brings us back to Birkhoff’s HSP theorem. For a structure Γ, we call any algebra
on the domain on Γ whose functions are precisely the elements of Pol(Γ) indexed
in some arbitrary way a polymorphism algebra of Γ. It can be shown that if Γ
and Γ′ are finite structures in a finite relational language, and a polymorphism
algebra B of Γ′ is contained in the pseudovariety of a polymorphism algebra A of
Γ, then CSP(Γ′) is polynomial-time reducible to CSP(Γ) [21, 20]. By Birkhoff’s
theorem, this is the case iff the natural homomorphism from Clo(A) onto Clo(B)
exists. One then sees that this is the case if and only if there exists a surjective
clone homomorphism from Pol(Γ) onto Pol(Γ′). Hence, the complexity of the
CSP of a finite relational structure Γ only depends on the abstract structure of
the clone Pol(Γ). Similarly to abstract groups, abstract clones can be formalized
as multi-sorted algebras equipped with composition operations as well as with
constant symbols for the projections (cf. , for example, [26] or [16]), but one can
avoid this technicality: in practice, it is enough to know that abstract clones
simply encode the equations which hold between its functions, or more precisely,
it is enough to know that clone homomorphisms as defined above are precisely
the structure preserving maps between those objects.

Using the topological generalization of Birkhoff’s theorem, one can show the
following for ω-categorical structures (this is a simplified version; for a stronger
formulation see [11]).

Theorem 4 (Bodirsky and Pinsker [11]). Let Γ,Γ′ be finite or ω-categorical
structures in a finite relational language. If there exists a surjective continuous
clone homomorphism from Pol(Γ) onto Pol(Γ′), then CSP(Γ′) is polynomial-
time reducible to CSP(Γ).

In particular, for ω-categorical structures the complexity of their CSP is still
up to polynomial time encoded in their polymorphism clone, seen as an abstract
clone together with the topology on the functions. In analogy to topological
groups, we call such objects topological clones [16]. More precisely, if two ω-
categorical structures Γ,Γ′ have polymorphism clones which are isomorphic as
topological clones (i.e., via a bijection which is a clone homomorphism, whose
inverse is a clone homomorphism, and which is a homeomorphism), then their
CSPs are polynomial-time equivalent.
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A class of ω-categorical structures for which the CSP is of particular inter-
est are structures with a first-order definition in a homogeneous structure in a
finite language. A structure ∆ is called homogeneous iff any isomorphism be-
tween finitely generated substructures of ∆ extends to an automorphism of ∆
(some authors call this notion ultrahomogeneity to distinguish it from related
concepts of homogeneity). A reduct of a structure ∆ is a relational structure on
the same domain each of whose relations can be defined in ∆ by a first-order
formula without parameters. Countable homogeneous structures in a finite re-
lational language are ω-categorical, and reducts of ω-categorical structures are
ω-categorical as well, and hence fall into our context (cf. the textbook [28]).

When Γ is the reduct of a homogeneous structure in a finite language, then
CSP(Γ) models a certain type of problem about finitely generated structures,
as we will outline in the following. Homogeneous structures can be seen as
generic objects, called Fräıssé limits, representing so-called Fräıssé classes of
finitely generated structures. A Fräıssé class is a class C of finitely generated
structures in a fixed countable language closed under isomorphism and induced
substructures which satisfies the joint embedding property, i.e., for all Ω0,Ω1 ∈
C there is Ω2 ∈ C such that Ω0,Ω1 embed into Ω2, and the amalgamation
property, i.e., for any three structures Ω0,Ω1,Ω2 in C and embeddings e : Ω0 →
Ω1 and f : Ω0 → Ω2 there exists Ω3 ∈ C and embeddings e′ : Ω1 → Ω3 and
f ′ : Ω2 → Ω3 such that e′ ◦ e = f ′ ◦ f . For any Fräıssé class C there exists
an up to isomorphism unique homogeneous structure ∆C , called the Fräıssé
limit of C, whose age, i.e., the class of its finitely generated substructures up to
isomorphism, equals C. Conversely, the age of any homogeneous structure in a
countable language is a Fräıssé class.

For example, the random graph G = (V,E) is the Fräıssé limit of the class of
finite undirected graphs without loops, and similarly there exist a random par-
tial order, a random tournament, random hypergraphs, a random digraph, and so
forth. Let us stick to the first example for a moment and let us define a class of
computational problems about finite graphs as follows. Call quantifier-free for-
mulas in the language of graphs graph formulas. A graph formula Φ(x1, . . . , xm)
is satisfiable in a graph iff there exists a graph H and an m-tuple a of elements
in H such that Φ(a) holds in H. Now let Ψ = {ψ1, . . . , ψn} be a finite set of
graph formulas. Then Ψ gives rise to the following computational problem.

Graph-SAT(Ψ)
INSTANCE: A set of variables W and a graph formula of the form Φ =
φ1 ∧ · · · ∧ φl where each φi for 1 ≤ i ≤ l is obtained from one of the for-
mulas ψ in Ψ by substituting the variables from ψ by variables from W .
QUESTION: Is Φ satisfiable in a graph?

In words, an instance of Graph-SAT(Ψ) asks whether there exists a (finite)
graph with satisfies a conjunction of properties; which properties can appear is
restricted by the fixed set of graph formulas Ψ. Therefore, the computational
complexity increases with Ψ in the sense that Ψ ⊆ Ψ′, then any algorithm
for Graph-SAT(Ψ′) solves Graph-SAT(Ψ). It is easy to see that each problem
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Graph-SAT(Ψ) is in NP, i.e., solvable in nondeterministic polynomial time.
The connection with CSPs is that every problem Graph-SAT(Ψ) can be

translated into CSP(ΓΨ) for a finite language reduct ΓΨ of the random graph
G = (V,E) and vice-versa. For one direction, let Ψ = {ψ1, . . . , ψn} be a set of
graph formulas. To this set we assign a reduct ΓΨ of G which has for each ψi a
relation Ri consisting of those tuples of elements of V that satisfy ψi (where the
arity of Ri is given by the number of distinct variables that occur in ψi). One
readily sees that any algorithm for Graph-SAT(Ψ) can be adapted to CSP(ΓΨ)
and vice-versa, and so the problems are essentially the same. For the other
direction, if Γ is a reduct of G in a finite language, then each of its relations
is defined by a first-order formula over G, and indeed even by a quantifier-free
first-order formula (i.e., a graph formula), since homogeneity and ω-categoricity
imply quantifier elimination. Let ΨΓ the set of those graph formulas. Again,
one easily checks that Graph-SAT(ΨΓ) and CSP(Γ) are basically the same prob-
lem [13].

Now let C be an arbitrary Fräıssé class of finitely generated structures in a
finite language. As in the case of graphs, for a finite set Ψ of quantifier-free first-
order formulas in the language of C, we can define the following computational
problem.

C-SAT(Ψ)
INSTANCE: A set of variables W and a formula of the form Φ = φ1 ∧ · · · ∧ φl
where each φi for 1 ≤ i ≤ l is obtained from one of the formulas ψ in Ψ by
substituting the variables from ψ by variables from W .
QUESTION: Is Φ satisfiable in a structure in C?

As before, each problem C-SAT(Ψ) is equivalent to CSP(ΓΨ) for an appro-
priate reduct ΓΨ of the Fräıssé limit ∆C of C and vice-versa. Hence, classifying
the complexity of the problems C-SAT(Ψ) and classifying the complexity of the
constraint satisfaction problems of reducts of ∆C is one and the same thing.
Complete classifications have been obtained so far for the following countable
homogeneous structures.

• the empty structure (N,=) [7];

• the order of the rationals (Q,≤) [9];

• the random graph G = (V,E) [13].

In each of the three cases the classifications resulted in dichotomies: the
CSPs of the reducts turned out to be either NP-complete or in P (i.e., solvable
in polynomial time, which we will henceforth refer to as tractable). While there
exist CSPs of homogeneous digraphs which are undecidable [18], the following
representability condition for a Fräıssé class C, arguably reasonable for the most
interesting computational problems, forces C-SAT problems to be in NP, and
could possibly imply a general dichotomy. Let τ be a finite relational signature.
A class C of finite τ -structures is called finitely bounded iff there exists a finite set
of finite τ -structures F such that C consists precisely of those finite τ -structures
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which do not embed any element of F . A relational structure is called finitely
bounded iff its age is finitely bounded. When Γ is a finite language reduct of a
finitely bounded homogeneous structure ∆, then CSP(Γ) is easily seen to be in
NP. We conjecture the following.

Conjecture 5. Let ∆ be a finitely bounded homogeneous structure, and let Γ
be a finite language reduct of ∆. Then CSP(Γ) is either in P or NP-complete.

The advantage of translating C-SAT problems into constraint satisfaction
problems of reducts of the Fräıssé limit ∆C is that it allows for the algebraic
approach via clones, as we will now outline.

Firstly, by Theorem 3 we have that if Γ,Γ′ are ω-categorical structures on
the same domain and Pol(Γ) ⊇ Pol(Γ′), then CSP(Γ) has a polynomial-time
reduction to CSP(Γ′). On a theoretical level, this implies that when one wants to
classify the complexity of the CSPs of all reducts of ∆C , it suffices to consider all
polymorphism clones of reducts of ∆C – reducts with equal polymorphism clones
are polynomial-time equivalent. Those clones are precisely the closed function
clones which contain the automorphism group Aut(∆C) of ∆C . Moreover, if a
closed function clone corresponds to a tractable (i.e., polynomial-time solvable)
CSP, then so do all closed function clones containing it; if it corresponds to a
NP-hard CSP, then so do all closed function clones above Aut(∆C) contained in
it. In the case of an existing dichotomy, one thus has to find the border between
tractability and NP-hardness in the lattice of closed function clones containing
Aut(∆C). On a practical level, this implies that if the CSP of a reduct Γ is in P,
then this is witnessed by the presence of certain functions in Pol(Γ). And indeed,
the presence of polymorphisms with certain properties have been successfully
translated into algorithms in the classifications above – see [12].

The second use of polymorphism clones is that Theorem 4 allows us to com-
pare CSPs on different domains, resulting in a tool both for showing tractability
as well as for showing hardness. As for the latter, it turns out to be convenient
to show NP-hardness of CSP(Γ) by exposing a continuous clone homomorphism
from Pol(Γ) onto Pol(Γ′), where Γ′ is an ω-categorical or finite structure with
a hard CSP [11]. In practice, Γ′ will generally be finite; in fact, Γ′ will often
be any structure on a two-element set with a trivial polymorphism clone, i.e.,
the clone 1 of all projections on a two-element set (which is the polymorphism
clone of NP-complete structures). Since 1 is isomorphic to the smallest function
clone (i.e., the clone of projections) on any finite set with at least two elements,
and on finite domain smaller polymorphism clones correspond to harder CSPs,
a continuous clone homomorphism to 1 is in a sense the strongest finite rea-
son for NP-hardness (more precisely, it implies that Γ pp-interprets all finite
structures [11]; see also [17]).

Notation 6. We write 1 for the clone of all projections on a two-element set.

It is an open conjecture, and indeed the main conjecture for CSPs of finite
structures known as the tractability conjecture, that under a cosmetic assump-
tion (the assumption of having an idempotent polymorphism clone, see Sec-
tion 3) on a finite structure Γ, the CSP for Γ is NP-complete if there exists a
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clone homomorphism from Pol(Γ) onto 1, and in P otherwise. Clearly, if there
exists such a homomorphism, then CSP(Γ) is NP-complete; the open part is
the other direction. Note that if there is no such homomorphism, then this is
witnessed by equations which hold in Pol(Γ) but which cannot be satisfied in
1. Numerous equations have been translated into algorithms, and indeed every
non-trivial set of equations of an idempotent clone translates into an algorithm
if one believes in the tractability conjecture. In the ω-categorical setting, we
cannot purely rely on equations, but need to take into account the topology on
the functions – at least with what we know today. Recently, research has been
conducted investigating the role of this topology [17], and about how to show
tractability in case there exists no continuous homomorphism to 1.

A Ramsey-theoretic method. The behavior of polymorphism clones of
reducts of homogeneous structures ∆ in a finite relational language seems to
be particularly close to that of function clones on finite sets when ∆ satisfies a
particular combinatorial property. Let τ be a relational signature. We say that
a class C of finite τ -structures is a Ramsey class (in the sense of [37]) iff for all
Ω0,Ω1 ∈ C there exists Ω2 ∈ C such that for all colorings of the copies of Ω0 in
Ω2 with two colors there exists an isomorphic copy Ω′1 of Ω1 in Ω2 such that all
copies of Ω0 in Ω′1 have the same color. A relational structure is called Ramsey
iff its age is a Ramsey class. When C is a relational Fräıssé class and ∆C its
Fräıssé limit, then it is equivalent to call ∆C Ramsey iff for all Ω0,Ω1 ∈ C and
all colorings of the copies of Ω0 in ∆C there exists a copy of Ω1 in ∆C on which
the coloring is constant. Examples of Fräıssé classes which are Ramsey classes
are the class of finite ordered undirected graphs, the class of finite linear orders,
and the class of finite partial orders with a linear extension [39, 38, 1].

We remark that, for example, neither the random graph nor the random
partial order are Ramsey, and thus seem to fall out of this framework. How-
ever, they are themselves reducts of homogeneous Ramsey structures, namely
the random ordered graph (i.e., the Fräıssé limit of the class of finite ordered
undirected graphs) and the random partial order with a random linear extension
(i.e., the Fräıssé limit of the class of finite partial orders with a linear extension).

The Ramsey property can be exploited as follows. Let Ξ be a structure.
The type of a tuple b = (b1, . . . , bn) of elements of Ξ, denoted by tp(b), is
the set of first-order formulas φ(x1, . . . , xn) such that φ(b1, . . . , bn) holds in
Ξ. Now let Ξ1, . . . ,Ξm be structures. For an element a of the product Ξ1 ×
· · · × Ξm and 1 ≤ i ≤ m, we write ai for the i-th coordinate of a. The type
of a tuple (a1, . . . , an) of elements a1, . . . , an ∈ Ξ1 × · · · × Ξm, denoted by
tp(a1, . . . , an), is the m-tuple containing the types of (a1

i , . . . , a
n
i ) in Ξi for each

1 ≤ i ≤ m. A function f : Ξ1 × · · · × Ξm → Ω is called canonical iff it
sends finite tuples of equal type in Ξ1 × · · · × Ξm to tuples of equal type in Ω;
that is, whenever tp(a1, . . . , an) = tp(b1, . . . , bn), then tp(f(a1), . . . , f(an)) =
tp(f(b1), . . . , f(bn)). For a relational structure ∆ and elements c1, . . . , cn of ∆,
we write (∆, c1, . . . , cn) for the expansion of ∆ by the constants c1, . . . , cn. The
structure ∆ is ordered iff it has a linear order among its relations. Now the
following holds [18, 12].
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Theorem 7 (Bodirsky, Pinsker and Tsankov [18]). Let ∆ be an ordered homo-
geneous Ramsey structure in a finite relational language, and let C ⊇ Aut(∆)
be a closed function clone. Then for all f ∈ C and all c1, . . . , cn ∈ ∆ there
exists a function g ∈ C which is canonical as a function on (∆, c1, . . . , cn), and
which agrees with f on {c1, . . . , cn}.

Thus under these conditions on ∆, if there is a function f in a polymorphism
clone of a reduct of ∆ which does something of interest (e.g., algorithmically)
on a finite set {c1, . . . , cn}, then there is also a canonical function in this clone
which does the same. Note that canonical functions on (∆, c1, . . . , cn) are finite
objects in the following sense. Every canonical function f : (∆, c1, . . . , cn)m →
(∆, c1, . . . , cn) defines an m-ary function T (f) on the types of (∆, c1, . . . , cn)
in an obvious way, by the very definition of canonicity. Moreover, this type
function T (f) determines f in the sense that if two canonical functions f, g :
(∆, c1, . . . , cn)m → (∆, c1, . . . , cn) have identical type functions T (f) = T (g),
then any closed function clone containing Aut(∆) contains f iff it contains g.
Since (∆, c1, . . . , cn) is homogeneous in a finite language, the type functions
are finite objects: T (f) is completely determined by its values on the types of
tuples of length q, where q is the maximal arity of a relation in (∆, c1, . . . , cn);
moreover, there are only finitely many types of q-tuples since (∆, c1, . . . , cn) is
ω-categorical. As finite objects, these type functions can effectively be used in
algorithms [13].

An example of an application of Theorem 7 is the following.

Theorem 8 (Bodirsky, Pinsker and Tsankov [18]). Let ∆ be an ordered homo-
geneous Ramsey structure in a finite relational language, and let Γ be a reduct
in a finite language. Then there exist c1, . . . , cn, m ≥ 1, and m-ary canonical
functions f1, . . . , fk on (∆, c1, . . . , cn) such that for all reducts Γ′ we have that
Pol(Γ′) \ Pol(Γ) is either empty or contains one of the functions f1, . . . , fk.

In words, under the above conditions the finite language reducts of ∆ can
be distinguished by functions which are canonical after adding finitely many
constants to the language of ∆. If we assume that that ∆ is finitely bounded,
which makes ∆ in a way finitely representable, then Theorem 8 can even be
implemented in an algorithm. This yields the following effective variant of the
theorem.

Theorem 9 (Bodirsky, Pinsker and Tsankov [18]). Let ∆ be an ordered ho-
mogeneous Ramsey structure which is finitely bounded, and let Γ,Γ′ be finite
language reducts of ∆. Then the problem whether or not Pol(Γ) ⊆ Pol(Γ′),
where the relations of Γ and Γ′ are given by quantifier-free formulas over ∆, is
decidable.

This gives hope that tractability of CSPs of reducts of ∆ is captured by the
canonical functions in their polymorphism clones – cf. Section 3.

The modern proof of Theorem 8 (yet unpublished but available on request) is
based on a beautiful characterization of the Ramsey property for homogeneous
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structures which links Ramsey theory with topological dynamics [32]. A topo-
logical group G is called extremely amenable iff whenever it acts continuously
on a compact Hausdorff topological space X, then this action has a fixed point,
i.e., there exists x ∈ X such that g(x) = x for all g ∈ G . Let ∆ be an ordered
homogeneous relational structure. Then ∆ is Ramsey iff Aut(∆), viewed as an
abstract topological group, is extremely amenable.

3 Open problems

The research questions presented here are all related to Conjecture 5 in one
way or another; in fact, one can put them together so that they constitute a
systematic program for proving the conjecture. After stating the questions, in
Section 4, I will discuss the questions in the context of the conjecture. I empha-
size, however, that each of them has its own mathematical value independently
of the truth of the conjecture.

The first set of questions concerns the connection between the algebraic and
the topological structure of clones in the light of Theorem 2. As for the link
to constraint satisfaction, recall that for finite structures Γ, the complexity of
CSP(Γ) only depends on the algebraic structure of Pol(Γ), whereas in the ω-
categorical setting, one also has to take the topology on Pol(Γ) into consideration
(Theorem 4). A first question, which we shall then refine, is the following.

Question 10. Are there conditions on oligomorphic algebras under which we
can drop the continuity condition in Theorem 2?

One such condition is to allow only very simple algebras B. Of particular in-
terest are, of course, continuous clone homomorphisms to 1 (i.e., term clones of
algebras all of whose functions are projections), since they are the major source
of hardness proofs. In fact, we believe that for certain structures they are the
unique source of hardness proofs: as already mentioned, the finite tractability
conjecture states that if a finite structure Γ satisfies a cosmetic condition, then
CSP(Γ) is NP-hard if and only if there exists a homomorphism from Pol(Γ) to
1. That condition, which requires that Pol(Γ) is idempotent, i.e., all f ∈ Pol(Γ)
satisfy the equation f(x, . . . , x) = x, can always be assumed: every CSP of a
finite structure is equivalent to a CSP of a finite structure with an idempotent
polymorphism clone [21]. This fact can be derived in two steps: first, one shows
that Γ can be assumed to be a core, i.e., all endomorphisms of Γ are automor-
phisms. One then shows that it is possible to add finitely many constants to
the language of Γ without increasing the complexity of its CSP – adding one
constant for each element of the domain, this forces all polymorphisms to be
idempotent. In the ω-categorical setting, one cannot simply assume that Pol(Γ)
be idempotent; indeed, it would then certainly fail to be oligomorphic, contain-
ing no unary functions at all except the identity. However, it is possible to
perform an analog of the first step, and assume that Γ is a model-complete core,
meaning that Aut(Γ) is (topologically) dense in the endomorphism monoid of
Γ (i.e., every endomorphism locally looks like an automorphism) [4]. Moreover,
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as in the finite case, adding finitely many constants to the language of Γ then
does not increase the complexity of its CSP [4]. Until now, similarly to the
situation for finite templates, we do not know of a reduct of a finitely bounded
homogeneous structure which is a model-complete core with an NP-hard CSP,
but which has no continuous homomorphism to 1 after adding finitely many
constants to the language.

Back to the continuity condition, we therefore ask the following.

Question 11. If a closed oligomorphic clone has a clone homomorphism to
1 (i.e., it satisfies no non-trivial equations), does it always have a continuous
clone homomorphism to 1? If not, are there further conditions on the clone
(model complete core etc.) which imply a positive answer?

There exists considerable literature about automorphism groups of ω-categorical
structures Γ which are reconstrucible, i.e., where the topology on Aut(Γ) is
uniquely determined by the algebraic group structure; this is for instance the
case when Aut(Γ) has the so-called small index property, that is, all subgroups of
countable index are open. The small index property has for instance been shown
for Aut(N,=) [24]; for Aut(Q;<) and for the automorphism group of the atom-
less Boolean algebra [42]; the automorphism group of the random graph [29];
for all ω-categorical ω-stable structures [29]; for the automorphism groups of
the Henson graphs [27]. The notion of reconstruction makes perfect sense for
function clones, and is of importance for our purposes. Call a closed func-
tion clone reconstructible iff all isomorphisms with other closed function clones
are homeomorphisms. Recent research has shown that for some homogeneous
ω-categorical structures with a reconstructible automorphism group, the recon-
structability carries over to the polymorphism clone of the structure [16].

Question 12. Let C be an oligomorphic polymorphism clone whose group of
invertible unary functions is reconstructible. When can we conclude that C is
reconstructible as well?

We remark that there exists an example of two ω-categorical structures
whose automorphism groups are isomorphic as groups but not as topological
groups [25], and that this example has recently been expanded to polymorphism
clones by David Evans in a yet unpublished note.

It is well-known that every Baire measurable homomorphism between Polish
groups is continuous (see e.g. [31]). So let us remark that there exists a model
of ZF+DC where every set is Baire measurable [41]. For the structures Γ that
we need to model computational problems as CSP(Γ) it therefore seems fair
to assume that the abstract algebraic structure of Aut(Γ) always determines
its topological structure; consistency of this statement with ZF has already
been observed in [34]. Hence, one could hope to find a model of ZF in which
polymorphism clones of ω-categorical structures are reconstructible, or in which
all homomorphisms of such clones to 1 are continuous.

Question 13. Do oligomorphic polymorphism clones have reconstruction in an
appropriate model of ZF? Are all homomorphisms from oligomorphic polymor-
phism clones to 1 continuous in an appropriate model of ZF?
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The concept of a topological clone appeared as a necessity for formulating
Theorem 2; it is indeed natural considering the importance of abstract clones
(known in disguise as varieties) for universal algebra and the natural presence
of topological groups in various fields of mathematics, in particular topological
dynamics. It is known that the closed permutation groups on a countable set
are precisely those topological groups that are Polish and have a left-invariant
ultrametric [2].

Question 14. Which topological clones appear as closed function clones on a
countably infinite set?

We now turn to the study of polymorphism clones of reducts of homoge-
neous Ramsey structures. Here, the approach via canonical functions, based on
Theorem 7 and the idea that we keep sufficient information about a clone when
we add a sufficiently large finite number of constants and then only consider
its canonical functions, has proven extremely fruitful. For example, this was
the strategy in the Graph-SAT dichotomy classification [13], and in many other
applications [40, 15, 18, 12, 14]; confer also Theorems 8 and 9. Generalizing the
Graph-SAT strategy, we arrive at the following ideas.

In the following, let Γ be a reduct of a finitely bounded ordered homogeneous
Ramsey structure ∆, and let c1, . . . , cn ∈ ∆. Then the set of finitary canonical
functions on (∆, c1, . . . , cn) forms a closed function clone, and hence so does the
intersection of this clone with Pol(Γ), which we call the canonical fragment of
Pol(Γ) with respect to c1, . . . , cn. By Theorem 8, this canonical fragment still
contains considerable information about Pol(Γ). Recall that its functions define
functions on the types of (∆, c1, . . . , cn); in fact, these “type functions” form a
clone on a finite set. We call this clone the type clone of Pol(Γ) with respect to
c1, . . . , cn, and denote it by Tc1,...,cn(Pol(Γ)). There are infinitely many choices
for c1, . . . , cn, but up to type equivalence, only finitely many for each n since Γ
is ω-categorical [28]. In the Graph-SAT dichotomy, these type clones happened
to capture the computational complexity of CSP(Γ) [13].

Question 15. Does the complexity of CSP(Γ) only depend on the algebraic
structure of its type clones?

More precisely, in the Graph-SAT classification it turned out that when
CSP(Γ) is tractable, then this fact was captured by some canonical polymor-
phism, which provided the algorithm; in particular, the answer to the following
question was positive. It is nourished by the belief that if Pol(Γ) contains a
function which implies tractability, and therefore is of use in some algorithm,
then this function can be “canonized” and therefore appears in some type clone
(cf. Theorem 7).

Question 16. If Γ is tractable, are there necessarily c1, . . . , cn ∈ ∆ such that
Tc1,...,cn(Pol(Γ)) corresponds to a tractable CSP?

The following question asks about the converse. The intuition behind it,
again true in the Graph-SAT case, is that algorithms for the type clone can be
“lifted” back to the original clone.
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Question 17. If there exist c1, . . . , cn ∈ ∆ such that Tc1,...,cn(Pol(Γ)) is tractable,
is Pol(Γ) tractable?

The following can be seen as a complexity-free variant of the preceding two
questions. It is known that if Tc1,...,cn(Pol(Γ)) satisfies non-trivial equations for
some c1, . . . , cn ∈ ∆, then so does Pol(Γ) [17]. Therefore, if some type clone
corresponds to a tractable, and if the finite tractability conjecture holds, then
Pol(Γ) does not have a homomorphism to 1 (and hence, if NP-hard, would have
to have another source of hardness). We do not know if the converse is true as
well.

Question 18. If Pol(Γ) does not have a homomorphism to 1, are there c1, . . . , cn ∈
∆ such that Tc1,...,cn(Pol(Γ)) has no homomorphism to 1?

We often think of the Ramsey property as an additional property of Fräıssé
classes (and indeed, most homogeneous structures are not Ramsey); we do re-
quire the property for our methods. However, we do not require the reducts Γ,
but only some “base structure” ∆ in which they are definable, to be Ramsey.
Hence, if the answer to the following question were positive, then our methods
would work for all homogeneous structures.

Question 19. Can every finitely bounded Fräıssé class be extended by finitely
many relations to a finitely bounded Fräıssé class which is in addition Ramsey?

We remark that this question has recently received considerable attention,
and in particular the answer is positive for all Fräıssé classes of digraphs –
see [33] for further references.

Let us turn to concrete classes of CSPs. Studying those has its own in-
terest, just like the dichotomies of Graph-SAT problems [13] and temporal
constraints [9, 8]; moreover they provide sources of examples for the general
questions.

The class of finite partial orders is one of the most natural Fräıssé classes,
and the answer to the following question would subsume some older results in
theoretical computer science, e.g. in [19], and the classification [9]. A basis for a
successful complexity classification of Poset-SAT problems has been established
very recently in the form of the classification of the closed supergroups of the
automorphism group of the random partial order [40].

Question 20. Classify the complexity of CSP(Γ), for all finite language reducts
Γ of the random partial order. In other words, classify the complexity of Poset-
SAT problems.

The solution to the following would subsume a considerable amount of re-
sults in the literature, e.g., completely the papers [30], [6], and some results
in [19], [35]. It would moreover require the extension of our methods to func-
tional signatures, a venture interesting in itself.

Question 21. Classify the complexity of CSP(Γ), for all finite language reducts
Γ of the atomless (= random) Boolean algebra.
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4 The infinite tractability conjecture

Each of the above questions has its own interest for the understanding of oligo-
morphic function clones, oligomorphic algebras, and their connections with con-
straint satisfaction. However, these questions really are part of a bigger program
around Conjecture 5. To make this connection with Conjecture 5 more evident,
let me show an example of how a proof of the conjecture could look. Let Γ be
a finite language reduct of a finitely bounded homogeneous structure ∆.

• Assume that Pol(Γ) does not have a continuous clone homomorphism to
1 (otherwise, CSP(Γ) is NP-hard by Theorem 4).

• If the answer to Question 11 is positive (possibly in an appropriate model
of ZF, cf. Question 13), then Pol(Γ) satisfies non-trivial equations.

• Assuming that Question 19 has a positive answer, we can assume that ∆
is Ramsey.

• If Question 18 has a positive answer, then some type clone Tc1,...,cn(Pol(Γ))
satisfies non-trivial equations.

• Assuming the tractability conjecture for finite templates, Tc1,...,cn(Pol(Γ))
corresponds to a tractable CSP.

• Assuming a positive answer to Question 17, CSP(Γ) is then tractable.
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Coloring random and planted graphs:
thresholds, structure of solutions

and algorithmic hardness

Lenka Zdeborová
Institut de Physique Theorique of CNRS, CEA, Saclay, France

Random graph coloring is a key problem for understanding average algorithmic
complexity. Planted random graph coloring is a typical example of an inference
problem where the planted configuration corresponds to an unknown signal and
the graph edges to observations about the signal. Remarkably, over the re-
cent decade or two tremendous progress has been made on the problem using
(principled, but mostly non-rigorous) methods of statistical physics. We will
describe the methods - message passing algorithms and the cavity method. We
will discuss their results - structure of the space of solutions, associated algo-
rithmic implications, and corresponding phase transitions. We will conclude by
summarizing recent mathematical progress in making these results rigorous and
discuss interesting open problems.

Editors’ note: The following references were provided to complement the lec-
tures:

L. Zdeborová and F. Krzakala. Phase transitions in the coloring of random
graphs. https://arxiv.org/abs/0704.1269.
L. Zdeborová and F. Krzakala. Hiding quiet solutions in random constraint
satisfaction problems. https://arxiv.org/abs/0901.2130
J. Ding, A. Sly, N. Sun. Proof of the satisfiability conjecture for large k. https:
//arxiv.org/abs/0901.2130

We include here reproductions of the handwritten notes Dr Zdeberová used to
support her lectures.
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